Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

The ketogenic diet, known for its high-fat, low-carbohydrate composition, has been extensively studied in endocrine and metabolic diseases. This study carried out bibliometric analysis to examine the research trends in this field over the past 20 years, aiming to provide insights for future studies.

Methods

We searched the Web of Science Core Collection for all relevant papers. VOSviewer was used for network visualization, the bibliometrix package of R software (version 4.3.0) was utilized for data analysis, and CiteSpace was employed for mapping and trend analysis.

Results

This study encompassed 508 relevant articles spanning from 2003 to 2023, authored by 2827 researchers from 887 institutions across 57 countries/regions. The total number of publications increased from 3 in 2003 to 508 in 2023, showing a steady growth trend. The United States emerged as the predominant contributor in this field, followed by Italy and China. Notably, SAJOUX I consistently exhibited high activity in this field, according to the analysis, with an h-index of 13. The journal has consistently made substantial contributions to this field, accounting for 19% of all publications. The keywords “obesity,” “ketogenic diet,” and “weight loss” appeared most frequently, with “obesity” occurring 163 times.

Conclusion

This study used a bibliometric method to analyze the impact of the ketogenic diet on the endocrine metabolic system. The research identifies recent frontiers and trending directions, providing valuable references for scholars in this field.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303317289240820114329
2024-10-28
2025-10-13
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/8/EMIDDT-25-8-07.html?itemId=/content/journals/emiddt/10.2174/0118715303317289240820114329&mimeType=html&fmt=ahah

