Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Introduction

Berberine (BBR) has the characteristics of repressing hyperglycemia, obesity, and inflammation, as well as improving insulin resistance. However, the underlying mechanism remains to be fully understood. This study explores whether BBR regulates inositol requiring enzyme 1 (IRE1)/glycogen synthase kinase 3 beta (GSK-3β) axis to resist obesity-associated inflammation, thereby improving glucolipid metabolism disorders.

Methods

Mice were fed a high-fat diet and administrated with BBR, followed by measurement of weight change, biochemical indicators, as well as glucose and insulin tolerance. Insulin-resistant 3T3-L1 adipocyte models were established, and the model cells were treated with BBR and IRE1 inhibitors. Cell viability was detected by cell counting kit-8 assay. Inflammatory factor secretion and glucose consumption were measured specific kits. Oil red O staining was used to observe lipid droplet formation, and protein expressions in the IRE1/GSK-3β axis were determined Western blot.

Results

BBR reduced weight, insulin resistance, levels of triglyceride, total cholesterol, free fatty acid, high-density lipoprotein, and low-density lipoprotein but improved glucose tolerance in obese mice. BBR and IRE1 inhibitors demonstrated no cytotoxicity. BBR and IRE1 inhibitors diminished secretion of tumor necrosis factor-alpha, interleukin-6, and monocyte chemoattractant protein 1, lipid droplet formation, and values of p-IRE1/IRE1 and p-GSK-3β/GSK-3β, but elevated glucose consumption in insulin-resistant adipocytes.

Conclusion

BBR improves glucose and lipid metabolism in obese mice through the reduction of IRE1/GSK-3β axis-mediated inflammation, showing the great potential of BBR in reversing insulin resistance in obesity.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303319434241113161606
2025-01-08
2025-09-12
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/11/EMIDDT-25-11-03.html?itemId=/content/journals/emiddt/10.2174/0118715303319434241113161606&mimeType=html&fmt=ahah

