Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Recently, the number of patients who manifest intestinal disorders has increased. Particularly, Irritable Bowel Syndrome (IBS) patients and Inflammatory Bowel Disease (IBD) patients, which include Ulcerative Colitis (UC) and Crohn’s Disease (CD), are on the rise, especially in the young generation. Behcet’s disease (an autoimmune disease) and bowel obstruction are also common intestinal disorders. Furthermore, colorectal cancer, including colon and rectum cancer and small intestinal cancer, are the typical disorders in the intestine. Other disorders in the digestive tract are infectious diseases like infection. Even though symptomatic treatments have been increasing for the treatment of intestinal disorders, the ways of improving and preventing these diseases are still controversial.

The progress of medicine and treatment is rapid. However, recent approaches to the prevention and improvement of these intestinal disorders are suppressing dysbiosis and preventing chronic inflammation. This mini-review discusses the hypothesis of whether the improvement of the diet is a preferable choice for the prevention of these intestinal disorders. Dietary interventions are beneficial for the prevention and improvement of intestinal disorders since the first approach to intestinal disorders is dietary intervention. The Mediterranean diet, the diet from the 5-a-day campaign, and the Japanese diet are well-known healthy dietary strategies. A healthy diet regimen is not only beneficial for the prevention of intestinal disorders but also a useful strategy to reduce stress and ameliorate mental illness. In addition, the intake of phytochemicals is good for keeping healthy gut microbiota and preventing intestinal disorders. Furthermore, vitamin D3 intake with these phytochemicals works as an adjuvant to improve gut microbiota and upregulate immune responses. As a result, the decreasing production of TNF-α ameliorates chronic inflammation and intestinal disorders at an early stage.

In recent years, prevention of the non-disease condition “ME-BYO” has been a popular approach for healthy and long living in Japan. This idea prevents the manifestation of diseases before the onset and is also applicable to intestinal disorders. This mini-review discusses ways of preventing and ameliorating intestinal disorders.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303285268240415040311
2024-05-17
2025-11-01
Loading full text...

Full text loading...

References

  1. FitzGeraldR. SmithS.M. An Overview of Helicobacter pylori Infection.Methods Mol. Biol.2021228311410.1007/978‑1‑0716‑1302‑3_1 33765303
    [Google Scholar]
  2. RobilottiE. DeresinskiS. PinskyB.A. Norovirus.Clin. Microbiol. Rev.201528113416410.1128/CMR.00075‑14 25567225
    [Google Scholar]
  3. MengX. ZhangG. CaoH. YuD. FangX. VosW.M. WuH. Gut dysbacteriosis and intestinal disease: Mechanism and treatment.J. Appl. Microbiol.2020129478780510.1111/jam.14661 32277534
    [Google Scholar]
  4. KieslichC.A. AlimirzaeiF. SongH. DoM. HallP. Data-driven prediction of antiviral peptides based on periodicities of amino acid properties.Computer-Aided Chem. Eng.2021502019202410.1016/B978‑0‑323‑88506‑5.50312‑0
    [Google Scholar]
  5. MaghsoudiS. Taghavi ShahrakiB. RamehF. NazarabiM. FatahiY. AkhavanO. RabieeM. MostafaviE. LimaE.C. SaebM.R. RabieeN. A review on computer-aided chemogenomics and drug repositioning for rational COVID -19 drug discovery.Chem. Biol. Drug Des.2022100569972110.1111/cbdd.14136 36002440
    [Google Scholar]
  6. AlimirzaeiF. KieslichC.A. Machine learning models for predicting membranolytic anticancer peptides.Computer-Aided Chem. Eng.2023522691269610.1016/B978‑0‑443‑15274‑0.50428‑5
    [Google Scholar]
  7. RabieeN. AhmadiS. AkhavanO. LuqueR. Silver and gold nanoparticles for antimicrobial purposes against multi-drug resistance bacteria.Materials (Basel)2022155179910.3390/ma15051799 35269031