References

  1. MezhninaV. EbeigbeO.P. VelingkaarN. PoeA. SandlersY. KondratovR.V. Circadian clock controls rhythms in ketogenesis by interfering with PPARα transcriptional network.Proc. Natl. Acad. Sci. USA202211940e220575511910.1073/pnas.220575511936161962
    [Google Scholar]
  2. NewmanJ.C. VerdinE. Ketone bodies as signaling metabolites.Trends Endocrinol. Metab.2014251425210.1016/j.tem.2013.09.00224140022
    [Google Scholar]
  3. LeeT.I. TrangN.N. LeeT.W. HigaS. KaoY.H. ChenY.C. ChenY.J. Ketogenic diet regulates cardiac remodeling and calcium homeostasis in diabetic rat cardiomyopathy.Int. J. Mol. Sci.202324221614210.3390/ijms24221614238003332
    [Google Scholar]
  4. ÜnalpA. ÜnayB. ArhanE. Editorial: The use of ketogenic diet therapy in the era of individualized therapy.Front. Nutr.202310127217010.3389/fnut.2023.127217037794968
    [Google Scholar]
  5. KossoffE.H. More fat and fewer seizures: dietary therapies for epilepsy.Lancet Neurol.20043741542010.1016/S1474‑4422(04)00807‑515207798
    [Google Scholar]
  6. HartmanA.L. ViningE.P.G. Clinical aspects of the ketogenic diet.Epilepsia2007481314210.1111/j.1528‑1167.2007.00914.x17241206
    [Google Scholar]
  7. KossoffE.H. Zupec-KaniaB.A. AuvinS. Ballaban-GilK.R. Christina BergqvistA.G. BlackfordR. BuchhalterJ.R. CaraballoR.H. CrossJ.H. DahlinM.G. DonnerE.J. GuzelO. JehleR.S. KlepperJ. KangH.C. LambrechtsD.A. LiuY.M.C. NathanJ.K. NordliD.R.Jr PfeiferH.H. RhoJ.M. SchefferI.E. SharmaS. StafstromC.E. ThieleE.A. TurnerZ. VaccarezzaM.M. van der LouwE.J.T.M. VeggiottiP. WhelessJ.W. WirrellE.C. Optimal clinical management of children receiving dietary therapies for epilepsy: Updated recommendations of the International Ketogenic Diet Study Group.Epilepsia Open20183217519210.1002/epi4.1222529881797
    [Google Scholar]
  8. GazeraniP. Diet and migraine: what is proven?Curr. Opin. Neurol.202336661562110.1097/WCO.000000000000120437865855
    [Google Scholar]
  9. SchoelerN.E. MarstonL. LyonsL. HalsallS. JainR. Titre-JohnsonS. BalogunM. HealesS.J.R. EatonS. OrfordM. NealE. ReillyC. EltzeC. StephenE. MallickA.A. O’CallaghanF. AgrawalS. ParkerA. KirkpatrickM. BrunklausA. McLellanA. McCullaghH. SamantaR. KneenR. TanH.J. DevlinA. PrasadM. RattihalliR. BasuH. DesurkarA. WilliamsR. FallonP. NazarethI. FreemantleN. CrossJ.H. Classic ketogenic diet versus further antiseizure medicine in infants with drug-resistant epilepsy (KIWE): a UK, multicentre, open-label, randomised clinical trial.Lancet Neurol.202322121113112410.1016/S1474‑4422(23)00370‑837977712
    [Google Scholar]
  10. KawonK. RugielM. SetkowiczZ. MatusiakK. Kubala-KukusA. StabrawaI. SzaryK. RaukZ. ChwiejJ. Ketogenic diet influence on the elemental homeostasis of internal organs is gender dependent.Sci. Rep.20231311844810.1038/s41598‑023‑45611‑437891248
    [Google Scholar]
  11. NadjarzadehA. Ghadiri-AnariA. Ramezani-JolfaieN. MohammadiM. Salehi-AbargoueiA. NamayandeS.M. Mozaffari-KhosraviH. Hosseini-MarnaniE. Effect of hypocaloric high-protein, low-carbohydrate diet supplemented with fennel on androgenic and anthropometric indices in overweight and obese women with polycystic ovary syndrome: A randomized placebo-controlled trial.Complement. Ther. Med.20215610263310.1016/j.ctim.2020.10263333271298
    [Google Scholar]
  12. CoppedèF. FranzagoM. GiardinaE. NigroC.L. MatulloG. MoltrasioC. NacmiasB. PileggiS. SirchiaS.M. StoccoroA. StorlazziC.T. StuppiaL. TricaricoR. MerlaG. A perspective on diet, epigenetics and complex diseases: where is the field headed next?Epigenomics202214201281130410.2217/epi‑2022‑023936325816
    [Google Scholar]
  13. WestmanE.C. YancyW.S.Jr MavropoulosJ.C. MarquartM. McDuffieJ.R. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus.Nutr. Metab2008513610.1186/1743‑7075‑5‑3619099589