References

  1. MalenfantJ.H. Obesity in the geriatric population - A global health perspective.J Glob Health Rep.20193e201904510.29392/joghr.3.e201904534027129
    [Google Scholar]
  2. BlüherM. Obesity: Global epidemiology and pathogenesis.Nat. Rev. Endocrinol.201915528829810.1038/s41574‑019‑0176‑830814686
    [Google Scholar]
  3. GasmiA. NoorS. MenzelA. DoşaA. PivinaL. BjørklundG. Obesity and insulin resistance: Associations with chronic inflammation, genetic and epigenetic factors.Curr. Med. Chem.202128480082610.2174/1875533XMTA57NDQgz32838708
    [Google Scholar]
  4. CoppoM. BandinelliM. ChiostriM. ModestiP.A. PoggesiL. BoddiM. T cell-based RAS Activity and insulin levels in obese subjects with low grade inflammation.Am. J. Med. Sci.2022363542843410.1016/j.amjms.2021.09.00334571038
    [Google Scholar]
  5. CintiS. MitchellG. BarbatelliG. MuranoI. CeresiE. FaloiaE. WangS. FortierM. GreenbergA.S. ObinM.S. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans.J. Lipid Res.200546112347235510.1194/jlr.M500294‑JLR20016150820
    [Google Scholar]
  6. SzukiewiczD. Molecular mechanisms for the vicious cycle between insulin resistance and the inflammatory response in obesity.Int. J. Mol. Sci.20232412981810.3390/ijms2412981837372966
    [Google Scholar]
  7. LuZ. LiY. SongJ. Characterization and treatment of inflammation and insulin resistance in obese adipose tissue.Diabetes Metab. Syndr. Obes.2020133449346010.2147/DMSO.S27150933061505
    [Google Scholar]
  8. KojtaI. ChacińskaM. Błachnio-ZabielskaA. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance.Nutrients2020125130510.3390/nu1205130532375231
    [Google Scholar]
  9. Suren GargS. KushwahaK. DubeyR. GuptaJ. Association between obesity, inflammation and insulin resistance: Insights into signaling pathways and therapeutic interventions.Diabetes Res. Clin. Pract.202320011069110.1016/j.diabres.2023.11069137150407
    [Google Scholar]
  10. AjoolabadyA. LebeaupinC. WuN.N. KaufmanR.J. RenJ. ER stress and inflammation crosstalk in obesity.Med. Res. Rev.202343153010.1002/med.21921
    [Google Scholar]
  11. HanY. TianM. WangR. GuoD. ZhangD. LiuL. LncRNA SNHG14/miR-497a-5p/BACE1 axis modulates obesity-induced adipocyte inflammation and endoplasmic reticulum stress.2023376e23343
    [Google Scholar]
  12. LiuY. YuJ. ShiY.C. ZhangY. LinS. The role of inflammation and endoplasmic reticulum stress in obesity-related cognitive impairment.Life Sci.201923311670710.1016/j.lfs.2019.11670731374234
    [Google Scholar]
  13. XuS. XiJ. WuT. WangZ. The role of adipocyte endoplasmic reticulum stress in obese adipose tissue dysfunction: A review.Int. J. Gen. Med.2023164405441810.2147/IJGM.S42848237789878
    [Google Scholar]
  14. YangL. CalayE.S. FanJ. ArduiniA. KunzR.C. GygiS.P. S-Nitrosylation links obesity-associated inflammation to endoplasmic reticulum dysfunction.Science2015349624750050610.1126/science.aaa0079
    [Google Scholar]
  15. FoleyK.P. ChenY. BarraN.G. HealM. KwokK. TamrakarA.K. ChiW. DugganB.M. HenriksboB.D. LiuY. SchertzerJ.D. Inflammation promotes adipocyte lipolysis via IRE1 kinase.J. Biol. Chem.202129610044010.1016/j.jbc.2021.10044033610548
    [Google Scholar]
  16. KimS. JoeY. KimH.J. KimY.S. JeongS.O. PaeH.O. RyterS.W. SurhY.J. ChungH.T. Endoplasmic reticulum stress-induced IRE1α activation mediates cross-talk of GSK-3β and XBP-1 to regulate inflammatory cytokine production.J. Immunol.201519494498450610.4049/jimmunol.140139925821218
    [Google Scholar]
  17. WangS. XuZ. CaiB. ChenQ. Berberine as a potential multi-target agent for metabolic diseases: A review of investigations for berberine.Endocr. Metab. Immune Disord. Drug Targets202121697197910.2174/22123873MTA52ODUh132914727
    [Google Scholar]
  18. WuY ChenQ WenB WuN HeB ChenJ. Berberine reduces Aβ42 deposition and tau hyperphosphorylation via ameliorating endoplasmic reticulum stress.Front. Pharmacol.20211264075810.3389/fphar.2021.640758
    [Google Scholar]
  19. LiL. ZhengG. CaoC. CaoW. YanH. ChenS. The ameliorative effect of berberine on vascular calcification by inhibiting endoplasmic reticulum stress.J. Cardiovasc. Pharmacol.2022802294304
    [Google Scholar]
  20. XuanW-t WangH. ZhouP. YeT. GaoH-w YeS. Berberine ameliorates rats model of combined Alzheimer’s disease and type 2 diabetes mellitus via the suppression of endoplasmic reticulum stress.Biotech2020108359
    [Google Scholar]
  21. YangL. YuS. YangY. WuH. ZhangX. LeiY. LeiZ. Berberine improves liver injury induced glucose and lipid metabolic disorders via alleviating ER stress of hepatocytes and modulating gut microbiota in mice.Bioorg. Med. Chem.20225511659810.1016/j.bmc.2021.11659834979291
    [Google Scholar]
  22. BaiY. BaoX. MuQ. FangX. ZhuR. LiuC. MoF. ZhangD. JiangG. LiP. GaoS. ZhaoD. Ginsenoside Rb1, salvianolic acid B and their combination modulate gut microbiota and improve glucolipid metabolism in high-fat diet induced obese mice.PeerJ20219e1059810.7717/peerj.1059833604164
    [Google Scholar]
  23. ShiY. HuJ. GengJ. HuT. WangB. YanW. JiangY. LiJ. LiuS. Berberine treatment reduces atherosclerosis by mediating gut microbiota in apoE-/- mice.Biomed. Pharmacother.20181071556156310.1016/j.biopha.2018.08.14830257374
    [Google Scholar]