    [Google Scholar]
  8. LaiH.Z. ChenW.Y. WuC.Y. ChenY.C. Potent antibacterial nanoparticles for pathogenic bacteria.ACS Appl. Mater. Interfaces2015732046205410.1021/am507919m 25584802
    [Google Scholar]
  9. ThomasS. UthamanA. Silver nanoparticle as an effective antiviral agent.Polymer Nanocomposites Based on Silver Nanoparticles202124726510.1007/978‑3‑030‑44259‑0_10
    [Google Scholar]
  10. AkhavanO. ChoobtashaniM. GhaderiE. Protein degradation and rna efflux of viruses photocatalyzed by graphene–tungsten oxide composite under visible light irradiation.J. Phys. Chem. A20121161796539659
    [Google Scholar]
  11. SunY. ChenD. PanY. QuW. HaoH. WangX. LiuZ. XieS. Nanoparticles for antiparasitic drug delivery.Drug Deliv.20192611206122110.1080/10717544.2019.1692968 31746243
    [Google Scholar]
  12. ZhaoC. CaoW. ZhengH. XiaoZ. HuJ. YangL. ChenM. LiangG. ZhengS. ZhaoC. Acid-responsive nanoparticles as a novel oxidative stress-inducing anticancer therapeutic agent for colon cancer.Int. J. Nanomedicine2019141597161810.2147/IJN.S189923 30880968
    [Google Scholar]
  13. AkhavanO. GhaderiE. Graphene nanomesh promises extremely efficient in vivo photothermal therapy.Small20139213593360110.1002/smll.201203106 23625739
    [Google Scholar]
  14. AmaniH. HabibeyR. HajmiresmailS.J. LatifiS. Pazoki-ToroudiH. AkhavanO. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries.J. Mater. Chem. B Mater. Biol. Med.20175489452947610.1039/C7TB01689A 32264560
    [Google Scholar]
  15. AmaniH. HabibeyR. ShokriF. HajmiresmailS.J. AkhavanO. MashaghiA. Pazoki-ToroudiH. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling.Sci. Rep.201991604410.1038/s41598‑019‑42633‑9 30988361
    [Google Scholar]
  16. TojoR. SuárezA. ClementeM.G. de los Reyes-GavilánC.G. MargollesA. GueimondeM. Ruas-MadiedoP. Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis.World J. Gastroenterol.20142041151631517610.3748/wjg.v20.i41.15163 25386066
    [Google Scholar]
  17. StojanovS. BerlecA. ŠtrukeljB. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease.Microorganisms2020811171510.3390/microorganisms8111715 33139627
    [Google Scholar]
  18. AdakA. KhanM.R. An insight into gut microbiota and its functionalities.Cell. Mol. Life Sci.201976347349310.1007/s00018‑018‑2943‑4 30317530
    [Google Scholar]
  19. Góralczyk-BińkowskaA. Szmajda-KrygierD. KozłowskaE. The microbiota–gut–brain axis in psychiatric disorders.Int. J. Mol. Sci.202223191124510.3390/ijms231911245 36232548
    [Google Scholar]
  20. WilliamsK.L. EnslowR. SureshS. BeatonC. HodgeM. BrooksA.E. Using the microbiome as a regenerative medicine strategy for autoimmune diseases.Biomedicines2023116158210.3390/biomedicines11061582 37371676
    [Google Scholar]
  21. MazzaE. FerroY. PujiaR. MareR. MaurottiS. MontalciniT. PujiaA. Mediterranean diet in healthy aging.J. Nutr. Health Aging20212591076108310.1007/s12603‑021‑1675‑6 34725664
    [Google Scholar]
  22. HuN. YuJ.T. TanL. WangY.L. SunL. TanL. Nutrition and the risk of Alzheimer’s disease.BioMed Res. Int.2013201311210.1155/2013/524820 23865055
    [Google Scholar]
  23. DavidL.A. MauriceC.F. CarmodyR.N. GootenbergD.B. ButtonJ.E. WolfeB.E. LingA.V. DevlinA.S. VarmaY. FischbachM.A. BiddingerS.B. DuttonR.J. TurnbaughP.J. Diet rapidly and reproducibly alters the human gut microbiome.Nature2014505748455956310.1038/nature12820 24336217
    [Google Scholar]
  24. GibsonG.R. RoberfroidM.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics.J. Nutr.199512561401141210.1093/jn/125.6.1401 7782892
    [Google Scholar]
  25. ShenJ. ShanJ. ZhongL. LiangB. ZhangD. LiM. TangH. Dietary phytochemicals that can extend longevity by regulation of metabolism.Plant Foods Hum. Nutr.2022771121910.1007/s11130‑021‑00946‑z 35025006
    [Google Scholar]
  26. KoS.H. KimH.S. Menopause-associated lipid metabolic disorders and foods beneficial for postmenopausal women.Nutrients202012120210.3390/nu12010202 31941004
    [Google Scholar]
