Drug Metabolism Letters - Volume 13, Issue 2, 2019
Volume 13, Issue 2, 2019
-
-
A Practical Perspective on the Evaluation of Small Molecule CNS Penetration in Drug Discovery
Authors: Liyue Huang, Mary C. Wells and Zhiyang ZhaoThe separation of the brain from blood by the blood-brain barrier and the bloodcerebrospinal fluid (CSF) barrier poses unique challenges for the discovery and development of drugs targeting the central nervous system (CNS). This review will describe the role of transporters in CNS penetration and examine the relationship between unbound brain (Cu-brain) and unbound plasma (Cu-plasma) or CSF (CCSF) concentration. Published data demonstrate that the relationship between Cu-brain and Cu-plasma or CCSF can be affected by transporter status and passive permeability of a drug and CCSF may not be a reliable surrogate for CNS penetration. Indeed, CCSF usually over-estimates Cu-brain for efflux substrates and it provides no additional value over Cu-plasma as the surrogate of Cu-brain for highly permeable non-efflux substrates. A strategy described here for the evaluation of CNS penetration is to use in vitro permeability, P-glycoprotein (Pgp) and breast cancer resistance protein efflux assays and Cu-brain/Cu-plasma in preclinical species. Cu-plasma should be used as the surrogate of Cu-brain for highly permeable non-efflux substrates with no evidence of impaired distribution into the brain. When drug penetration into the brain is impaired, we recommend using (total brain concentration * unbound fraction in the brain) as Cu-brain in preclinical species or Cu-plasma/in vitro Pgp efflux ratio if Pgp is the major limiting mechanism for brain penetration.
-
-
-
Prominence of Oxidative Stress in the Management of Anti-tuberculosis Drugs Related Hepatotoxicity
Authors: Preena John and Pravin P. KaleAdvanced medical services and treatments are available for treating Tuberculosis. Related prevalence has increased in recent times. Unfortunately, the continuous consumption of related drugs is also known for inducing hepatotoxicity which is a critical condition and cannot be overlooked. The present review article has focused on the pathways causing these toxicities and also the role of enzyme CYP2E1, hepatic glutathione, Nrf2-ARE signaling pathway, and Membrane Permeability Transition as possible targets which may help in preventing the hepatotoxicity induced by the drugs used in the treatment of tuberculosis.
-
-
-
Imatinib Uptake into Cells is Not Mediated by Organic Cation Transporters OCT1, OCT2, or OCT3, But is Influenced by Extracellular pH
Background: Cancer cells undergo genetic and environmental changes that can alter cellular disposition of drugs, notably by alterations of transmembrane drug transporters expression. Whether the influx organic cation transporter 1 (OCT1) encoded by the gene SLC221A1 is implicated in the cellular uptake of imatinib is still controversial. Besides, imatinib ionization state may be modulated by the hypoxic acidic surrounding extracellular microenvironment. Objective: To determine the functional contribution of OCTs and extracellular pH on imatinib cellular disposition. Methods: We measured imatinib uptake in two different models of selective OCTs drug transporter expression (transfected Xenopus laevis oocytes and OCT-expressing HEK293 human cells), incubated at pH 7.4 and 6, using specific mass spectrometry analysis. Results: Imatinib cellular uptake occurred independently of OCT1- OCT2- or OCT3-mediated drug transport at pH 7.4. Uptake of the OCTs substrate tetraethylammonium in oocytes remained intact at pH 6, while the accumulation of imatinib in oocytes was 10-fold lower than at pH 7.4, irrespectively of OCTs expressions. In OCT1- and OCT2-HEK cells at pH 6, imatinib accumulation was reduced by 2- 3-fold regardless of OCTs expressions. Since 99.5% of imatinib at pH6 is under the cationic form, the reduced cellular accumulation of imatinib at such pH may be explained by the lower amount of uncharged imatinib remaining for passive diffusion across cellular membrane. Conclusion: Imatinib is not a substrate of OCTs 1-3 while the environmental pH modulates cellular disposition of imatinib. The observation that a slightly acidic extracellular pH influences imatinib cellular accumulation is important, considering the low extracellular pH reported in the hematopoietic leukemia/ cancer cell microenvironment.
