Skip to content
2000
Volume 17, Issue 3
  • ISSN: 2949-6810
  • E-ISSN: 2949-6829

Abstract

Background

Microbial biotransformation of steroids is a valuable method for producing active pharmaceuticals or potentially active steroids, and fungi serve as powerful biocatalysts in this process. On the other hand, analyses are preliminary yet influential studies for the evaluation of compounds in the drug development process.

Objective

This study aimed to examine the ability of to biotransform hydrocortisone, predict the potential binding ability of the products to the 11β-hydroxysteroid dehydrogenase enzyme (as a target for the control of diabetes mellitus type 2), and assess the products’ pharmacokinetic properties.

Methods

The incubation of with hydrocortisone for nine days resulted in the production of a main product in the culture medium. The metabolite was subsequently isolated using chromatographic procedures and its identity was determined by spectroscopic analysis. Computational binding studies and pharmacokinetic profile prediction of the metabolite were conducted using AutoDock Vina and SwissADME, respectively.

Results

The biotransformation of hydrocortisone by produced 11β,17α,20β,21-tetrahydroxypregn-4-en-3-one as the major metabolite. Molecular docking studies demonstrated that the metabolite can interact with functional residues located at the catalytic site of the enzyme in different ways. Furthermore, the results indicated a favorable pharmacokinetic profile of the produced metabolite.

Conclusion

The current study showed that may be considered an effective tool for the biotransformation of steroids and the production of potentially bioactive compounds.

Loading

Article metrics loading...

/content/journals/dmbl/10.2174/0118723128362608250206054012
2025-02-24
2025-10-31
Loading full text...

Full text loading...