  27. HolickM.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention.Rev. Endocr. Metab. Disord.201718215316510.1007/s11154‑017‑9424‑1 28516265
    [Google Scholar]
  28. SantaK. WatanabeK. KumazawaY. NagaokaI. Phytochemicals and vitamin d for a healthy life and prevention of diseases.Int. J. Mol. Sci.202324151216710.3390/ijms241512167 37569540
    [Google Scholar]
  29. NiJ. WuG.D. AlbenbergL. TomovV.T. Gut microbiota and IBD: Causation or correlation?Nat. Rev. Gastroenterol. Hepatol.2017141057358410.1038/nrgastro.2017.88 28743984
    [Google Scholar]
  30. O’KeefeS.J.D. Diet, microorganisms and their metabolites, and colon cancer.Nat. Rev. Gastroenterol. Hepatol.2016131269170610.1038/nrgastro.2016.165 27848961
    [Google Scholar]
  31. Di DanieleN. NoceA. VidiriM.F. MoriconiE. MarroneG. Annicchiarico-PetruzzelliM. D’UrsoG. TesauroM. RovellaV. De LorenzoA. Impact of Mediterranean diet on metabolic syndrome, cancer and longevity.Oncotarget2017858947897910.18632/oncotarget.13553 27894098
    [Google Scholar]
  32. QuaglioA.E.V. GrilloT.G. OliveiraE.C.S.D. StasiL.C.D. SassakiL.Y. Gut microbiota, inflammatory bowel disease and colorectal cancer.World J. Gastroenterol.202228304053406010.3748/wjg.v28.i30.4053 36157114
    [Google Scholar]
  33. TakeokaA. KimuraT. HaraS. HamaguchiT. FukudoS. TayamaJ. Prevalence of irritable bowel syndrome in Japan, China, and South Korea: An International Cross-sectional Study.J. Neurogastroenterol. Motil.202329222923710.5056/jnm22037 37019867
    [Google Scholar]
  34. SahaL. Irritable bowel syndrome: Pathogenesis, diagnosis, treatment, and evidence-based medicine.World J. Gastroenterol.201420226759677310.3748/wjg.v20.i22.6759 24944467
    [Google Scholar]
  35. ZhangT. ZhangC. ZhangJ. SunF. DuanL. Efficacy of probiotics for irritable bowel syndrome: A systematic review and network meta-analysis.Front. Cell. Infect. Microbiol.20221285996710.3389/fcimb.2022.859967 35433498
    [Google Scholar]
  36. CamilleriM. Diagnosis and treatment of irritable bowel syndrome.JAMA202132586587710.1001/jama.2020.22532 33651094
    [Google Scholar]
  37. TominagaK. ArakawaT. Kampo medicines for gastrointestinal tract disorders: A review of basic science and clinical evidence and their future application.J. Gastroenterol.201348445246210.1007/s00535‑013‑0788‑z 23503839
    [Google Scholar]
  38. XavierR.J. PodolskyD.K. Unravelling the pathogenesis of inflammatory bowel disease.Nature2007448715242743410.1038/nature06005 17653185
    [Google Scholar]
  39. BaumgartD.C. CardingS.R. Inflammatory bowel disease: Cause and immunobiology.Lancet200736995731627164010.1016/S0140‑6736(07)60750‑8 17499605
    [Google Scholar]
  40. OrdásI. EckmannL. TalaminiM. BaumgartD.C. SandbornW.J. Ulcerative colitis.Lancet201238098531606161910.1016/S0140‑6736(12)60150‑0 22914296
    [Google Scholar]
  41. NakaseH. UchinoM. ShinzakiS. MatsuuraM. MatsuokaK. KobayashiT. SarutaM. HiraiF. HataK. HiraokaS. EsakiM. SugimotoK. FujiT. WatanabeK. NakamuraS. InoueN. ItohT. NaganumaM. HisamatsuT. WatanabeM. MiwaH. EnomotoN. ShimosegawaT. KoikeK. Evidence-based clinical practice guidelines for inflammatory bowel disease 2020.J. Gastroenterol.202156648952610.1007/s00535‑021‑01784‑1 33885977
    [Google Scholar]
  42. RadziszewskaM. Smarkusz-ZarzeckaJ. OstrowskaL. PogodzińskiD. Nutrition and supplementation in ulcerative Colitis.Nutrients20221412246910.3390/nu14122469 35745199
    [Google Scholar]
  43. KobayashiT. SiegmundB. Le BerreC. WeiS.C. FerranteM. ShenB. BernsteinC.N. DaneseS. Peyrin-BirouletL. HibiT. Ulcerative colitis.Nat. Rev. Dis. Primers2020617410.1038/s41572‑020‑0205‑x 32913180
    [Google Scholar]
  44. TorresJ. MehandruS. ColombelJ.F. Peyrin-BirouletL. Crohn’s disease.Lancet2017389100801741175510.1016/S0140‑6736(16)31711‑1 27914655
    [Google Scholar]
  45. SuauR. PardinaE. DomènechE. LorénV. ManyéJ. The complex relationship between microbiota, immune response and creeping fat in crohn’s disease.J. Crohn’s Colitis202216347248910.1093/ecco‑jcc/jjab159 34528668
