Drug Metabolism Letters - Volume 10, Issue 1, 2016
Volume 10, Issue 1, 2016
-
-
A Novel Plated Hepatocyte Relay Assay (PHRA) for In Vitro Evaluation of Hepatic Metabolic Clearance of Slowly Metabolized Compounds
Authors: Chi-Chi Peng, Utkarsh Doshi, Chandra Prakash and Albert P. LiObjective: Development and validation of a novel assay, the Plated Hepatocyte Relay Assay (PHRA), for the determination of the metabolic fates of slowly metabolized compounds. Method: Cryopreserved human hepatocytes were cultured for 4 h followed by incubation with slowly metabolized compounds for 24 h (initial incubation). On the next day, the incubated media were collected and added to hepatocytes was similarly prepared on the day of incubation (48 h incubation; 1st relay). The procedures were repeated on the next days (72 h (2nd relay), 96 h (3rd relay), and 120 h (4th relay) incubations). Results: A proof-of-concept study with two low clearance compounds, diazepam and tolbutamide, and a validation study with 15 ultra-low clearance compounds (CLnon-renal < 1 mL/min/kg) and low clearance compounds (CLnon-renal 1- 5.1 mL/min/kg) were performed. Linear time-dependent disappearance of the parent compounds was observed for all compounds. Application of published free fraction values in combination with a correction factor with in vitro hepatic clearance results obtained with the PHRA accurately predicted in vivo hepatic clearance. Conclusion: PHRA represents a useful experimental system for the evaluation of the metabolic fates of low clearance compounds in drug development..
-
-
-
Inactivation of CYP3A4 by Benzbromarone in Human Liver Microsomes
Authors: Yasuhiro Masubuchi and Shinji KondoBackground: Benzbromarone is a uricosuric drug in current clinical use that can cause serious hepatotoxicity. Chemically reactive and/or cytotoxic metabolites of benzbromarone have been identified; however there is a lack of available information on their role in benzbromarone hepatotoxicity. The reactive metabolites of some hepatotoxic drugs are known to covalently bind, or alternatively are targeted, to specific cytochrome P450 (P450) enzymes, a process that is often described as mechanism-based inhibition. Objective: We examined whether benzbromarone causes a mechanism-based inhibition of human P450 enzymes. Method: Microsomes from human livers were preincubated with benzbromarone and NADPH, followed by evaluation of CYP2C9 and CYP3A4 activities. Results: Benzbromarone metabolism resulted in inhibition of CYP3A4 but not CYP2C9 in a time-dependent manner. Confirmation of pseudo-first order kinetics of inhibition, a requirement for NADPH, and a lack of protection by scavengers suggested that benzbromarone is a mechanism-based CYP3A4 inhibitor. Conclusion: Modification of the P450 enzyme by the reactive metabolite is a common trait of drugs that induce idiosyncratic hepatotoxicity, and might provide a speculative, mechanistic model for the rare occurrences of this type of drug toxicity.
-
-
-
Metabolism, Excretion and Pharmacokinetics of MLN3897, a CCR1 Antagonist, in Humans
MLN3897 is a small molecule antagonist of the C-C chemokine receptor-1. Since preclinical studies showed that the molecule was metabolized into two halves, the metabolism, excretion, and pharmacokinetics of MLN3897 were investigated in humans using MLN3897 14C-radiolabeled either on the chlorophenyl (CP) or the tricyclic (TC) half of MLN3897 after an oral dose. Objective: To evaluate the mass balance, metabolism and pharmacokinetics of MLN3897 in two cohorts of six randomized healthy subjects. Method: After receiving informed consent, subjects were dosed after an overnight fast of 10-hours followed by at least 4- hours after dosing on day-1. Each cohort received a single 29 mg oral dose of either the CP or the TC as an oral solution in water. Serial blood samples, urine and feces were collected over a 10-day period post-dose. Results: For both radiolabeled moieties, 55-59% of the dose was recovered in feces and 32% recovered in urine. MLN3897 was metabolized extensively in humans, with minor amounts of intact MLN3897 detected in the urine and feces. N-oxidation of the tricyclic moiety (M28) and N-dealkylation of the piperidinyl moiety were the primary metabolic pathways leading to further formation of the carboxylic acid metabolite (M19) and the (4-(4-chlorophenyl)-3,3- dimethylpiperidin-4-ol) metabolite (M40). Oxidative metabolites M11, M19, M28, M44 were present at >10% of the total circulating radioactivity and also at >25% of MLN3897 exposure. Metabolites resulting from the chlorophenyl-labeled moiety (M40) had significantly more systemic exposure compared to the tricyclic-labeled moiety (M19).