References

  1. GuptaP. PandaG. Asymmetric assembly of steroidal tetracyclic skeletons.Eur. J. Org. Chem.20142014368004801910.1002/ejoc.201402822
    [Google Scholar]
  2. SievänenE. KolehmainenE. High-resolution solid-state NMR spectroscopy of steroids and their derivatives.Appl. Spectrosc. Rev.2013481507610.1080/05704928.2012.703152
    [Google Scholar]
  3. KeS. Recent progress of novel steroid derivatives and their potential biological properties.Mini Rev. Med. Chem.201818974577510.2174/1389557517666171003103245 28971776
    [Google Scholar]
  4. FernandesP. CruzA. AngelovaB. PinheiroH.M. CabralJ.M.S. Microbial conversion of steroid compounds: Recent developments.Enzyme Microb. Technol.200332668870510.1016/S0141‑0229(03)00029‑2
    [Google Scholar]
  5. GhasemiS. MohajeriM. HabibiZ. Biotransformation of testosterone and testosterone heptanoate by four Filamentous fungi.Steroids20149271210.1016/j.steroids.2014.09.002 25223562
    [Google Scholar]
  6. GomesA.R. PiresA.S. RoleiraF.M.F. Tavares-da-SilvaE.J. The structural diversity and biological activity of steroid oximes.Molecules2023284169010.3390/molecules28041690 36838678
    [Google Scholar]
  7. DonovaM.V. EgorovaO.V. Microbial steroid transformations: Current state and prospects.Appl. Microbiol. Biotechnol.20129461423144710.1007/s00253‑012‑4078‑0 22562163
    [Google Scholar]
  8. BhattiH.N. KheraR.A. Biological transformations of steroidal compounds: A review.Steroids201277121267129010.1016/j.steroids.2012.07.018 22910289
    [Google Scholar]
  9. LazicJ. FilipovicV. PantelicL. MilovanovicJ. VojnovicS. Nikodinovic-RunicJ. Late-stage diversification of bacterial natural products through biocatalysis.Front. Bioeng. Biotechnol.202412135158310.3389/fbioe.2024.1351583 38807651
    [Google Scholar]
  10. Garzón-PosseF. Becerra-FigueroaL. Hernández-AriasJ. Gamba-SánchezD. Whole cells as biocatalysts in organic transformations.Molecules2018236126510.3390/molecules23061265 29799483
    [Google Scholar]
  11. WuY. LiH. ZhangX.M. GongJ.S. RaoZ.M. ShiJ.S. ZhangX.J. XuZ.H. Efficient hydroxylation of functionalized steroids by Colletotrichum lini ST-1.J. Mol. Catal., B Enzym.201512011111810.1016/j.molcatb.2015.07.003
    [Google Scholar]
  12. de SouzaR.O.M.A. MirandaL.S.M. BornscheuerU.T. A retrosynthesis approach for biocatalysis in organic synthesis.Chemistry20172350120401206310.1002/chem.201702235 28514518
    [Google Scholar]
  13. ChoudharyM. GuptaS. DharM.K. KaulS. Endophytic fungi-mediated biocatalysis and biotransformations paving the way toward green chemistry.Front. Bioeng. Biotechnol.2021966470510.3389/fbioe.2021.664705 34222213
    [Google Scholar]
  14. Nassiri-KoopaeiN. FaramarziM.A. Recent developments in the fungal transformation of steroids.Biocatal. Biotransform.201533112810.3109/10242422.2015.1022533
    [Google Scholar]
  15. Fernández-CabezónL. GalánB. GarcíaJ.L. New insights on steroid biotechnology.Front. Microbiol.2018995810.3389/fmicb.2018.00958 29867863
    [Google Scholar]
  16. Morin-SardinS. NodetP. CotonE. JanyJ.L. Mucor: A Janus-faced fungal genus with human health impact and industrial applications.Fungal Biol. Rev.2017311123210.1016/j.fbr.2016.11.002
    [Google Scholar]
  17. RichardsonM. The ecology of the Zygomycetes and its impact on environmental exposure.Clin. Microbiol. Infect.200915Suppl. 52910.1111/j.1469‑0691.2009.02972.x 19754749
    [Google Scholar]
  18. HurdealV.G. GentekakiE. HydeK.D. NguyenT.T.T. LeeH.B. Novel Mucor species (Mucoromycetes, Mucoraceae) from northern Thailand.MycoKeys202184577810.3897/mycokeys.84.71530 34759734