    [Google Scholar]
  46. SartorR.B. Does Mycobacterium avium subspecies paratuberculosis cause Crohn’s disease?Gut200554789689810.1136/gut.2004.055889 15951529
    [Google Scholar]
  47. CaioG. LungaroL. CaputoF. ZoliE. GiancolaF. ChiarioniG. De GiorgioR. ZoliG. Nutritional treatment in Crohn’s Disease.Nutrients2021135162810.3390/nu13051628 34066229
    [Google Scholar]
  48. VeauthierB. HorneckerJ.R. Crohn’s disease: Diagnosis and management.Am. Fam. Physician20189811661669 30485038
    [Google Scholar]
  49. SkefW. HamiltonM.J. ArayssiT. Gastrointestinal Behçet’s disease: A review.World J. Gastroenterol.201521133801381210.3748/wjg.v21.i13.3801 25852265
    [Google Scholar]
  50. HayasakiN. ItoM. SuzukiT. InaK. AndoT. KusugamiK. GotoH. Neutrophilic phlebitis is characteristic of intestinal Behçet’s disease and simple ulcer syndrome.Histopathology200445437738310.1111/j.1365‑2559.2004.01954.x 15469476
    [Google Scholar]
  51. KambayashiH. OmoriT. SaitoS. MurasugiS. KashiwagiH. ItoA. YonezawaM. NakamuraS. TokushigeK. The efficacy of medium- to long-term Anti-TNF-α Antibody-based maintenance therapy in Behçet’s Disease Patients with Intestinal Lesions.Intern. Med.202059192343235110.2169/internalmedicine.5000‑20 32999263
    [Google Scholar]
  52. ZhangM. LiuJ. LiuT. HanW. BaiX. RuanG. LvH. ShuH. LiY. LiJ. TanB. ZhengW. XuH. ZhengW. YangH. QianJ. The efficacy and safety of anti-tumor necrosis factor agents in the treatment of intestinal Behcet’s disease, a systematic review and meta-analysis.J. Gastroenterol. Hepatol.202237460861910.1111/jgh.15754 34894004
    [Google Scholar]
  53. SuzukiK. TajimaM. TokumaruY. OshiroY. NagataS. KamadaH. KiharaM. NakanoK. HonjoT. OhtaA. Anti–PD-1 antibodies recognizing the membrane-proximal region are PD-1 agonists that can down-regulate inflammatory diseases.Sci. Immunol.2023879eadd494710.1126/sciimmunol.add4947 36638191
    [Google Scholar]
  54. GoreR.M. SilversR.I. ThakrarK.H. WenzkeD.R. MehtaU.K. NewmarkG.M. BerlinJ.W. Bowel Obstruction.Radiol. Clin. North Am.20155361225124010.1016/j.rcl.2015.06.008 26526435
    [Google Scholar]
  55. ReddyS.R. CappellM.S. A systematic review of the clinical presentation, diagnosis, and treatment of small bowel obstruction.Curr. Gastroenterol. Rep.20171962810.1007/s11894‑017‑0566‑9 28439845
    [Google Scholar]
  56. BurucoaC. AxonA. Epidemiology of helicobacter pylori infection.Helicobacter20141911510.1111/hel.12403
    [Google Scholar]
  57. JessurunJ. The differential diagnosis of Acute Colitis: Clues to a specific diagnosis.Surg. Pathol. Clin.201710486388510.1016/j.path.2017.07.008 29103537
    [Google Scholar]
  58. KentleyJ. OoiJ.L. PotterJ. TiberiS. O’ShaughnessyT. LangmeadL. AleongJ. ThahaM.A. KunstH. Intestinal tuberculosis: A diagnostic challenge.Trop. Med. Int. Health201722899499910.1111/tmi.12908 28609809
    [Google Scholar]
  59. KotloffK.L. RiddleM.S. Platts-MillsJ.A. PavlinacP. ZaidiA.K.M. Shigellosis.Lancet20183911012280181210.1016/S0140‑6736(17)33296‑8 29254859
    [Google Scholar]
  60. LockhartA. MucidaD. ParsaR. Immunity to enteric viruses.Immunity202255580081810.1016/j.immuni.2022.04.007 35545029
    [Google Scholar]
  61. SwitajT.L. WinterK.J. ChristensenS.R. Diagnosis and management of foodborne illness.Am. Fam. Physician2015925358365 26371569
    [Google Scholar]
  62. KarstS.M. TibbettsS.A. Recent advances in understanding norovirus pathogenesis.J. Med. Virol.201688111837184310.1002/jmv.24559 27110852
    [Google Scholar]
  63. de GraafM. van BeekJ. KoopmansM.P.G. Human norovirus transmission and evolution in a changing world.Nat. Rev. Microbiol.201614742143310.1038/nrmicro.2016.48 27211790
    [Google Scholar]
  64. EbrahimiM. AsadiM. AkhavanO. Graphene-based nanomaterials in fighting the most challenging viruses and immunogenic disorders.ACS Biomater. Sci. Eng.202281548110.1021/acsbiomaterials.1c01184 34967216
    [Google Scholar]
