Skip to content
2000
image of Safety Profile Evaluation of Narrow Therapeutic Index Drugs in Tertiary Care Teaching Hospital

Abstract

Introduction

Narrow therapeutic index (NTI) drugs have a small margin between effective and toxic doses, so minor changes in blood levels can cause therapeutic failure or toxicity, leading to significant drug-related problems. The study aims to assess drug-related problems (DRPs) linked to NTI drugs at Government General Hospital, Kadapa, by screening prescriptions, classifying DRPs using Pharmaceutical Care Network Europe (PCNE) v9.0, implementing interventions to reduce them, and calculating drug risk ratios to determine each drug’s contribution.

Methods

A six-month prospective observational study (June–November 2023) included 110 inpatients prescribed at least one NTI drug. Data from standardized forms and hospital records were analyzed, with DRPs identified using PCNE v9.0, Micromedex, and WHO adverse drug reaction (ADR) scales.

Results

Of 110 patients, 48 (43.6%) had DRPs, mainly males (60.4%) aged 31–60 years. Treatment effectiveness issues dominated (74.5%), with major interactions from digoxin, telmisartan, and heparin. Heparin showed the highest drug risk ratio (0.53), indicating significant safety concerns.

Discussion

Findings highlight the high DRP risk from multiple NTI drug prescriptions, particularly heparin and digoxin. Results align with existing research and underscore the role of clinical pharmacy in DRP prevention. Drug risk ratio offers a quantitative tool for prioritizing monitoring.

Conclusion

In our study, the most common DRPs observed were related to the drug use process. Heparin and digoxin were found to be high-risk drugs, according to study results. Hence, special observation and monitoring from physicians and other health professionals are needed for the prescriptions with NTI drugs.

Loading

Article metrics loading...

/content/journals/dmb/10.2174/0118723128375801250907163935
2025-11-13
2026-01-05
Loading full text...

Full text loading...