  24. Evers-van GoghI.J.A. OtengA.B. AlexS. HamersN. CatoireM. StienstraR. KalkhovenE. KerstenS. Muscle-specific inflammation induced by MCP-1 overexpression does not affect whole-body insulin sensitivity in mice.Diabetologia201659362463310.1007/s00125‑015‑3822‑226661101
    [Google Scholar]
  25. YangR. WangL. XieJ. LiX. LiuS. QiuS. HuY. ShenX. Treatment of type 2 diabetes mellitus via reversing insulin resistance and regulating lipid homeostasis in-vitro and in-vivo using cajanonic acid A.Int. J. Mol. Med.20184252329234210.3892/ijmm.2018.383630226559
    [Google Scholar]
  26. LiQ. LiuT. YangS. ZhangZ. Upregulation of miR-34a by inhibition of IRE1 α has protective effect against A β -induced injury in SH-SY5Y cells by targeting caspase-2.Oxid. Med. Cell. Longev.2019201911010.1155/2019/214042731281568
    [Google Scholar]
  27. LinY.C. LeeY.C. LinY.J. LinJ.C. Berberine promotes beige adipogenic signatures of 3T3-L1 cells by regulating post-transcriptional events.Cells20198663210.3390/cells806063231234575
    [Google Scholar]
  28. KuateD. KengneA.P.N. BiapaC.P.N. AzantsaB.G.K. Wan MudaW.A.M.B. Tetrapleura tetraptera spice attenuates high-carbohydrate, high-fat diet-induced obese and type 2 diabetic rats with metabolic syndrome features.Lipids Health Dis.20151415010.1186/s12944‑015‑0051‑026003803
    [Google Scholar]
  29. SaravananS. PariL. Role of thymol on hyperglycemia and hyperlipidemia in high fat diet-induced type 2 diabetic C57BL/6J mice.Eur. J. Pharmacol.201576127928710.1016/j.ejphar.2015.05.03426007642
    [Google Scholar]
  30. BaldassanoS. AmatoA. CaldaraG.F. MulèF. Glucagon-like peptide-2 treatment improves glucose dysmetabolism in mice fed a high-fat diet.Endocrine201654364865610.1007/s12020‑016‑0871‑326832341
    [Google Scholar]
  31. LiC. CaoH. HuanY. JiW. LiuS. SunS. LiuQ. LeiL. LiuM. GaoX. FuY. LiP. ShenZ. Berberine combined with stachyose improves glycometabolism and gut microbiota through regulating colonic microRNA and gene expression in diabetic rats.Life Sci.202128411992810.1016/j.lfs.2021.11992834480937
    [Google Scholar]
  32. FangX WuH WangX LianF LiM MiaoR Modulation of gut microbiota and metabolites by berberine in treating mice with disturbances in glucose and lipid metabolism.Front. Pharmacol.20221387040710.3389/fphar.2022.870407
    [Google Scholar]
  33. HulsmansM. GeeraertB. De KeyzerD. MertensA. LannooM. VanaudenaerdeB. HoylaertsM. BenhabilèsN. TsatsanisC. MathieuC. HolvoetP. Interleukin-1 receptor-associated kinase-3 is a key inhibitor of inflammation in obesity and metabolic syndrome.PLoS One201271e3041410.1371/journal.pone.003041422272346
    [Google Scholar]
  34. XiongX.Q. GengZ. ZhouB. ZhangF. HanY. ZhouY.B. WangJ.J. GaoX.Y. ChenQ. LiY.H. KangY.M. ZhuG.Q. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity.Metabolism201883314110.1016/j.metabol.2018.01.01329374559
    [Google Scholar]
  35. GaoD. HuS. ZhengX. LinW. GaoJ. ChangK. ZhaoD. WangX. ZhouJ. LuS. GriffithsH.R. LiuJ. SOD3 is secreted by adipocytes and mitigates high-fat diet-induced obesity, inflammation, and insulin resistance.Antioxid. Redox Signal.202032319321210.1089/ars.2018.762831680537
    [Google Scholar]
  36. KunzH.E. HartC.R. GriesK.J. ParviziM. LaurentiM. ManC.D. Adipose tissue macrophage populations and inflammation are associated with systemic inflammation and insulin resistance in obesity.Am. J. Physiol. Endocrinol. Metab.20213211E105E12110.1152/ajpendo.00070.2021
    [Google Scholar]
  37. FangZ. GaoW. JiangQ. LoorJ.J. ZhaoC. DuX. ZhangM. SongY. WangZ. LiuG. LiX. LeiL. Targeting IRE1α and PERK in the endoplasmic reticulum stress pathway attenuates fatty acid-induced insulin resistance in bovine hepatocytes.J. Dairy Sci.202210586895690810.3168/jds.2021‑2175435840398
    [Google Scholar]
  38. ShanB. WangX. WuY. XuC. XiaZ. DaiJ. ShaoM. ZhaoF. HeS. YangL. ZhangM. NanF. LiJ. LiuJ. LiuJ. JiaW. QiuY. SongB. HanJ.D.J. RuiL. DuanS.Z. LiuY. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity.Nat. Immunol.201718551952910.1038/ni.370928346409
    [Google Scholar]
  39. GuoQ. JinS. HuH. ZhouY. YanY. ZongH. WangY. HeH. OhY. LiuC. GuN. Hypoxia in 3T3-L1 adipocytes suppresses adiponectin expression via the PERK and IRE1 unfolded protein response.Biochem. Biophys. Res. Commun.2017493134635110.1016/j.bbrc.2017.09.02028888981
    [Google Scholar]
  40. ZhuP. ZhangJ.J. CenY. YangY. WangF. GuK.P. YangH-T. WangY-Z. ZouZ-Q. High endogenously synthesized N-3 polyunsaturated fatty acids in fat-1 mice attenuate high-fat diet-induced insulin resistance by inhibiting NLRP3 inflammasome activation via Akt/GSK-3β/TXNIP pathway.Molecules20222719638410.3390/molecules27196384
    [Google Scholar]
  41. ZhouQ. ZhangL.Y. DaiM.F. LiZ. ZouC.C. LiuH. Thyroid-stimulating hormone induces insulin resistance in adipocytes via endoplasmic reticulum stress.Endocr. Connect.2024138e23030210.1530/EC‑23‑030238904465
    [Google Scholar]
  42. SanoR. ReedJ.C. ER stress-induced cell death mechanisms.Biochim. Biophys. Acta Mol. Cell Res.20131833123460347010.1016/j.bbamcr.2013.06.02823850759
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303319434241113161606
Loading
/content/journals/emiddt/10.2174/0118715303319434241113161606
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test