    [Google Scholar]
  14. BadmanM.K. KennedyA.R. AdamsA.C. PissiosP. Maratos-FlierE. A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss.Am. J. Physiol. Endocrinol. Metab.20092975E1197E120410.1152/ajpendo.00357.200919738035
    [Google Scholar]
  15. AiS. LiY. ZhengH. WangZ. LiuW. TaoJ. LiY. WangY. Global research trends and hot spots on autophagy and kidney diseases: a bibliometric analysis from 2000 to 2022.Front. Pharmacol.202314127579210.3389/fphar.2023.127579238099142
    [Google Scholar]
  16. HirschJ.E. An index to quantify an individual’s scientific research output.Proc. Natl. Acad. Sci. USA200510246165691657210.1073/pnas.050765510216275915
    [Google Scholar]
  17. AbbasA.M. Bounds and inequalities relating h-index, g-index, e-index and generalized impact factor: an improvement over existing models.PLoS One201274e3369910.1371/journal.pone.003369922496760
    [Google Scholar]
  18. MusbahiA. RaoC.B. ImmanuelA. A bibliometric analysis of robotic surgery from 2001 to 2021.World J. Surg.20224661314132410.1007/s00268‑022‑06492‑235258666
    [Google Scholar]
  19. HeH. D. LiuC. ChenM. L. GuoX. Z. LiX. Y. XiangZ. X. LiaoF. DongW. G. Effect of dietary patterns on inflammatory bowel disease: A machine learning bibliometric and visualization analysis.Nutrients202315152410.3390/nu15153442
    [Google Scholar]
  20. ChenC. Searching for intellectual turning points: progressive knowledge domain visualization.Proc. Natl. Acad. Sci. U. S. A.2004101Suppl 15303531010.1073/pnas.0307513100
    [Google Scholar]
  21. BarreaL. VerdeL. SchiavoL. SarnoG. CamajaniE. IannelliA. CaprioM. PiloneV. ColaoA. MuscogiuriG. Very low-calorie ketogenic diet (VLCKD) as pre-operative first-line dietary therapy in patients with obesity who are candidates for bariatric surgery.Nutrients2023158190710.3390/nu1508190737111126
    [Google Scholar]
  22. PaoliA. MancinL. GiaconaM.C. BiancoA. CaprioM. Effects of a ketogenic diet in overweight women with polycystic ovary syndrome.J. Transl. Med.202018110410.1186/s12967‑020‑02277‑032103756
    [Google Scholar]
  23. RinaldiR. De NucciS. CastellanaF. Di ChitoM. GiannuzziV. ShahiniE. ZupoR. LampignanoL. PiazzollaG. TriggianiV. CozzolongoR. GiannelliG. De PergolaG. The effects of eight weeks’ very low-calorie ketogenic diet (VLCKD) on liver health in subjects affected by overweight and obesity.Nutrients202315482510.3390/nu1504082536839183
    [Google Scholar]
  24. GoldbergE.L. AsherJ.L. MolonyR.D. ShawA.C. ZeissC.J. WangC. Morozova-RocheL.A. HerzogR.I. IwasakiA. DixitV.D. β-hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares.Cell Rep.20171892077208710.1016/j.celrep.2017.02.00428249154
    [Google Scholar]
  25. GuarnottaV. AmodeiR. Di GaudioF. GiordanoC. Nutritional intervention in cushing’s disease: The ketogenic diet’s effects on metabolic comorbidities and adrenal steroids.Nutrients20231521464710.3390/nu1521464737960300
    [Google Scholar]
  26. YancyW.S.Jr OlsenM.K. GuytonJ.R. BakstR.P. WestmanE.C. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial.Ann. Intern. Med.20041401076977710.7326/0003‑4819‑140‑10‑200405180‑0000615148063
    [Google Scholar]
  27. Balooch HasankhaniM. MirzaeiH. KaramoozianA. Global trend analysis of diabetes mellitus incidence, mortality, and mortality-to-incidence ratio from 1990 to 2019.Sci. Rep.20231312190810.1038/s41598‑023‑49249‑038081899
    [Google Scholar]
  28. Al-KhalifaA. MathewT.C. Al-ZaidN.S. MathewE. DashtiH.M. Therapeutic role of low-carbohydrate ketogenic diet in diabetes.Nutrition20092511-121177118510.1016/j.nut.2009.04.00419818281
    [Google Scholar]
  29. WilliS.M. MartinK. DatkoF.M. BrantB.P. Treatment of type 2 diabetes in childhood using a very-low-calorie diet.Diabetes Care200427234835310.2337/diacare.27.2.34814747212
    [Google Scholar]