  65. VeziantJ. VillégerR. BarnichN. BonnetM. Gut microbiota as potential biomarker and/or therapeutic target to improve the management of cancer: Focus on colibactin-producing Escherichia coli in colorectal cancer.Cancers (Basel)2021139221510.3390/cancers13092215 34063108
    [Google Scholar]
  66. MannS. SidhuM. GowinK. Understanding the mechanisms of diet and outcomes in colon, prostate, and breast cancer; Malignant gliomas; and cancer patients on immunotherapy.Nutrients2020128222610.3390/nu12082226 32722632
    [Google Scholar]
  67. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.21590 31912902
    [Google Scholar]
  68. BhatA.A. NisarS. MukherjeeS. SahaN. YarravarapuN. LoneS.N. MasoodiT. ChauhanR. MaachaS. BaggaP. DhawanP. AkilA.A.S. El-RifaiW. UddinS. ReddyR. SinghM. MachaM.A. HarisM. Integration of CRISPR/Cas9 with artificial intelligence for improved cancer therapeutics.J. Transl. Med.202220153410.1186/s12967‑022‑03765‑1 36401282
    [Google Scholar]
  69. AbdolahadM. JanmalekiM. MohajerzadehS. AkhavanO. AbbasiS. Polyphenols attached graphene nanosheets for high efficiency NIR mediated photodestruction of cancer cells.Mater. Sci. Eng. C20133331498150510.1016/j.msec.2012.12.052 23827601
    [Google Scholar]
  70. ArumugamM. RaesJ. PelletierE. Le PaslierD. YamadaT. MendeD.R. FernandesG.R. TapJ. BrulsT. BattoJ.M. BertalanM. BorruelN. CasellasF. FernandezL. GautierL. HansenT. HattoriM. HayashiT. KleerebezemM. KurokawaK. LeclercM. LevenezF. ManichanhC. NielsenH.B. NielsenT. PonsN. PoulainJ. QinJ. Sicheritz-PontenT. TimsS. TorrentsD. UgarteE. ZoetendalE.G. WangJ. GuarnerF. PedersenO. de VosW.M. BrunakS. DoréJ. WeissenbachJ. EhrlichS.D. BorkP. AlmeidaM. BrechotC. CaraC. ChervauxC. CultroneA. DelormeC. DenariazG. DervynR. FoerstnerK.U. FrissC. van de GuchteM. GuedonE. HaimetF. HuberW. van Hylckama-VliegJ. JametA. JusteC. KaciG. KnolJ. LakhdariO. LayecS. Le RouxK. MaguinE. MérieuxA. Melo MinardiR. M’riniC. MullerJ. OozeerR. ParkhillJ. RenaultP. RescignoM. SanchezN. SunagawaS. TorrejonA. TurnerK. VandemeulebrouckG. VarelaE. WinogradskyY. ZellerG. WeissenbachJ. EhrlichS.D. BorkP. Enterotypes of the human gut microbiome.Nature2011473734617418010.1038/nature09944 21508958
    [Google Scholar]
  71. ChenY. ZhouJ. WangL. Role and mechanism of gut microbiota in human disease.Front. Cell. Infect. Microbiol.20211162591310.3389/fcimb.2021.625913 33816335
    [Google Scholar]
  72. SantaK. OhsawaT. SakimotoT. Para-nonylphenol induces apoptosis of U937 human monocyte leukemia cells in vitro.Endocr. Metab. Immune Disord. Drug Targets201716321322310.2174/1871530316666160819133111 27550319
    [Google Scholar]
  73. DeyP. The role of gut microbiome in chemical-induced metabolic and toxicological murine disease models.Life Sci.202025811817210.1016/j.lfs.2020.118172 32738359
    [Google Scholar]
  74. DeyP. OlmsteadB.D. SasakiG.Y. VodovotzY. YuZ. BrunoR.S. Epigallocatechin gallate but not catechin prevents nonalcoholic steatohepatitis in mice similar to green tea extract while differentially affecting the gut microbiota.J. Nutr. Biochem.20208410845510.1016/j.jnutbio.2020.108455 32688217
    [Google Scholar]
  75. DeyP. ChaudhuriS.R. EfferthT. PalS. The intestinal 3M (microbiota, metabolism, metabolome) zeitgeist – from fundamentals to future challenges.Free Radic. Biol. Med.202117626528510.1016/j.freeradbiomed.2021.09.026 34610364
    [Google Scholar]
  76. DeyP. Targeting gut barrier dysfunction with phytotherapies: Effective strategy against chronic diseases.Pharmacol. Res.202016110513510.1016/j.phrs.2020.105135 32814166
    [Google Scholar]
  77. DeyP. Gut microbiota in phytopharmacology: A comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions.Pharmacol. Res.201914710436710.1016/j.phrs.2019.104367 31344423
    [Google Scholar]
  78. LeyR.E. TurnbaughP.J. KleinS. GordonJ.I. Human gut microbes associated with obesity.Nature200644471221022102310.1038/4441022a 17183309
    [Google Scholar]