References

  1. Manias E. Kabir M.Z. Maier A.B. Inappropriate medications and physical function: A systematic review. Ther. Adv. Drug Saf. 2021 12 20420986211030371 10.1177/20420986211030371 34349978
    [Google Scholar]
  2. Cracowski J.L. Muller S. Anglade I. Bonnefond G. Bouhanick B. Bouquet S. Cabut S. Daynès P. Denis B. Durand D. Jonville-Béra A.P. Lahouegue A. Léo M. Micallef J. Molimard M. Penfornis C. Querol-Ferrer V. Prevention of risks associated with inappropriate use/unnecessary consumption of medicines. Therapie 2022 77 1 79 88 10.1016/j.therap.2022.01.003 35078658
    [Google Scholar]
  3. Garin N. Sole N. Lucas B. Matas L. Moras D. Rodrigo-Troyano A. Gras-Martin L. Fonts N. Drug related problems in clinical practice: A cross-sectional study on their prevalence, risk factors and associated pharmaceutical interventions. Sci. Rep. 2021 11 1 883 10.1038/s41598‑020‑80560‑2 33441854
    [Google Scholar]
  4. Sahker E. Sakata M. Toyomoto R. Hwang C. Yoshida K. Luo Y. Watanabe N. Furukawa T.A. Efficacy of brief intervention for drug misuse in primary care facilities: Systematic review and meta-analysis protocol. BMJ Open 2020 10 9 036633 10.1136/bmjopen‑2019‑036633 32878757
    [Google Scholar]
  5. Tsai A.C. Alegría M. Strathdee S.A. Addressing the context and consequences of substance use, misuse, and dependence: A global imperative. PLoS Med. 2019 16 11 1003000 10.1371/journal.pmed.1003000 31770369
    [Google Scholar]
  6. Gittins R. Missen L. Maidment I. Misuse of over the counter and prescription only medication by adults accessing specialist treatment services in the UK: A narrative synthesis. Subst. Abuse 2022 16 11782218221111833 10.1177/11782218221111833 35845971
    [Google Scholar]
  7. Gittins R.E. Missen L.L. Maidment I. Misuse of over the counter and prescription only medication by people accessing specialist treatment services: A systematic review. Int. J. Pharm. Pract. 2022 30 Suppl. 1 i45 i46 10.1093/ijpp/riac019.063
    [Google Scholar]
  8. Gittins R. Missen L. Maidment I. Misuse of medication in adult substance misuse services: A systematic review protocol. BMJ Open 2021 11 6 047283 10.1136/bmjopen‑2020‑047283 34158301
    [Google Scholar]
  9. Pereira Guerreiro M. Martins A.P. Cantrill J.A. Preventable drug-related morbidity in community pharmacy: Development and piloting of a complex intervention. Int. J. Clin. Pharm. 2012 34 5 699 709 10.1007/s11096‑012‑9625‑3 22527474
    [Google Scholar]
  10. Vm J.F. Horvat N. Tommy W. Pharmaceutical care network europe foundation. Classification for drug related problems revised 2018 2 2 15 6 10.1186/s12913‑023‑09763‑3 37430249
    [Google Scholar]
  11. Linden-Lahti C. Takala A. Holmström A.R. Airaksinen M. Applicability of drug-related problem (DRP) classification system for classifying severe medication errors. BMC Health Serv. Res. 2023 23 1 743 10.1186/s12913‑023‑09763‑3 37430249
    [Google Scholar]
  12. Ni X.F. Yang C.S. Bai Y.M. Hu Z.X. Zhang L.L. Drug-related problems of patients in primary health care institutions: A systematic review. Front. Pharmacol. 2021 12 698907 10.3389/fphar.2021.698907 34489695
    [Google Scholar]
  13. Baena M.I. Faus M.J. Fajardo P.C. Luque F.M. Sierra F. Martinez-Olmos J. Cabrera A. Fernandez-Llimos F. Martinez-Martinez F. Jiménez J. Zarzuelo A. Medicine-related problems resulting in emergency department visits. Eur. J. Clin. Pharmacol. 2006 62 5 387 393 10.1007/s00228‑006‑0116‑0 16604344
    [Google Scholar]
  14. Johnston A. Keown P.A. Holt D.W. Simple bioequivalence criteria: Are they relevant to critical dose drugs? Experience gained from cyclosporine. Ther. Drug Monit. 1997 19 4 375 381 10.1097/00007691‑199708000‑00002 9263375