  30. YuanX. WangJ. YangS. GaoM. CaoL. LiX. HongD. TianS. SunC. Effect of the ketogenic diet on glycemic control, insulin resistance, and lipid metabolism in patients with T2DM: A systematic review and meta-analysis.Nutr. Diabetes20201013810.1038/s41387‑020‑00142‑z33257645
    [Google Scholar]
  31. LommiJ. KupariM. KoskinenP. NäveriH. LeinonenH. PulkkiK. HärkönenM. Blood ketone bodies in congestive heart failure.J. Am. Coll. Cardiol.199628366567210.1016/0735‑1097(96)00214‑88772754
    [Google Scholar]
  32. InagakiN. GodaM. YokotaS. MaruyamaN. IijimaH. Safety and efficacy of canagliflozin in Japanese patients with type 2 diabetes mellitus: post hoc subgroup analyses according to body mass index in a 52-week open-label study.Expert Opin. Pharmacother.201516111577159110.1517/14656566.2015.105525026104600
    [Google Scholar]
  33. NedoboyP.E. CohenM. FarnhamM.M.J. Slow but steady—The responsiveness of sympathoadrenal system to a hypoglycemic challenge in ketogenic diet-fed rats.Nutrients2021138262710.3390/nu1308262734444787
    [Google Scholar]
  34. HillJ.O. PetersJ.C. CatenacciV.A. WyattH.R. International strategies to address obesity.Obes. Rev.20089s1414710.1111/j.1467‑789X.2007.00437.x18307698
    [Google Scholar]
  35. ShettyP. SchmidhuberJ. Introductory lecture the epidemiology and determinants of obesity in developed and developing countries.Int. J. Vitam. Nutr. Res.200676415716210.1024/0300‑9831.76.4.15717243077
    [Google Scholar]
  36. GaspaG. NaciuA.M. Di RosaC. LattanziG. BeatoI. MicheliV. TurrizianiC. KhazraiY.M. CesareoR. Short- and long-term effects of very low- and low-calorie ketogenic diets on metabolism and cardiometabolic risk factors: a narrative review.Minerva Endocrinol.202348331833310.23736/S2724‑6507.22.03922‑736285748
    [Google Scholar]
  37. CignarelliA. SantiD. GenchiV.A. ConteE. GiordanoF. Di LeoS. NatalicchioA. LaviolaL. GiorginoF. PerriniS. Very low-calorie ketogenic diet rapidly augments testosterone levels in non-diabetic obese subjects.Andrology202311223424410.1111/andr.1335736459060
    [Google Scholar]
  38. IvanC.R. MessinaA. CibelliG. MessinaG. PolitoR. LosavioF. TorreE.L. MondaV. MondaM. QuieteS. CasulaE. NapoliN. DefeudisG. Italian ketogenic mediterranean diet in overweight and obese patients with prediabetes or type 2 diabetes.Nutrients20221420436110.3390/nu1420436136297044
    [Google Scholar]
  39. DeleddaA. PalmasV. HeidrichV. FosciM. LombardoM. CambarauG. LaiA. MelisM. LoiE. LoviselliA. ManzinA. VelluzziF. Dynamics of gut microbiota and clinical variables after ketogenic and mediterranean diets in drug-naïve patients with type 2 diabetes mellitus and obesity.Metabolites20221211109210.3390/metabo1211109236355175
    [Google Scholar]
  40. BarreaL. VerdeL. SantangeliP. LucàS. DocimoA. SavastanoS. ColaoA. MuscogiuriG. Very low-calorie ketogenic diet (VLCKD): an antihypertensive nutritional approach.J. Transl. Med.202321112810.1186/s12967‑023‑03956‑436800966
    [Google Scholar]
  41. BarreaL. MuscogiuriG. ApranoS. VetraniC. de AlteriisG. VarcamontiL. VerdeL. ColaoA. SavastanoS. Phase angle as an easy diagnostic tool for the nutritionist in the evaluation of inflammatory changes during the active stage of a very low-calorie ketogenic diet.Int. J. Obes.20224691591159710.1038/s41366‑022‑01152‑w35614205
    [Google Scholar]
  42. GarrutiG. BajJ. CignarelliA. PerriniS. GiorginoF. Hepatokines, bile acids and ketone bodies are novel Hormones regulating energy homeostasis.Front. Endocrinol202314115456110.3389/fendo.2023.115456137274345
    [Google Scholar]
  43. PaoliA. CerulloG. Investigating the link between ketogenic diet, NAFLD, mitochondria, and oxidative stress: A narrative review.Antioxidants2023125106510.3390/antiox1205106537237931
    [Google Scholar]