    [Google Scholar]
  19. PeartP.C. ReynoldsW.F. ReeseP.B. The facile bioconversion of testosterone by alginate-immobilised Filamentous fungi.J. Mol. Catal., B Enzym.201395708110.1016/j.molcatb.2013.05.025
    [Google Scholar]
  20. LammA.S. ChenA.R.M. ReynoldsW.F. ReeseP.B. Steroid hydroxylation by Whetzelinia sclerotiorum, Phanerochaete chrysosporium and Mucor plumbeus.Steroids2007729-1071372210.1016/j.steroids.2007.05.008 17628623
    [Google Scholar]
  21. MadyasthaK.M. JosephT. Transformation of 16-dehydroprogesterone and 17α-hydroxyprogesterone by Mucor piriformis.Appl. Microbiol. Biotechnol.199441217017710.1007/BF00186955
    [Google Scholar]
  22. MadyasthaK.M. JosephT. Transformation of dehydroepiandrosterone and pregnenolone by Mucor piriformis.Appl. Microbiol. Biotechnol.1995443-433934310.1007/BF00169926
    [Google Scholar]
  23. MohamedS.S. El-RefaiA.M.H. SallamL.A. Abo-ZiedK.M. HashemA.G.M. AliH.A. Biotransformation of progesterone to hydroxysteroid derivatives by whole cells of Mucor racemosus.Malays. J. Microbiol.20139323724410.21161/mjm.49213
    [Google Scholar]
  24. FaramarziM.A. BadieeM. YazdiM.T. AminiM. TorshabiM. Formation of hydroxysteroid derivatives from androst-4-en-3,17-dione by the Filamentous fungus Mucor racemosus.J. Mol. Catal., B Enzym.200850171210.1016/j.molcatb.2007.09.017
    [Google Scholar]
  25. FaramarziM.A. ZolfagharyN. Tabatabaei YazdiM. AdrangiS. RastegarH. AminiM. BadieeM. Microbial conversion of androst‐1,4‐dien‐3,17‐dione by Mucor racemosus to hydroxysteroid‐1,4‐dien‐3‐one derivatives.J. Chem. Technol. Biotechnol.20098471021102510.1002/jctb.2128
    [Google Scholar]
  26. GeW. WangS. ShanL. LiN. LiuH. Transformation of 3β-hydroxy-5-en-steroids by Mucor racemosus.J. Mol. Catal., B Enzym.2008551-2374210.1016/j.molcatb.2008.01.007
    [Google Scholar]
  27. LiH.P. YuP. ZhangH.J. LiuH.M. Synthesis of 5‐Androstene‐3β, 7α, 17β ‐triol and 5‐Androstene‐3β, 7β, 17β ‐triol.Chin. J. Chem.20082691666166810.1002/cjoc.200890301
    [Google Scholar]
  28. SmithK.E. LatifS. KirkD.N. WhiteK.A. Microbial transformations of steroids—IV. 6,7-Dehydrogenation; A new class of fungal steroid transformation product.J. Steroid Biochem.198933227127610.1016/0022‑4731(89)90304‑X 2770300
    [Google Scholar]
  29. TorshabiM. BadieeM. FaramarziM.A. RastegarH. ForootanfarH. MohitE. Biotransformation of methyltestosterone by the Filamentous fungus Mucor racemosus.Chem. Nat. Compd.2011471596310.1007/s10600‑011‑9830‑7
    [Google Scholar]
  30. GiorgiV. ChavesM. MenéndezP. García CarnelliC. Bioprospecting of whole-cell biocatalysts for cholesterol biotransformation.World J. Microbiol. Biotechnol.20193511210.1007/s11274‑018‑2586‑5 30604276
    [Google Scholar]
  31. AnX. GaoP. ZhaoS. ZhuL. YouX. LiC. ZhangQ. ShanL. Biotransformation of androst-4-ene-3,17-dione by three fungal species Fusarium solani BH1031, Aspergillus awamori MH18 and Mucor circinelloides W12.Nat. Prod. Res.202135342843510.1080/14786419.2019.1636238 31429310
    [Google Scholar]
  32. ShanL. JiaoK. YinM. HuangJ. ChenY. QinS. LiuH. Biotransformation of 5-en-3β-ol steroids by Mucor circinelloides lusitanicus.Biocatal. Biotransform.2016343838810.3109/10242422.2015.1089865
    [Google Scholar]
  33. KoletS.P. HaldarS. NiloferjahanS. ThulasiramH.V. Mucor hiemalis mediated 14α-hydroxylation on steroids: In vivo and in vitro investigations of 14α-hydroxylase activity.Steroids20148561210.1016/j.steroids.2014.04.002 24747772