    [Google Scholar]
  15. Hinderling P.H. Detection of populations at risk and problem drugs during drug development and in pharmacotherapy. Ther. Drug Monit. 1988 10 3 245 249 10.1097/00007691‑198803000‑00001 3176099
    [Google Scholar]
  16. Levy G. What are narrow therapeutic index drugs? Clin. Pharmacol. Ther. 1998 63 5 501 505 10.1016/S0009‑9236(98)90100‑X 9630822
    [Google Scholar]
  17. Habet S. Narrow therapeutic index drugs: Clinical pharmacology perspective. J. Pharm. Pharmacol. 2021 73 10 1285 1291 10.1093/jpp/rgab102 34347858
    [Google Scholar]
  18. Johnston I.D. Theophylline in the management of airflow obstruction. 2. Difficult drugs to use, few clinical indications. BMJ 1990 300 6729 929 931 10.1136/bmj.300.6729.929 2186834
    [Google Scholar]
  19. Williams R.L. FDA position on product selection for ‘narrow therapeutic index’ drugs. Am. J. Health Syst. Pharm. 1997 54 14 1630 1632 10.1093/ajhp/54.14.1630 9248609
    [Google Scholar]
  20. Budnitz D.S. Shehab N. Kegler S.R. Richards C.L. Medication use leading to emergency department visits for adverse drug events in older adults. Ann. Intern. Med. 2007 147 11 755 765 10.7326/0003‑4819‑147‑11‑200712040‑00006 18056659
    [Google Scholar]
  21. Raebel M.A. Carroll N.M. Andrade S.E. Chester E.A. Lafata J.E. Feldstein A. Gunter M.J. Nelson W.W. Simon S.R. Chan K.A. Davis R.L. Platt R. Monitoring of drugs with a narrow therapeutic range in ambulatory care. Am. J. Manag. Care 2006 12 5 268 274 16686584
    [Google Scholar]
  22. Blix H.S. Viktil K.K. Moger T.A. Reikvam A. Drugs with narrow therapeutic index as indicators in the risk management of hospitalised patients. Pharm. Pract. 2010 8 1 50 55 10.4321/S1886‑36552010000100006 25152793
    [Google Scholar]
  23. Laracuente M.L. Yu M.H. McHugh K.J. Zero-order drug delivery: State of the art and future prospects. J. Control. Release 2020 327 834 856 10.1016/j.jconrel.2020.09.020 32931897
    [Google Scholar]
  24. Jiang W. Bioequivalence for narrow therapeutic index drugs. In: FDA Bioequivalence Standards; Springer Science: New York 2020 13 191 216
    [Google Scholar]
  25. Carter B.L. Small R.E. Mandel M.D. Starkman M.T. Phenytoin-induced hyperglycemia. Am. J. Hosp. Pharm. 1981 38 10 1508 1512 7294047
    [Google Scholar]
  26. Al-Rubeaan K. Ryan E.A. Phenytoin-induced insulin insensitivity. Diabet. Med. 1991 8 10 968 970 10.1111/j.1464‑5491.1991.tb01539.x 1838051
    [Google Scholar]
  27. Corrêa J.D. Queiroz-Junior C.M. Costa J.E. Teixeira A.L. Silva T.A. Phenytoin-induced gingival overgrowth: A review of the molecular, immune, and inflammatory features. ISRN Dent. 2011 2011 1 8 10.5402/2011/497850 21991476
    [Google Scholar]
  28. Gunturu L.N. Case report on phenytoin-induced iatrogenic gingival hyperplasia. Asian J. Pharm. Clin. Res. 2020 13 1 2 10.22159/ajpcr.2020.v13i10.38761
    [Google Scholar]
  29. Dhalla N. Gopal L. Palwankar P. Drug induced gingival enlargement - Phenytoin: An overview and case report. J. Surg. Case Rep. 2024 2024 5 rjae304 10.1093/jscr/rjae304 38812578
    [Google Scholar]
  30. Farook F.F. An update on the mechanisms of phenytoin induced gingival overgrowth. Open Dent. J. 2020 13 430 435 10.2174/1874210601913010430
    [Google Scholar]
  31. Sharma R. Das P. Kairo A. Kale S.S. Phenytoin-induced gingival overgrowth with predominant involvement of hard palate and floor of oral cavity: A case report and review of literature. J. Neurosci. Rural Pract. 2020 11 2 349 352 10.1055/s‑0040‑1709249 32367993