  44. KingA.N. NotaroN.M. The ketogenic diet maintains insulin sensitivity and inhibits lipid accumulation in the liver.J. Physiol.2022600214543454510.1113/JP28378436161655
    [Google Scholar]
  45. WatanabeM. TozziR. RisiR. TuccinardiD. MarianiS. BascianiS. SperaG. LubranoC. GnessiL. Beneficial effects of the ketogenic diet on nonalcoholic fatty liver disease: A comprehensive review of the literature.Obes. Rev.2020218e1302410.1111/obr.1302432207237
    [Google Scholar]
  46. CooperI.D. Sanchez-PizarroC. NorwitzN.G. FeldmanD. KyriakidouY. EdwardsK. PetagineL. ElliotB.T. Soto-MotaA. Thyroid markers and body composition predict LDL-cholesterol change in lean healthy women on a ketogenic diet: experimental support for the lipid energy model.Front. Endocrinol.202314132676810.3389/fendo.2023.132676838189051
    [Google Scholar]
  47. MagagniniM.C. CondorelliR.A. CiminoL. CannarellaR. AversaA. CalogeroA.E. La VigneraS. Does the ketogenic diet improve the quality of ovarian function in obese women?Nutrients20221419414710.3390/nu1419414736235799
    [Google Scholar]
  48. MuscogiuriG. PalombaS. LaganàA. OrioF. Current insights into inositol isoforms, mediterranean and ketogenic diets for polycystic ovary syndrome: from bench to bedside.Curr. Pharm. Des.201622365554555710.2174/138161282266616072016063427510483
    [Google Scholar]
  49. PandurevicS. ManciniI. MitselmanD. MagagnoliM. TegliaR. FazzeriR. DioneseP. CecchettiC. CaprioM. MorettiC. SicinskaJ. AgostiniA. GazineoD. GodinoL. SajouxI. FanelliF. MeriggiolaC.M. PagottoU. GambineriA. Efficacy of very low-calorie ketogenic diet with the Pronokal® method in obese women with polycystic ovary syndrome: a 16-week randomized controlled trial.Endocr. Connect.2023127e22053610.1530/EC‑22‑053637018117
    [Google Scholar]
  50. CalcaterraV. CenaH. SottotettiF. HrubyC. MadiniN. ZelaschiN. ZuccottiG. Low-calorie ketogenic diet: Potential application in the treatment of polycystic ovary syndrome in adolescents.Nutrients20231516358210.3390/nu1516358237630772
    [Google Scholar]
  51. GohariS. GhobadiS. JafariA. AhangarH. GohariS. MahjaniM. The effect of dietary approaches to stop hypertension and ketogenic diets intervention on serum uric acid concentration: a systematic review and meta-analysis of randomized controlled trials.Sci. Rep.20231311049210.1038/s41598‑023‑37672‑237380733
    [Google Scholar]
  52. GambardellaJ. JankauskasS.S. KansakarU. VarzidehF. AvvisatoR. PreveteN. SidoliS. MoneP. WangX. LombardiA. SantulliG. Ketone bodies rescue mitochondrial dysfunction via epigenetic remodeling.JACC Basic Transl. Sci.2023891123113710.1016/j.jacbts.2023.03.01437791311
    [Google Scholar]
  53. NiH. BiaginiG. UpadhyaD. CapuanoA. Editorial: Endocrine modulators of neurological processes: Potential treatment targets of pediatric neurological diseases.Front. Endocrinol20211265529010.3389/fendo.2021.65529033679621
    [Google Scholar]
  54. ShalabiH. AlotaibiA. AlqahtaniA. AlattasH. AlghamdiZ. Ketogenic diets: Side effects, attitude, and quality of life.Cureus20211312e2039010.7759/cureus.2039035036220
    [Google Scholar]
  55. AbbasiJ. Interest in the ketogenic diet grows for weight loss and type 2 diabetes.JAMA2018319321521710.1001/jama.2017.2063929340675
    [Google Scholar]
  56. KeeneD.L. A systematic review of the use of the ketogenic diet in childhood epilepsy.Pediatr. Neurol.20063511510.1016/j.pediatrneurol.2006.01.00516814077
    [Google Scholar]
  57. Kanikarla-MarieP. JainS.K. Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes.Free Radic. Biol. Med.20169526827710.1016/j.freeradbiomed.2016.03.02027036365
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303317289240820114329
Loading
/content/journals/emiddt/10.2174/0118715303317289240820114329
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test