Skip to content
2000
image of Metabolomics Methods for Detecting Acetaminophen Poisoning: A Systematic Review

Abstract

Introduction

Detecting toxicity patterns in metabolic changes is a key indicator of potential threats. Metabolomics may provide an alternative way to find biomarkers for drug overdose and toxicity. In an acetaminophen overdose, glutathione scavenging causes mitochondrial malfunction and hepatocyte death. Metabolomics methods have enabled the discovery of novel mechanisms of liver injury in acetaminophen (APAP) overdose.

Methods

We conducted a peer-reviewed scientific review to assess the studies on the application of metabolomics in APAP poisoning. We searched PubMed and Scopus databases until February 28, 2025, for relevant original articles. We also looked into the clinicaltrials.gov website and the Indian clinical trial registry.

Results

Our initial search yielded 302 articles, after duplicates and initial screening. Two hundred and nine (209) articles underwent full-text review. Of these, 191 articles were excluded, and 18 studies were included. There were 1503 subjects, and 24 metabolomics techniques were used. Seven trials were registered in clinicaltrials.gov, and none were registered in the CTRI.

Discussion

Metabolic intermediates are more likely to pass through intact cell membranes and be detected in blood before cell death. Thus, metabolomics could be a potential strategy to identify damage biomarkers relevant at earlier periods.

Conclusion

APAP can be considered a multifunctional drug with significantly fewer adverse effects; however, it still affects the liver when used chronically. Scientists continue to push the boundaries of data extraction, and it is widely acknowledged that a lack of tools for data integration hampers the full manifestation of metabolomics technologies. This research increases our understanding of metabolomics use in APAP-induced liver injury.

Loading

Article metrics loading...

/content/journals/dmb/10.2174/0118723128399568250908093801
2025-11-13
2026-01-05
Loading full text...

Full text loading...