  79. TomiokaS. SekiN. SugiuraY. AkiyamaM. UchiyamaJ. YamaguchiG. YakabeK. EjimaR. HattoriK. KimizukaT. FujimuraY. SatoH. GondoM. OzakiS. HonmeY. SuematsuM. KimuraI. InoharaN. NúñezG. HaseK. KimY.G. Cooperative action of gut-microbiota-accessible carbohydrates improves host metabolic function.Cell Rep.202240311108710.1016/j.celrep.2022.111087 35858544
    [Google Scholar]
  80. OkiK. ToyamaM. BannoT. ChonanO. BennoY. WatanabeK. Comprehensive analysis of the fecal microbiota of healthy Japanese adults reveals a new bacterial lineage associated with a phenotype characterized by a high frequency of bowel movements and a lean body type.BMC Microbiol.201616128410.1186/s12866‑016‑0898‑x 27894251
    [Google Scholar]
  81. OdamakiT. KatoK. SugaharaH. HashikuraN. TakahashiS. XiaoJ. AbeF. OsawaR. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study.BMC Microbiol.20161619010.1186/s12866‑016‑0708‑5 27220822
    [Google Scholar]
  82. TakagiT. InoueR. OshimaA. SakazumeH. OgawaK. TominagaT. MiharaY. SugayaT. MizushimaK. UchiyamaK. ItohY. NaitoY. Typing of the gut microbiota community in Japanese Subjects.Microorganisms202210366410.3390/microorganisms10030664 35336239
    [Google Scholar]
  83. WuG.D. BushmancF.D. LewisJ.D. Diet, the human gut microbiota, and IBD.Anaerobe20132411712010.1016/j.anaerobe.2013.03.011 23548695
    [Google Scholar]
  84. SkerrettP.J. WillettW.C. Essentials of healthy eating: A guide.J. Midwifery Womens Health201055649250110.1016/j.jmwh.2010.06.019 20974411
    [Google Scholar]
  85. DominguezL.J. Di BellaG. VeroneseN. BarbagalloM. Impact of mediterranean diet on chronic non-communicable diseases and longevity.Nutrients2021136202810.3390/nu13062028 34204683
    [Google Scholar]
  86. Serra-MajemL. TomainoL. DerniniS. BerryE.M. LaironD. Ngo de la CruzJ. Bach-FaigA. DoniniL.M. MedinaF.X. BelahsenR. PiscopoS. CaponeR. Aranceta-BartrinaJ. La VecchiaC. TrichopoulouA. Updating the Mediterranean diet pyramid towards sustainability: Focus on environmental concerns.Int. J. Environ. Res. Public Health20201723875810.3390/ijerph17238758 33255721
    [Google Scholar]
  87. SolchR.J. AigbogunJ.O. VoyiadjisA.G. TalkingtonG.M. DarensbourgR.M. O’ConnellS. PickettK.M. PerezS.R. MaraganoreD.M. Mediterranean diet adherence, gut microbiota, and Alzheimer’s or Parkinson’s disease risk: A systematic review.J. Neurol. Sci.202243412016610.1016/j.jns.2022.120166 35144237
    [Google Scholar]
  88. MazzocchiA. LeoneL. AgostoniC. Pali-SchöllI. The secrets of the mediterranean diet. Does (Only) Olive Oil Matter?Nutrients20191112294110.3390/nu11122941 31817038
    [Google Scholar]
  89. YammineA. NamsiA. Vervandier-FasseurD. MackrillJ.J. LizardG. LatruffeN. Polyphenols of the mediterranean diet and their metabolites in the prevention of colorectal cancer.Molecules20212612348310.3390/molecules26123483 34201125
    [Google Scholar]
  90. AuneD. GiovannucciE. BoffettaP. FadnesL.T. KeumN. NoratT. GreenwoodD.C. RiboliE. VattenL.J. TonstadS. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—a systematic review and dose-response meta-analysis of prospective studies.Int. J. Epidemiol.20174631029105610.1093/ije/dyw319 28338764
    [Google Scholar]
  91. OyebodeO. Gordon-DseaguV. WalkerA. MindellJ.S. Fruit and vegetable consumption and all-cause, cancer and CVD mortality: Analysis of Health Survey for England data.J. Epidemiol. Community Health201468985686210.1136/jech‑2013‑203500 24687909
    [Google Scholar]
  92. AndersonJ.J. DarwisN.D.M. MackayD.F. Celis-MoralesC.A. LyallD.M. SattarN. GillJ.M.R. PellJ.P. Red and processed meat consumption and breast cancer: UK Biobank cohort study and meta-analysis.Eur. J. Cancer201890738210.1016/j.ejca.2017.11.022 29274927
    [Google Scholar]
  93. TurnerN.D. LloydS.K. Association between red meat consumption and colon cancer: A systematic review of experimental results.Exp. Biol. Med. (Maywood)2017242881383910.1177/1535370217693117 28205448
    [Google Scholar]