-
-
-
Clinical Confirmation that the Selective JAK1 Inhibitor Filgotinib (GLPG0634) has a Low Liability for Drug-drug Interactions
Objective: The selective Janus kinase 1 inhibitor filgotinib (GLPG0634), which is currently in clinical development for the treatment of rheumatoid arthritis (RA) and Crohn’s disease, demonstrated encouraging safety and efficacy profiles in RA patients after 4 weeks of daily dosing. As RA patients might be treated with multiple medications simultaneously, possible drug-drug interactions of filgotinib with cytochrome P450 enzymes and with key drug transporters were evaluated in vitro and in clinical studies. Methods: The enzymes involved in filgotinib’s metabolism and the potential interactions of the parent and its active major metabolite with drug-metabolizing enzymes and drug transporters, were identified using recombinant enzymes, human microsomes, and cell systems. Furthermore, filgotinib’s interaction potential with CYP3A4 was examined in an open-label study in healthy volunteers, which evaluated the impact of filgotinib co-administration on the CYP3A4-sensitive substrate midazolam. The potential interaction with the common RA drug methotrexate was investigated in a clinical study in RA patients. Results: In vitro, filgotinib and its active metabolite at clinically relevant concentrations did not interact with cytochrome P450 enzymes and uridine 5’-diphospho-glucuronosyltransferases, and did not inhibit key drug transporters. In the clinic, a lack of relevant pharmacokinetic drug interactions by filgotinib and its active metabolite with substrates of CYP3A4, as well as with organic anion transporters involved in methotrexate elimination were found. Conclusion: the collective in vivo and in vitro data on drug-metabolizing enzymes and on key drug transporters, support co-administration of filgotinib with commonly used RA drugs to patients without the need for dose adjustments.
-
-
-
Induction of Haemolysis and DNA Fragmentation in a Normal and Malarial-Infected Blood by Commonly - used Antimalarial Drugs in the North-Western Region of Nigeria
Background: Antimalarial drugs are medicines that are used to prevent or treat malaria effectively at different stages in the life cycle of the malarial parasites. In spite of this, a good number of these drugs have the potential to cause harm when they are misused or abused. Objective: This study was undertaken to evaluate the effects of commonly-used antimalarial drugs in the North Western region of Nigeria on haemolysis and DNA fragmentation in the blood of normal and malarial infected humans ex vivo. Method: The drugs used were artemisinine, artesunate, chloroquine, coartem and quinine (0.5-8.0 mg/ml). Haemolysis, haemoglobin status and DNA fragmentations were assayed for using standard procedures. Results: It was observed that all the drugs induced a remarkable dose-dependent haemolysis with more pronounced effects on apparently healthy humans. There was a significant (P < 0.05) decrease in the level of haemoglobin in normal blood samples when compared with control samples. Contrariwise, in the malaria-infected blood, the haemoglobin level significantly (P < 0.05) increased as compared with control. The drugs caused an exceptional significant (P < 0.05) induction of DNA fragmentation when compared with control. Conclusion: Commonly-used antimalarial drugs induced haemolysis and altered haemoglobin status which may spontaneously increases the cellular iron levels; a substrate for Fenton and Haber Weiss reactions, and eventually induces DNA fragmentation. Hence, adequate care should be taken during prescription with total avoidance for self medications and/or drugs abuse as a result of their adverse effects within the red blood cells and its immediate microenvironment.