References

  1. Amberg A. Riefke B. Schlotterbeck G. Ross A. Senn H. Dieterle F. Keck M. NMR and MS methods for metabolomics. Methods Mol. Biol. 2017 1641 229 258 10.1007/978‑1‑4939‑7172‑5_13 28748468
    [Google Scholar]
  2. García Cañaveras J.C.; Castell, J.V.; Donato, M.T.; Lahoz, A. A metabolomics cell-based approach for anticipating and investigating drug-induced liver injury. Sci. Rep. 2016 6 1 27239 10.1038/srep27239 27265840
    [Google Scholar]
  3. Zhang A. Sun H. Yan G. Wang P. Wang X. Mass spectrometry‐based metabolomics: Applications to biomarker and metabolic pathway research. Biomed. Chromatogr. 2016 30 1 7 12 10.1002/bmc.3453 25739660
    [Google Scholar]
  4. Ayoub S.S. Paracetamol (acetaminophen): A familiar drug with an unexplained mechanism of action. Temperature 2021 8 4 351 371 10.1080/23328940.2021.1886392 34901318
    [Google Scholar]
  5. Alonso E.M. James L.P. Zhang S. Squires R.H. Acetaminophen adducts detected in serum of pediatric patients with acute liver failure. J. Pediatr. Gastroenterol. Nutr. 2015 61 1 102 107 10.1097/MPG.0000000000000814 25859823
    [Google Scholar]
  6. Burghardt K.J. Kajy M. Ward K.M. Burghardt P.R. Metabolomics, lipidomics, and antipsychotics: A systematic review. Biomedicines 2023 11 12 3295 10.3390/biomedicines11123295 38137517
    [Google Scholar]
  7. Kaddurah-Daouk R. Weinshilboum R.M. Pharmacometabolomics: Implications for clinical pharmacology and systems pharmacology. Clin. Pharmacol. Ther. 2014 95 2 154 167 10.1038/clpt.2013.217 24193171
    [Google Scholar]
  8. U.S National Library of Medicine U.S National Library of Medicine. Clinical trials 2023 Available from: Assessed on 25, Junehttps://www.clinicaltrials.gov/
  9. Clinical Trial Registry of India Clinical Trial Registry of India. 2023 2023 Available from: Assessed on 25, June https://ctri.nic.in/Clinicaltrials/login.php
  10. Clayton T.A. Baker D. Lindon J.C. Everett J.R. Nicholson J.K. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc. Natl. Acad. Sci. USA 2009 106 34 14728 14733 10.1073/pnas.0904489106 19667173
    [Google Scholar]
  11. Fannin R.D. Russo M. O’Connell T.M. Gerrish K. Winnike J.H. Macdonald J. Newton J. Malik S. Sieber S.O. Parker J. Shah R. Zhou T. Watkins P.B. Paules R.S. Acetaminophen dosing of humans results in blood transcriptome and metabolome changes consistent with impaired oxidative phosphorylation. Hepatology 2010 51 1 227 236 10.1002/hep.23330 19918972
    [Google Scholar]
  12. Winnike J.H. Li Z. Wright F.A. Macdonald J.M. O’Connell T.M. Watkins P.B. Use of pharmaco-metabonomics for early prediction of acetaminophen-induced hepatotoxicity in humans. Clin. Pharmacol. Ther. 2010 88 1 45 51 10.1038/clpt.2009.240 20182423
    [Google Scholar]
  13. Jetten M.J.A. Gaj S. Ruiz-Aracama A. de Kok T.M. van Delft J.H.M. Lommen A. van Someren E.P. Jennen D.G.J. Claessen S.M. Peijnenburg A.A.C.M. Stierum R.H. Kleinjans J.C.S. 'Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans. Toxicol. Appl. Pharmacol. 2012 259 3 320 328 10.1016/j.taap.2012.01.009 22285215
    [Google Scholar]
  14. Kim J.W. Ryu S.H. Kim S. Lee H.W. Lim M. Seong S.J. Kim S. Yoon Y.R. Kim K.B. Pattern recognition analysis for hepatotoxicity induced by acetaminophen using plasma and urinary 1H NMR-based metabolomics in humans. Anal. Chem. 2013 85 23 11326 11334 10.1021/ac402390q 24127682
    [Google Scholar]
  15. Bhattacharyya S. Yan K. Pence L. Simpson P.M. Gill P. Letzig L.G. Beger R.D. Sullivan J.E. Kearns G.L. Reed M.D. Marshall J.D. Van Den Anker J.N. James L.P. Targeted liquid chromatography-mass spectrometry analysis of serum acylcarnitines in acetaminophen toxicity in children. Biomarkers Med. 2014 8 2 147 159 10.2217/bmm.13.150 24521011
    [Google Scholar]
  16. McGill M.R. Li F. Sharpe M.R. Williams C.D. Curry S.C. Ma X. Jaeschke H. Circulating acylcarnitines as biomarkers of mitochondrial dysfunction after acetaminophen overdose in mice and humans. Arch. Toxicol. 2014 88 2 391 401 10.1007/s00204‑013‑1118‑1 23979652