    [Google Scholar]
  32. Assaggaf M.A. Kantarci A. Sume S.S. Trackman P.C. Prevention of phenytoin-induced gingival overgrowth by lovastatin in mice. Am. J. Pathol. 2015 185 6 1588 1599 10.1016/j.ajpath.2015.02.004 25843680
    [Google Scholar]
  33. Gurgel B.C.V. Morais C.R.B. Rocha-Neto P.C. Dantas E.M. Pinto L.P. Costa A.L.L. Phenytoin-induced gingival overgrowth management with periodontal treatment. Braz. Dent. J. 2015 26 1 39 43 10.1590/0103‑6440201300029 25672382
    [Google Scholar]
  34. Majola M.P. McFadyen M.L. Connolly C. Nair Y.P. Govender M. Laher M.H.E. Factors influencing phenytoin‐induced gingival enlargement. J. Clin. Periodontol. 2000 27 7 506 512 10.1034/j.1600‑051x.2000.027007506.x 10914892
    [Google Scholar]
  35. Chacko L.N. Abraham S. Phenytoin-induced gingival enlargement. BMJ Case Rep. 2014 2014 bcr2014204670 10.1136/bcr‑2014‑204670 24872495
    [Google Scholar]
  36. Hassell T. O’Donnell J. Pearlman J. Tesini D. Murphy T. Best H. Phenytoin induced gingival overgrowth in institutionalized epileptics. J. Clin. Periodontol. 1984 11 4 242 253 10.1111/j.1600‑051X.1984.tb02214.x 6584450
    [Google Scholar]
  37. Modéer T. Dahllöf G. Development of phenytoin-induced gingival overgrowth in non-institutionalized epileptic children subjected to different plaque control programs. Acta Odontol. Scand. 1987 45 2 81 85 10.3109/00016358709098361 2955633
    [Google Scholar]
  38. Arepally G.M. Ortel T.L. Clinical practice. Heparin-induced thrombocytopeniaa. N. Engl. J. Med. 2006 355 8 809 817 10.1056/NEJMcp052967 16928996
    [Google Scholar]
  39. Polák P. Kaloudová Y. Krupicová H. Coufal P. Lipový B. Zavřelová J. Prudková M. Štěpařová A. Říhová L. Bezděková R. Králová R. Frola L. Penka M. Heparin-induced thrombocytopenia: A case report and literature overview. Vnitr. Lek. 2020 66 4 242 248 10.36290/vnl.2020.068 32972188
    [Google Scholar]
  40. Hogan M. Berger J.S. Heparin-induced thrombocytopenia (HIT): Review of incidence, diagnosis, and management. Vasc. Med. 2020 25 2 160 173 10.1177/1358863X19898253 32195628
    [Google Scholar]
  41. Marchetti M. Zermatten M.G. Bertaggia Calderara D. Aliotta A. Alberio L. Heparin-induced thrombocytopenia: A review of new concepts in pathogenesis, diagnosis, and management. J. Clin. Med. 2021 10 4 683 10.3390/jcm10040683 33578859
    [Google Scholar]
  42. Camoin-Jau L. Mariotti A. Suchon P. Morange P.E. Heparin-induced thrombocytopenia: Update. Rev. Med. Interne 2022 43 1 18 25 10.1016/j.revmed.2021.08.011 34535328
    [Google Scholar]
  43. Hamadi R. Sakr F. Aridi H. Alameddine Z. Dimachkie R. Assaad M. Asmar S. ElSayegh S. Heparin-induced thrombocytopenia in chronic hemodialysis patients. Clin. Appl. Thromb. Hemost. 2023 29 10760296231177993 10.1177/10760296231177993 37253454
    [Google Scholar]
  44. Warkentin T.E. Autoimmune heparin-induced thrombocytopenia. J. Clin. Med. 2023 12 21 6921 10.3390/jcm12216921 37959386
    [Google Scholar]
  45. Lingamaneni P. Gonakoti S. Moturi K. Vohra I. Zia M. Heparin-Induced Thrombocytopenia in COVID-19. J. Investig. Med. High Impact Case Rep. 2020 8 2324709620944091 10.1177/2324709620944091 32720827
    [Google Scholar]
  46. Murakami Y. Okazaki S. Yamamoto M. Sakurai R. Jinno J. Ozono T. Ikenaka K. Gon Y. Todo K. Sasaki T. Hirata H. Uchiyama A. Mochizuki H. Ischemic stroke due to heparin-induced thrombocytopenia during severe COVID-19 infection. Intern. Med. 2022 61 18 2797 2801 10.2169/internalmedicine.9531‑22 35793954
    [Google Scholar]