    [Google Scholar]
  34. KozłowskaE. UrbaniakM. KancelistaA. DymarskaM. Kostrzewa-SusłowE. StępieńŁ. JaneczkoT. Biotransformation of dehydroepiandrosterone (DHEA) by environmental strains of Filamentous fungi.RSC Advances2017750314933150110.1039/C7RA04608A
    [Google Scholar]
  35. YildirimK. KuruA. KeskinE. SalihogluA. BukumN. Biotransformation of androst-4-ene-3,17-dione by some fungi.J. Chem. Res.2017411059459710.3184/174751917X15064232103083
    [Google Scholar]
  36. WangY. SunD. ChenZ. RuanH. GeW. Biotransformation of 3β-hydroxy-5-en-steroids by Mucor silvaticus.Biocatal. Biotransform.201331416817410.3109/10242422.2013.813490
    [Google Scholar]
  37. HuS. GenainG. AzeradR. Microbial transformation of steroids: Contribution to 14α-hydroxylations.Steroids199560433735210.1016/0039‑128X(95)00006‑C 8539788
    [Google Scholar]
  38. SinghK. SehgalS.N. VézinaC. Transformation of steroids by Mucor griseo-cyanus.Can. J. Microbiol.19671391271128110.1139/m67‑172 6054683
    [Google Scholar]
  39. DineenR. StewartP.M. SherlockM. Factors impacting on the action of glucocorticoids in patients receiving glucocorticoid therapy.Clin. Endocrinol.201990131410.1111/cen.13837 30120786
    [Google Scholar]
  40. DziurkowskaE. WesolowskiM. Cortisol as a biomarker of mental disorder severity.J. Clin. Med.20211021520410.3390/jcm10215204 34768724
    [Google Scholar]
  41. SapolskyR.M. RomeroL.M. MunckA.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions.Endocr. Rev.2000211558910.1210/er.21.1.55 10696570
    [Google Scholar]
  42. ZappaterraF. CostaS. SummaD. BertolasiV. SemeraroB. PedriniP. BuzziR. VertuaniS. Biotransformation of cortisone with Rhodococcus rhodnii: Synthesis of new steroids.Molecules2021265135210.3390/molecules26051352 33802594
    [Google Scholar]
  43. BornsteinS.R. ChrousosG.P. Clinical review 104: Adrenocorticotropin (ACTH)- and non-ACTH-mediated regulation of the adrenal cortex: Neural and immune inputs.J. Clin. Endocrinol. Metab.19998451729173610.1210/jcem.84.5.5631 10323408
    [Google Scholar]
  44. DraperN. StewartP.M. 11β-Hydroxysteroid dehydrogenase and the pre-receptor regulation of corticosteroid hormone action.J. Endocrinol.2005186225127110.1677/joe.1.06019 16079253
    [Google Scholar]
  45. KupczykD. BilskiR. KozakiewiczM. StudzińskaR. Kędziora-KornatowskaK. KosmalskiT. Pedrycz-WieczorskaA. GłowackaM. 11β-HSD as a new target in pharmacotherapy of metabolic diseases.Int. J. Mol. Sci.20222316898410.3390/ijms23168984 36012251
    [Google Scholar]
  46. StulnigT.M. WaldhäuslW. 11β-Hydroxysteroid dehydrogenase Type 1 in obesity and Type 2 diabetes.Diabetologia200447111110.1007/s00125‑003‑1284‑4 14652720
    [Google Scholar]
  47. GathercoleL.L. LaveryG.G. MorganS.A. CooperM.S. SinclairA.J. TomlinsonJ.W. StewartP.M. 11β-Hydroxysteroid dehydrogenase 1: Translational and therapeutic aspects.Endocr. Rev.201334452555510.1210/er.2012‑1050 23612224
    [Google Scholar]
  48. MorganS.A. TomlinsonJ.W. 11β-Hydroxysteroid dehydrogenase type 1 inhibitors for the treatment of type 2 diabetes.Expert Opin. Investig. Drugs20101991067107610.1517/13543784.2010.504713 20707593
    [Google Scholar]
  49. SaiahE. The role of 11beta-hydroxysteroid dehydrogenase in metabolic disease and therapeutic potential of 11beta-hsd1 inhibitors.Curr. Med. Chem.200815764264910.2174/092986708783885264 18336279
    [Google Scholar]
  50. MehmannavazM. NickavarB. Biotransformation of testosterone by the Filamentous fungus Penicillium pinophilum.Arch. Microbiol.2022204957010.1007/s00203‑022‑03191‑3 35994127