    [Google Scholar]
  17. Woolbright B.L. McGill M.R. Staggs V.S. Winefield R.D. Gholami P. Olyaee M. Sharpe M.R. Curry S.C. Lee W.M. Jaeschke H. Glycodeoxycholic acid levels as prognostic biomarker in acetaminophen-induced acute liver failure patients. Toxicol. Sci. 2014 142 2 436 444 10.1093/toxsci/kfu195 25239633
    [Google Scholar]
  18. James L. Yan K. Pence L. Simpson P. Bhattacharyya S. Gill P. Letzig L. Kearns G. Beger R. Comparison of bile acids and acetaminophen protein adducts in children and adolescents with acetaminophen toxicity. PLoS One 2015 10 7 e0131010 10.1371/journal.pone.0131010 26208104
    [Google Scholar]
  19. Bhattacharyya S. Pence L. Yan K. Gill P. Luo C. Letzig L.G. Simpson P.M. Kearns G.L. Beger R.D. James L.P. Targeted metabolomic profiling indicates structure-based perturbations in serum phospholipids in children with acetaminophen overdose. Toxicol. Rep. 2016 3 747 755 10.1016/j.toxrep.2016.08.004 28959601
    [Google Scholar]
  20. Jetten M.J.A. Ruiz-Aracama A. Coonen M.L.J. Claessen S.M. van Herwijnen M.H.M. Lommen A. van Delft J.H.M. Peijnenburg A.A.C.M. Kleinjans J.C.S. Interindividual variation in gene expression responses and metabolite formation in acetaminophen-exposed primary human hepatocytes. Arch. Toxicol. 2016 90 5 1103 1115 10.1007/s00204‑015‑1545‑2 26104854
    [Google Scholar]
  21. Schnackenberg L. Sun J. Bhattacharyya S. Gill P. James L. Beger R. Metabolomics analysis of urine samples from children after acetaminophen overdose. Metabolites 2017 7 3 46 10.3390/metabo7030046 28878168
    [Google Scholar]
  22. Ganetsky M. Berg A.H. Solano J.J. Salhanick S.D. Metabolomic analysis of acetaminophen induced subclinical liver injury. Clin. Toxicol. 2020 58 8 804 812 10.1080/15563650.2019.1696970 31818152
    [Google Scholar]
  23. Dear J.W. Ng M.L. Bateman D.N. Leroy Sivappiragasam P. Choi H. Khoo B.B.J. Ibrahim B. Drum C.L. A metabolomic analysis of thiol response for standard and modified N ‐acetyl cysteine treatment regimens in patients with acetaminophen overdose. Clin. Transl. Sci. 2021 14 4 1476 1489 10.1111/cts.13009 33742775
    [Google Scholar]
  24. Arnold C.G. Dylla L. Monte A.A. Heard K. Heard S. D’Alessandro A. Reynolds K. Dart R. Rumack B. Sonn B. Metabolomic evaluation of N-Acetyl-p-benzoquinone imine protein adduct formation with therapeutic acetaminophen administration: Sex-based physiologic differences. J. Med. Toxicol. 2022 18 4 297 310 10.1007/s13181‑022‑00903‑5 35751009
    [Google Scholar]
  25. Rodríguez-Agudo R. Goikoetxea-Usandizaga N. Serrano-Maciá M. Fernández-Tussy P. Fernández-Ramos D. Lachiondo-Ortega S. González-Recio I. Gil-Pitarch C. Mercado-Gómez M. Morán L. Bizkarguenaga M. Lopitz-Otsoa F. Petrov P. Bravo M. Van Liempd S.M. Falcon-Perez J.M. Zabala-Letona A. Carracedo A. Castell J.V. Jover R. Martínez-Cruz L.A. Delgado T.C. Cubero F.J. Lucena M.I. Andrade R.J. Mabe J. Simón J. Martínez-Chantar M.L. Methionine cycle rewiring by targeting MIR-873-5P modulates ammonia metabolism to protect the liver from acetaminophen. Antioxidants 2022 11 5 897 10.3390/antiox11050897 35624761
    [Google Scholar]
  26. Sonn B.J. Heard K.J. Heard S.M. D’Alessandro A. Reynolds K.M. Dart R.C. Rumack B.H. Monte A.A. Metabolomic markers predictive of hepatic adaptation to therapeutic dosing of acetaminophen. Clin. Toxicol. 2022 60 2 221 230 10.1080/15563650.2021.1925686 34047639
    [Google Scholar]
  27. Monte A.A. Vest A. Reisz J.A. Berninzoni D. Hart C. Dylla L. D’Alessandro A. Heard K.J. Wood C. Pattee J. A multi-omic mosaic model of acetaminophen induced alanine aminotransferase elevation. J. Med. Toxicol. 2023 19 3 255 261 10.1007/s13181‑023‑00951‑5 37231244
    [Google Scholar]