  47. Warkentin T.E. Levine M.N. Hirsh J. Horsewood P. Roberts R.S. Gent M. Kelton J.G. Heparin-induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin. N. Engl. J. Med. 1995 332 20 1330 1336 10.1056/NEJM199505183322003 7715641
    [Google Scholar]
  48. Prandoni P. Siragusa S. Girolami B. Fabris F. The incidence of heparin-induced thrombocytopenia in medical patients treated with low-molecular-weight heparin: A prospective cohort study. Blood 2005 106 9 3049 3054 10.1182/blood‑2005‑03‑0912 16030191
    [Google Scholar]
  49. Benthe H.F. Effects of Cardiac Glycosides on Central Nervous System. Springer: Berlin Heidelberg 1981 56 pp. 489 496 10.1007/978‑3‑642‑68163‑9_21
    [Google Scholar]
  50. Renard D. Rubli E. Voide N. Borruat F.X. Rothuizen L.E. Spectrum of digoxin-induced ocular toxicity: A case report and literature review. BMC Res. Notes 2015 8 1 368 10.1186/s13104‑015‑1367‑6 26298392
    [Google Scholar]
  51. Shi L. Sun L.D. Odel J.G. Colored floaters as a manifestation of digoxin toxicity. Am. J. Ophthalmol. Case Rep. 2018 10 233 235 10.1016/j.ajoc.2018.02.024 29780940
    [Google Scholar]
  52. Wolin M.J. Digoxin visual toxicity with therapeutic blood levels of digoxin. Am. J. Ophthalmol. 1998 125 3 406 407 10.1016/S0002‑9394(99)80161‑5 9512168
    [Google Scholar]
  53. Honrubia A. Andrés J.M. Alcaine F. Bonasa E. Fernández J. Luján B. Visual disorders induced by therapeutic levels of digoxin. Arch. Soc. Esp. Oftalmol. 2000 75 1 55 56 11151114
    [Google Scholar]
  54. Doherty J.E. Kane J.J. Clinical pharmacology and therapeutics use of digitalis glycosides. Drugs 1973 6 3???4 182 221 10.2165/00003495‑197306030‑00005 4273255
    [Google Scholar]
  55. Kumar K.J. Kumar M. Kumar T. Chavan A. Diffuse scalp hair loss due to levothyroxine overdose. Indian Dermatol. Online J. 2015 6 7 58 10.4103/2229‑5178.171054 26904456
    [Google Scholar]
  56. van Beek N. Bodó E. Kromminga A. Gáspár E. Meyer K. Zmijewski M.A. Slominski A. Wenzel B.E. Paus R. Thyroid hormones directly alter human hair follicle functions: Anagen prolongation and stimulation of both hair matrix keratinocyte proliferation and hair pigmentation. J. Clin. Endocrinol. Metab. 2008 93 11 4381 4388 10.1210/jc.2008‑0283 18728176
    [Google Scholar]
  57. Yerawar C. Deokar P. Noone B. Reversible hair loss due to levothyroxine overdose. Indian J. Endocrinol. Metab. 2019 23 6 652 653 10.4103/ijem.IJEM_550_19 32042707
    [Google Scholar]
  58. Garg T. Mendiratta V. Yadav P. Agarwal S. Drug-induced diffuse hair loss in females: An observational study. Astrocyte 2014 1 2 80 10.4103/2349‑0977.137849
    [Google Scholar]
  59. Agarwal S. Mendiratta V. Yadav P. Chander R. Diffuse hair loss in females. Indian Dermatol. Online J. 2019 10 1 73 74 10.4103/idoj.IDOJ_129_18 30775306
    [Google Scholar]
  60. Marks W.A. Morris M.P. Bodensteiner J.B. Grunow J.E. Bobele G.B. Hille M.R. Tuggle D. Gastritis with valproate therapy. Arch. Neurol. 1988 45 8 903 905 10.1001/archneur.1988.00520320101022 2899428
    [Google Scholar]
  61. Thrombocytopenia and upper gastrointestinal haemorrhage induced by sustained-release sodium valproate tablets Adverse Drug React 2009
    [Google Scholar]
  62. Piacentino D. Ogirala A. Lew R. Loftus G. Worden M. Koblan K.S. Hopkins S.C. A novel method for deriving adverse event prevalence in randomized controlled trials: Potential for improved understanding of benefit-risk ratio and application to drug labels. Adv. Ther. 2024 41 1 152 169 10.1007/s12325‑023‑02695‑8 37855974
    [Google Scholar]
  63. Okumura L.M. da Silva D.M. Comarella L. Relation between safe use of medicines and clinical pharmacy services at pediatric intensive care units. Revista Paulista de Pediatria 2016 34 4 397 402 10.1016/j.rppede.2016.04.001 27578187