    [Google Scholar]
  51. NickavarB. VahidiH. EslamiM. An efficient biotransformation of progesterone into 11α-hydroxyprogesterone by Rhizopus microsporus var. oligosporus.Z. Naturforsch. C J. Biosci.2018741-291510.1515/znc‑2018‑0092 30367812
    [Google Scholar]
  52. NickavarB. JoshaghaniR.A. An effect-based approach to identify α-amylase inhibitors from the essential oil of Zingiber officinale rhizome: Experimental and computational studies.Food Biosci.20235610334510.1016/j.fbio.2023.103345
    [Google Scholar]
  53. DainaA. MichielinO. ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  54. FaramarziM. YazdiM.T. ShafieeA. ZarriniG. Microbial transformation of hydrocortisone by Acremonium strictum PTCC 5282.Steroids2002671086987210.1016/S0039‑128X(02)00049‑1 12231122
    [Google Scholar]
  55. GandomkarS. HosseinzadehL. HabibiZ. C-20 Ketone reduction of hydrocortisone by Fusarium solani and Aspergillus ochraceus.Biotechnol. Lett.201436112271227410.1007/s10529‑014‑1602‑6 25048228
    [Google Scholar]
  56. GhasemiS. KheyrabadiR. HabibiZ. Microbial transformation of hydrocortisone by two fungal species Fusarium fujikuroi PTCC 5144 and Rhizomucor pusillus PTCC 5134.Biocatal. Biotransform.201432316817210.3109/10242422.2014.913581
    [Google Scholar]
  57. PanH. ChangS. QuY. LiuM. TianW. ChangZ. Hydrocortisone production using whole-cell biocatalysts in recombinant Escherichia coli.Biochem. Eng. J.202319810902310.1016/j.bej.2023.109023
    [Google Scholar]
  58. ChapmanK. HolmesM. SecklJ. 11β-hydroxysteroid dehydrogenases: Intracellular gate-keepers of tissue glucocorticoid action.Physiol. Rev.20139331139120610.1152/physrev.00020.2012 23899562
    [Google Scholar]
  59. MitićT. ShaveS. SemjonousN. McNaeI. CobiceD.F. LaveryG.G. WebsterS.P. HadokeP.W.F. WalkerB.R. AndrewR. 11β-Hydroxysteroid dehydrogenase type 1 contributes to the balance between 7-keto- and 7-hydroxy-oxysterols in vivo.Biochem. Pharmacol.201386114615310.1016/j.bcp.2013.02.002 23415904
    [Google Scholar]
  60. ChuanxinZ. ShengzhengW. LeiD. DuoliX. JinL. FuzengR. AipingL. GeZ. Progress in 11β-HSD1 inhibitors for the treatment of metabolic diseases: A comprehensive guide to their chemical structure diversity in drug development.Eur. J. Med. Chem.202019111213410.1016/j.ejmech.2020.112134 32088493
    [Google Scholar]
  61. QianH. ChenJ. PanY. ChenJ. Molecular modeling studies of 11β-hydroxysteroid dehydrogenase type 1 inhibitors through receptor-based 3D-QSAR and molecular dynamics simulations.Molecules2016219122210.3390/molecules21091222 27657020
    [Google Scholar]
  62. WangY. XingJ. XuY. ZhouN. PengJ. XiongZ. LiuX. LuoX. LuoC. ChenK. ZhengM. JiangH. In silico ADME/T modelling for rational drug design.Q. Rev. Biophys.201548448851510.1017/S0033583515000190 26328949
    [Google Scholar]
  63. KomuraH. WatanabeR. MizuguchiK. The trends and future prospective of in silico models from the viewpoint of ADME evaluation in drug discovery.Pharmaceutics20231511261910.3390/pharmaceutics15112619 38004597
    [Google Scholar]
  64. DulsatJ. López-NietoB. Estrada-TejedorR. BorrellJ.I. Evaluation of free online ADMET tools for academic or small biotech environments.Molecules202328277610.3390/molecules28020776 36677832
    [Google Scholar]
/content/journals/dmbl/10.2174/0118723128362608250206054012
Loading
/content/journals/dmbl/10.2174/0118723128362608250206054012
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test