-
-
-
The Effects of Special Patient Population Plasma on Pharmacokinetic Quantifications Using LC-MS/MS
Authors: Dongmei Zhou, Lifang Sun, Mai Nguyen, Li- T. Yeh and David M. WilsonBackground: Clinical development of lesinurad, a selective uric acid reabsorption inhibitor, required analysis of lesinurad in plasma from special patient populations. Methods: EMA and FDA bioanalytical method validation guidance have recommended studying matrix effects on quantitation if samples from special patient populations are to be analyzed. In addition to lesinurad (plasma protein binding 98.2%), the matrix effects from special population plasma on the quantitation of verapamil (PPB 89.6%), allopurinol and oxypurinol (PPB negligible) were also investigated. Results: The plasma from special population patients had no matrix effects on the three quantification methods with stable isotope labeled internal standard, protein precipitation extraction, and LC-MS/MS detection. The validated lesinurad plasma quantification method was successfully applied for the pharmacokinetic evaluations to support the clinical studies in renal impaired patients. Conclusion: Special population plasma did not affect quantitation of drugs with a wide range of plasma protein binding levels in human plasma. With the confirmation that there is no impact on quantification from the matrix, the bioanalytical method can be used to support the pharmacokinetic evaluations for clinical studies in special populations.
-
-
-
Assessment of Inhibition of Bovine Hepatic Cytochrome P450 by 43 Commercial Bovine Medicines Using a Combination of In Vitro Assays and Pharmacokinetic Data from the Literature
Authors: Steven X. Hu, Chase A. Mazur and Kenneth L. FeenstraBackground: There has been a lack of information about the inhibition of bovine medicines on bovine hepatic CYP450 at their commercial doses and dosing routes. Objective: The aim of this work was to assess the inhibition of 43 bovine medicines on bovine hepatic CYP450 using a combination of in vitro assay and Cmax values from pharmacokinetic studies with their commercial doses and dosing routes in the literature. Methods: Those drugs were first evaluated through a single point inhibitory assay at 3 μM in bovine liver microsomes for six specific CYP450 metabolisms, phenacetin o-deethylation, coumarin 7- hydroxylation, tolbutamide 4-hydroxylation, bufuralol 1-hydroxylation, chlorzoxazone 6-hydroxylation and midazolam 1’-hydroxylation. When the inhibition was greater than 20% in the assay, IC50 values were then determined. The potential in vivo bovine hepatic CYP450 inhibition by those drugs was assessed using a combination of the IC50 values and in vivo Cmax values from pharmacokinetic studies at their commercial doses and administration routes in the literature. Results: Fifteen bovine medicines or metabolites showed in vitro inhibition on one or more bovine hepatic CYP450 metabolisms with different IC50 values. Desfuroylceftiour (active metabolite of ceftiofur), nitroxinil and flunixin have the potential to inhibit one of the bovine hepatic CYP450 isoforms in vivo at their commercial doses and administration routes. The rest of the bovine medicines had low risks of in vivo bovine hepatic CYP450 inhibition. Conclusion: This combination of in vitro assay and in vivo Cmax data provides a good approach to assess the inhibition of bovine medicines on bovine hepatic CYP450.
-
-
-
Oral Bioavailability Enhancement of Amisulpride: Complexation and its Pharmacokinetics and Pharmacodynamics Evaluations
Authors: Prajapati J. B., Sawant Krutika K. and Bhramanand DubeyBackground: Many CNS drugs have low bioavailability due to their poor water solubility of extensive first-pass metabolism and hence have less effectiveness. Objective: The present study aims to enhance the solubility and oral bioavailability of poorly watersoluble antipsychotic drug Amisulpride (AMS) through complexation with 2-hydroxypropyl β- cyclodextrin (HPβCD). It has slow and erratic absorption after oral administration. Methods: This report describes the study of the phase solubility diagram, preparation of the inclusion complex and tablet of prepared inclusion complex, characterization of the physico-chemical properties of the inclusion complex and tablet. Results: In-vitro study (100 % drug release in 15 minutes), and in-vivo study of an AL-type (linear type) phase solubility diagram indicated a complex of AMS-HP-β-CD with the constant complex formation of 13245 M−1 at 37°C. The complex formation was confirmed by DSC, IR, and X-ray diffraction. The extent of absorption of the complex was determined in rats and was compared with that of pure drug and the market product. The peak plasma concentration of pure drug was 30.05 ± 1.3 ng/ml (Cmax) at 60 ± 3 min, whereas with the market product the value was 54.85 ± 1.2 ng/ml at 40 ± 1 min and with AMS-HPβCD inclusion complex the value was 79.01 ± 1.5 ng/ml. The AUCtot of the pure drug was 2980.34±3.6, the market product was 7238.73±2.9 and of the inclusion complex was 11871.1±2.8. Conclusion: Pharmacodynamic studies in mice showed improved effectiveness of drug compared to pure drug. The oral bioavailability of AMS was improved from 48% to 78%.
-
Most Read This Month