    [Google Scholar]
  64. Samir Abdin M. Grenier-Gosselin L. Guénette L. Impact of pharmacists’ interventions on the pharmacotherapy of patients with complex needs monitored in multidisciplinary primary care teams. Int. J. Pharm. Pract. 2020 28 1 75 83 10.1111/ijpp.12577 31468599
    [Google Scholar]
  65. Stafford A.C. Tenni P.C. Peterson G.M. Jackson S.L. Hejlesen A. Villesen C. Rasmussen M. Drug-related problems identified in medication reviews by Australian pharmacists. Pharm. World Sci. 2009 31 2 216 223 10.1007/s11096‑009‑9287‑y 19242818
    [Google Scholar]
  66. Tan E.C.K. Stewart K. Elliott R.A. George J. Pharmacist consultations in general practice clinics: The pharmacists in practice study (PIPS). Res. Social Adm. Pharm. 2014 10 4 623 632 10.1016/j.sapharm.2013.08.005 24095088
    [Google Scholar]
  67. Vande Griend J. Fixen D.R. Fixen C.W. Zupec J. Saseen J.J. Clinic-level population health intervention by PGY2 ambulatory care pharmacy residents to optimize medication management in a self-insured employer health plan population. J. Pharm. Pract. 2018 31 1 52 57 10.1177/0897190017698057 29278980
    [Google Scholar]
  68. Wiedenmayer K. Developing pharmacy practice - A focus on patient care 2006
  69. Ylä-Rautio H. Siissalo S. Leikola S. Drug-related problems and pharmacy interventions in non-prescription medication, with a focus on high-risk over-the-counter medications. Int. J. Clin. Pharm. 2020 42 2 786 795 10.1007/s11096‑020‑00984‑8 32078108
    [Google Scholar]
  70. Alagiriswami B. Ramesh M. Parthasarathi G. Basavanagowdapa H. A study of clinical pharmacist initiated changes in drug therapy in a teaching hospital. Int. J. Pharm. Pract. 2009 2 1 36 45
    [Google Scholar]
  71. Nyamagoud S.B. Swamy A.H.V. Purantar A.M. Jangliwale B.K. Kumar K. Rakshitha T.P. Assessment of drug-related problems in geriatric patients of tertiary care hospital: A prospective observational study. Int. J. Pharm. Investig. 2024 14 2 386 391 10.5530/ijpi.14.2.48
    [Google Scholar]
  72. Chhatrala C.M. M, B.K.; Madhan, R.; Chalasani, S.H.; Syed, J.; Pal, N. Assessment of drug-related problems associated with narrow therapeutic index drugs: A prospective cohort study. J. Patient Saf. Risk Manag. 2023 28 6 268 274 10.1177/25160435231190192
    [Google Scholar]
  73. Blix H.S. Viktil K.K. Reikvam; Moger, T.A.; Hjemaas, B.J.; Pretsch, P.; Vraalsen, T.F.; Walseth, E.K. The majority of hospitalised patients have drug-related problems: Results from a prospective study in general hospitals. Eur. J. Clin. Pharmacol. 2004 60 9 651 658 10.1007/s00228‑004‑0830‑4 15568140
    [Google Scholar]
  74. Blix H.S. Viktil K.K. Moger T.A. Reikvam Å. Characteristics of drug-related problems discussed by hospital pharmacists in multidisciplinary teams. Pharm. World Sci. 2006 28 3 152 158 10.1007/s11096‑006‑9020‑z 17004023
    [Google Scholar]
  75. Babu D.S. Rao D.M.M. Parveen D. Sree D. Bhargavi K. Clinical pharmacists’ role in identification of drug related problems in a tertiary care teaching hospital in Kadapa. IOSR J. Dent. Med. Sci. 2018 17 32 37 10.9790/0853‑1712113237
    [Google Scholar]
  76. Patocka J. Nepovimova E. Wu W. Kuca K. Digoxin: Pharmacology and toxicology—A review. Environ. Toxicol. Pharmacol. 2020 79 103400 10.1016/j.etap.2020.103400 32464466
    [Google Scholar]
/content/journals/dmb/10.2174/0118723128375801250907163935
Loading
/content/journals/dmb/10.2174/0118723128375801250907163935
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test