-
-
-
Common and Distinct Interactions of Chemical Inhibitors with Cytochrome P450 CYP1A2, CYP2A6 and CYP2B6 Enzymes
Authors: Hannu Raunio, Risto O. Juvonen, Antti Poso, Maija Lahtela-Kakkonen and Minna Rahnasto-RillaBackground: Tobacco smoking is a leading cause of preventable disease and death globally. Nicotine is the main addictive component in tobacco. Nicotine is eliminated from the body by biotransformation in the liver to inactive metabolites. This reaction is catalyzed by the cytochrome P450 2A6 (CYP2A6) enzyme. Administering chemical inhibitors of CYP2A6 has been shown to slow down the elimination of nicotine with consequent reduction in number of cigarettes smoked. We have systematically developed small molecule CYP2A6 inhibitors with good balance between potency and CYP selectivity. Objective: During this process we have noticed that many potent CYP2A6 inhibitors also inhibit other human liver CYP forms, most notably CYP1A2 and CYP2B6. This study aimed at defining common and distinct features of ligand binding to CYP1A2, CYP2A6 and CYP2B6 active sites. Methods: We used our previous chemical inhibitor databases to construct improved 3-dimensional quantitative structureactivity relationship (3D-QSAR) models for CYP1A2, CYP2A6 and CYP2B6. Results: Combined 3D-QSAR and docking procedures yielded precise information about the common and distinct interactions of inhibitors and the enzyme active sites. Positioning of hydrogen bond donor/acceptor atoms and the shape and volume of the compound defined the potency and specificity of inhibition. A novel potent and selective CYP1A2 inhibitor was found. Conclusion: This in silico approach will provide a means for very rapid and high throughput prediction of cross-inhibition of these three CYP enzymes.
-
-
-
Impact of Cytochrome P450 2C19*2 and *3 on Clopidogrel Loading Dose in Saudi Patients with Acute Coronary Syndrome
Authors: Hassan Khalaf, Ahmad AbdulRahman Al Meman and Seemab RasoolBackground: Emerging evidence shows that clopidogrel is greatly affected by nonfunctioning alleles measured by P2Y12 or platelet reactivity units (PRU). Cardiac events during short in-hospital stays have been inconclusively suggested as the main causes of discrepancies. Objectives: Evaluate the impact of CYP2C19 allele *2 and allele *3 on PRU and the potential clinical consequences of such interaction. To establish a rough estimation for the safe PRU limits for short inhospital stay following PCI. Method: A short-term experimental study was conducted with 90 patients who underwent coronary angioplasty with drug eluting stents at the Prince Sultan Cardiac Center, Buraidah. All the patients received an initial loading dose of 300 mg clopidogrel, followed by 75 mg daily. Blood samples were used for DNA extraction for cytochrome P450 (CYP) and realtime polymerase chain reaction (PCR) was used for genotyping. PRU and inhibition rate were tested by Verifynow®. All in-hospital cardiac events were recorded until patients were discharged. Results: Genotypes 1/1, 2/2, and 1/2 were expressed by 60, 28, and two patients (67, 32, and 3%), respectively. The PRU of the female patients was significantly higher than that of the male patients was (255.6 ± 68.8 and 177.7 ± 66.6, p = 0.000, respectively). There was no significant difference in PRUs (193 ± 79 and 212 ±55.4, respectively, p = 0.349), nor inhibition (17.9 ± 18.80 and 13.88 ± 11.5, p = 0.135) in wild and resistant variants, respectively. We only reported one cardiac in-thrombosis events. Conclusion: Genotype differences may not explain variations in the PRU of patients during short-term in-hospital stays. Although it is difficult to confirm, 117–267 units may be a safe PRU range for such patients, with emphasis on attaining higher PRU values in females.
-
Most Read This Month