  28. Attempted Suicide With Acetaminophen Among 8-18 Year-old Children / Adolescents in Denmark. NCT01981213 2025 Available from: https://clinicaltrials.gov/study/NCT01981213?intr=Aceta
    [Google Scholar]
  29. Hepatotoxicity After Therapeutic Doses NCT03602274, 2025 Available from:https://clinicaltrials.gov/study/NCT03602274?limit=100&cond=Acetaminophen%20Poisoning&term=Metabolomic&intr=metabolomics&rank=1#study-plan
    [Google Scholar]
  30. Adduct Dipstick for Diagnosis of Acetaminophen Toxicity NCT01575847 2025 Available from:https://clinicaltrials.gov/study/NCT01575847?intr=Acetaminophen&term=HPLC&rank=1icine
    [Google Scholar]
  31. Transplacental Transfer of Drugs Used in Pregnant Women NCT02622802 2025 Available from:https://clinicaltrials.gov/study/NCT02622802?intr=Acetaminophen&term=HPLC&rank=7
    [Google Scholar]
  32. Estimation of Paracetamol in Urine to Assess the Diurnal Variation NCT03122561 2025 Available from:https://clinicaltrials.gov/study/NCT03122561?intr=Acetaminophen&term=HPLC&rank=3
    [Google Scholar]
  33. Detection of Paracetamol Concentration in Patients Using Regular Medication- a Validation Study for a Novel Technique NCT05167591 2025 Available from:https://clinicaltrials.gov/study/NCT05167591?intr=Acetaminophen&term=Mass%20Spectrometry&rank=3
    [Google Scholar]
  34. Detection of Paracetamol Concentration in Blood-, Saline- and Urine Samples - a Validation Study for a Novel Technique NCT04690673 2025 Available from:https://clinicaltrials.gov/study/NCT04690673?intr=Acetaminophen&term=Mass%20Spectrometry&rank=1
    [Google Scholar]
  35. Russmann S. Kullak-Ublick G. Grattagliano I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr. Med. Chem. 2009 16 23 3041 3053 10.2174/092986709788803097 19689281
    [Google Scholar]
  36. Mazaleuskaya L.L. Sangkuhl K. Thorn C.F. FitzGerald G.A. Altman R.B. Klein T.E. PharmGKB summary. Pharmacogenet. Genomics 2015 25 8 416 426 10.1097/FPC.0000000000000150 26049587
    [Google Scholar]
  37. Yamazaki M. Miyake M. Sato H. Masutomi N. Tsutsui N. Adam K.P. Alexander D.C. Lawton K.A. Milburn M.V. Ryals J.A. Wulff J.E. Guo L. Perturbation of bile acid homeostasis is an early pathogenesis event of drug induced liver injury in rats. Toxicol. Appl. Pharmacol. 2013 268 1 79 89 10.1016/j.taap.2013.01.018 23360887
    [Google Scholar]
  38. Tokatli A. Kalkanoğlu-Sivri H.S. Yüce A. Coşkun T. Acetaminophen-induced hepatotoxicity in a glutathione synthetase-deficient patient. Turk. J. Pediatr. 2007 49 1 75 76 17479648
    [Google Scholar]
  39. Quintás G. Martínez-Sena T. Conde I. Pareja Ibars E. Kleinjans J. Castell J.V. Metabolomic analysis to discriminate drug-induced liver injury (DILI) phenotypes. Arch. Toxicol. 2021 95 9 3049 3062 10.1007/s00204‑021‑03114‑z 34274980
    [Google Scholar]
  40. Niu B. Lei X. Xu Q. Ju Y. Xu D. Mao L. Li J. Zheng Y. Sun N. Zhang X. Mao Y. Li X. Protecting mitochondria via inhibiting VDAC1 oligomerization alleviates ferroptosis in acetaminophen-induced acute liver injury. Cell Biol. Toxicol. 2022 38 3 505 530 10.1007/s10565‑021‑09624‑x 34401974
    [Google Scholar]
  41. Saeedi B.J. Liu K.H. Owens J.A. Hunter-Chang S. Camacho M.C. Eboka R.U. Chandrasekharan B. Baker N.F. Darby T.M. Robinson B.S. Jones R.M. Jones D.P. Neish A.S. Gut-resident lactobacilli activate hepatic Nrf2 and protect against oxidative liver injury. Cell Metab. 2020 31 5 956 968.e5 10.1016/j.cmet.2020.03.006 32213347
    [Google Scholar]
  42. Kumar B.S. Chung B.C. Kwon O.S. Jung B.H. Discovery of common urinary biomarkers for hepatotoxicity induced by carbon tetrachloride, acetaminophen and methotrexate by mass spectrometry‐based metabolomics. J. Appl. Toxicol. 2012 32 7 505 520 10.1002/jat.1746 22131085
    [Google Scholar]
  43. Sun J. Schnackenberg L.K. Holland R.D. Schmitt T.C. Cantor G.H. Dragan Y.P. Beger R.D. Metabonomics evaluation of urine from rats given acute and chronic doses of acetaminophen using NMR and UPLC/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008 871 2 328 340 10.1016/j.jchromb.2008.04.008 18472313