  94. KoethR.A. WangZ. LevisonB.S. BuffaJ.A. OrgE. SheehyB.T. BrittE.B. FuX. WuY. LiL. SmithJ.D. DiDonatoJ.A. ChenJ. LiH. WuG.D. LewisJ.D. WarrierM. BrownJ.M. KraussR.M. TangW.H.W. BushmanF.D. LusisA.J. HazenS.L. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis.Nat. Med.201319557658510.1038/nm.3145 23563705
    [Google Scholar]
  95. BergeronN. ChiuS. WilliamsP.T. KingS.M. KraussR.M. Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: A randomized controlled trial.Am. J. Clin. Nutr.20191101243310.1093/ajcn/nqz035 31161217
    [Google Scholar]
  96. GanesanK. JayachandranM. XuB. Diet-Derived phytochemicals targeting colon cancer stem cells and microbiota in colorectal cancer.Int. J. Mol. Sci.20202111397610.3390/ijms21113976 32492917
    [Google Scholar]
  97. SasakiS. Working Group 1 of the Healthy Diet Research Committee of International Life Sciences Institute, Japan. What is the scientific definition of the Japanese diet from the viewpoint of nutrition and health?Nutr. Rev.202078182610.1093/nutrit/nuaa099 33259625
    [Google Scholar]
  98. IwagakiY. SugawaraS. HuruyaY. SatoM. WuQ. YamamotoK. TsudukiT. The 1975 Japanese diet has a stress reduction effect in mice: Search for physiological effects using metabolome analysis.Biosci. Biotechnol. Biochem.201882470971510.1080/09168451.2017.1417022 29307274
    [Google Scholar]
  99. TakabayashiS. OkadaE. HirataT. TakimotoH. NakamuraM. SasakiS. TakahashiK. NakamuraK. UkawaS. TamakoshiA. Nutritional adequacy assessment of the japanese diet using the number of dishes compared to existing dietary diversity indices: A cross-sectional analysis from the 2012 National Health and Nutrition Survey, Japan.J. Nutr. Sci. Vitaminol. (Tokyo)202369319720510.3177/jnsv.69.197 37394425
    [Google Scholar]
  100. NomuraM. YamaguchiM. InadaY. NishiN. Current dietary intake of the Japanese population in reference to the planetary health diet-preliminary assessment.Front. Nutr.202310111610510.3389/fnut.2023.1116105 37077901
    [Google Scholar]
  101. SakataT. A very-low-calorie conventional Japanese diet: Its implications for prevention of obesity.Obes. Res.19953S2Suppl. 2233s239s10.1002/j.1550‑8528.1995.tb00469.x 8581782
    [Google Scholar]
  102. YamamotoH. SchoonjansK. AuwerxJ. Sirtuin functions in health and disease.Mol. Endocrinol.20072181745175510.1210/me.2007‑0079 17456799
    [Google Scholar]
  103. WatanabeY. TatsunoI. Prevention of cardiovascular events with omega-3 polyunsaturated fatty acids and the mechanism involved.J. Atheroscler. Thromb.202027318319810.5551/jat.50658 31582621
    [Google Scholar]
  104. LeprettiM. MartuccielloS. Burgos AcevesM. PuttiR. LionettiL. Omega-3 Fatty acids and insulin resistance: Focus on the regulation of mitochondria and endoplasmic reticulum stress.Nutrients201810335010.3390/nu10030350 29538286
    [Google Scholar]
  105. YamoriY. SagaraM. AraiY. KobayashiH. KishimotoK. MatsunoI. MoriH. MoriM. Soy and fish as features of the Japanese diet and cardiovascular disease risks.PLoS One2017124e017603910.1371/journal.pone.0176039 28430815
    [Google Scholar]
  106. MomiyamaY. KishimotoY. SaitaE. AoyamaM. OhmoriR. KondoK. Association between the Japanese Diet and coronary artery disease in patients undergoing coronary angiography.Nutrients20231510240610.3390/nu15102406 37242289
    [Google Scholar]
  107. YamamotoA. ItohT. NasuR. KajiwaraE. NishidaR. Sodium alginate inhibits methotrexate-induced gastrointestinal mucositis in rats.Biol. Pharm. Bull.201336101528153410.1248/bpb.b13‑00154 24088251
    [Google Scholar]
  108. SantaK. KumazawaY. NagaokaI. Prevention of metabolic syndrome by phytochemicals and vitamin D.Int. J. Mol. Sci.2023243262710.3390/ijms24032627 36768946
    [Google Scholar]
  109. SantaK. KumazawaY. NagaokaI. The potential use of grape phytochemicals for preventing the development of intestine-related and subsequent inflammatory diseases.Endocr. Metab. Immune Disord. Drug Targets201919679480210.2174/1871530319666190529105226 31142251