    [Google Scholar]
  44. Usui T. Mise M. Hashizume T. Yabuki M. Komuro S. Evaluation of the potential for drug-induced liver injury based on in vitro covalent binding to human liver proteins. Drug Metab. Dispos. 2009 37 12 2383 2392 10.1124/dmd.109.028860 19720731
    [Google Scholar]
  45. Spurway T.D. Gartland K.P.R. Warrander A. Pickford R. Nicholson J.K. Wilson I.D. Proton nuclear magnetic resonance of urine and bile from paracetamol dosed rats. J. Pharm. Biomed. Anal. 1990 8 8-12 969 973 10.1016/0731‑7085(90)80152‑F 2100650
    [Google Scholar]
  46. Coen M. Ruepp S.U. Lindon J.C. Nicholson J.K. Pognan F. Lenz E.M. Wilson I.D. Integrated application of transcriptomics and metabonomics yields new insight into the toxicity due to paracetamol in the mouse. J. Pharm. Biomed. Anal. 2004 35 1 93 105 10.1016/j.jpba.2003.12.019 15030884
    [Google Scholar]
  47. Werner T. Treiss I. Kohlmueller D. Mehlem P. Teich M. Longin E. Gerstner T. Koenig S.A. Schulze A. Effects of valproate on acylcarnitines in children with epilepsy using ESI-MS/MS. Epilepsia 2007 48 1 72 76 10.1111/j.1528‑1167.2006.00833.x 17241210
    [Google Scholar]
  48. Chen C. Krausz K.W. Shah Y.M. Idle J.R. Gonzalez F.J. Serum metabolomics reveals irreversible inhibition of fatty acid beta-oxidation through the suppression of PPARalpha activation as a contributing mechanism of acetaminophen-induced hepatotoxicity. Chem. Res. Toxicol. 2009 22 4 699 707 10.1021/tx800464q 19256530
    [Google Scholar]
  49. Zhao L. Zhang J. Pan L. Chen L. Wang Y. Liu X. You L. Jia Y. Hu C. Protective effect of 7,3′,4′-flavon-3-ol (fisetin) on acetaminophen-induced hepatotoxicity in vitro and in vivo. Phytomedicine 2019 58 152865 10.1016/j.phymed.2019.152865 30831465
    [Google Scholar]
  50. Chen J. Matye D. Dai Clayton Y. Du Y. Nazmul Hasan M. Gu L. Li T. Deletion of hepatocyte cysteine dioxygenase type 1, a bile acid repressed gene, enhances glutathione synthesis and ameliorates acetaminophen hepatotoxicity. Biochem. Pharmacol. 2024 222 116103 10.1016/j.bcp.2024.116103 38428825
    [Google Scholar]
  51. Balashova E.E. Maslov D.L. Lokhov P.G. A Metabolomics approach to pharmacotherapy personalization. J. Pers. Med. 2018 8 3 28 10.3390/jpm8030028 30189667
    [Google Scholar]
  52. Thomas C.E. Ganji G. Integration of genomic and metabonomic data in systems biology--are we ‘there’ yet? Curr. Opin. Drug Discov. Devel. 2006 9 1 92 100 16445121
    [Google Scholar]
  53. Velmurugan H. Venkatesan S. Meles H.N. Neelambaram K. Thangaraju P. Sulbactam-durlobactam, a novel drug for the treatment of multidrug resistant acinetobacter baumannii infections - a systematic review. Infect. Disord. Drug Targets 2024 24 6 e220124225835 10.2174/0118715265276432231217192054 38258766
    [Google Scholar]
  54. Schmidt J.C. Dougherty B.V. Beger R.D. Jones D.P. Schmidt M.A. Mattes W.B. Metabolomics as a truly translational tool for precision medicine. Int. J. Toxicol. 2021 40 5 413 426 10.1177/10915818211039436 34514887
    [Google Scholar]
  55. Jaeschke H. McGill M.R. Serum glutamate dehydrogenase--biomarker for liver cell death or mitochondrial dysfunction? Toxicol. Sci. 2013 134 1 221 222 10.1093/toxsci/kft087 23568080
    [Google Scholar]
  56. Gloor Y. Schvartz D.;F Samer C. Old problem, new solutions: biomarker discovery for acetaminophen liver toxicity. Expert Opin. Drug Metab. Toxicol. 2019 15 8 659 669 10.1080/17425255.2019.1642323 31293190
    [Google Scholar]
/content/journals/dmb/10.2174/0118723128399568250908093801
Loading
/content/journals/dmb/10.2174/0118723128399568250908093801
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keywords: overdose ; Acetaminophen ; poisoning ; techniques ; metabolomics ; toxicity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test