    [Google Scholar]
  110. FragopoulouE. AntonopoulouS. The French paradox three decades later: Role of inflammation and thrombosis.Clin. Chim. Acta202051016016910.1016/j.cca.2020.07.013 32653485
    [Google Scholar]
  111. Al-KhayriJ.M. SahanaG.R. NagellaP. JosephB.V. AlessaF.M. Al-MssallemM.Q. flavonoids as potential anti-inflammatory molecules: A Review.Molecules2022279290110.3390/molecules27092901 35566252
    [Google Scholar]
  112. ShenP. LinW. DengX. BaX. HanL. ChenZ. QinK. HuangY. TuS. Potential implications of quercetin in autoimmune diseases.Front. Immunol.20211268904410.3389/fimmu.2021.689044 34248976
    [Google Scholar]
  113. XuQ. FuQ. LiZ. LiuH. WangY. LinX. HeR. ZhangX. JuZ. CampisiJ. KirklandJ.L. SunY. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice.Nat. Metab.20213121706172610.1038/s42255‑021‑00491‑8 34873338
    [Google Scholar]
  114. ZhangY. FangF. TangJ. JiaL. FengY. XuP. FaramandA. Association between vitamin D supplementation and mortality: systematic review and meta-analysis.BMJ2019366l467310.1136/bmj.l4673 31405892
    [Google Scholar]
  115. MartineauA.R. JolliffeD.A. GreenbergL. AloiaJ.F. BergmanP. Dubnov-RazG. EspositoS. GanmaaD. GindeA.A. GoodallE.C. GrantC.C. JanssensW. JensenM.E. KerleyC.P. LaaksiI. Manaseki-HollandS. MaugerD. MurdochD.R. NealeR. ReesJ.R. SimpsonS.Jr StelmachI. Trilok KumarG. UrashimaM. CamargoC.A.Jr GriffithsC.J. HooperR.L. Vitamin D supplementation to prevent acute respiratory infections: Individual participant data meta-analysis.Health Technol. Assess.201923214410.3310/hta23020 30675873
    [Google Scholar]
  116. YamamotoE.A. JørgensenT.N. Relationships between Vitamin D, gut microbiome, and systemic autoimmunity.Front. Immunol.202010314110.3389/fimmu.2019.03141 32038645
    [Google Scholar]
  117. SantaK. Healthy diet, grape phytochemicals, and Vitamin D: preventing chronic inflammation and keeping good microbiota.Endocr. Metab. Immune Disord. Drug Targets202323677780010.2174/1871530323666221017151705 36263483
    [Google Scholar]
  118. LiS.Z. ZengS.L. LiuE.H. Anti-obesity natural products and gut microbiota.Food Res. Int.202215111081910.1016/j.foodres.2021.110819 34980371
    [Google Scholar]
  119. SatoJ. KanazawaA. IkedaF. YoshiharaT. GotoH. AbeH. KomiyaK. KawaguchiM. ShimizuT. OgiharaT. TamuraY. SakuraiY. YamamotoR. MitaT. FujitaniY. FukudaH. NomotoK. TakahashiT. AsaharaT. HiroseT. NagataS. YamashiroY. WatadaH. Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes.Diabetes Care20143782343235010.2337/dc13‑2817 24824547
    [Google Scholar]
  120. BiswasS.K. MantovaniA. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm.Nat. Immunol.2010111088989610.1038/ni.1937 20856220
    [Google Scholar]
  121. Shapouri-MoghaddamA. MohammadianS. VaziniH. TaghadosiM. EsmaeiliS.A. MardaniF. SeifiB. MohammadiA. AfshariJ.T. SahebkarA. Macrophage plasticity, polarization, and function in health and disease.J. Cell. Physiol.201823396425644010.1002/jcp.26429 29319160
    [Google Scholar]
  122. SantaK. KumazawaY. WatanabeK. NagaokaI. The Potential Use of Vitamin D3 and Phytochemicals for Their Anti-Ageing Effects.Int. J. Mol. Sci.2024254212510.3390/ijms25042125 38396804
    [Google Scholar]
  123. TominagaT. KawaguchiK. KanesakaM. KawauchiH. JirilloE. KumazawaY. Suppression of type-I allergic responses by oral administration of grape marc fermented with Lactobacillus plantarum.Immunopharmacol. Immunotoxicol.201032459359910.3109/08923971003604786 20136581
    [Google Scholar]
  124. KumazawaY. TakimotoH. MatsumotoT. KawaguchiK. Potential use of dietary natural products, especially polyphenols, for improving type-1 allergic symptoms.Curr. Pharm. Des.201420685786310.2174/138161282006140220120344 23701564
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303285268240415040311
Loading
/content/journals/emiddt/10.2174/0118715303285268240415040311
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test