Skip to content
2000
image of Tea Tree Oil-Based Sertaconazole Nitrate Organogels: Optimized Topical Delivery for Enhanced Antifungal Efficacy

Abstract

Introduction

This study focused on developing a topical organogel system using Sertaconazole Nitrate (SN) and Tea Tree Oil (TTO) to enhance localized antifungal delivery. The aim was to improve skin deposition, drug release, and overall therapeutic effectiveness while minimizing systemic absorption and potential side effects.

Methods

A Box-Behnken Design (BBD) was applied to optimize the formulation based on three key responses: Viscosity (VS), Spreadability (SP), and Drug Content (DC). The independent variables included Tea Tree Oil, Carbopol-934 (CP), and Polyethylene Glycol-400 (PEG). Optimized formulations were assessed for pH, rheological behavior, and drug release, zeta potential, antifungal activity, skin irritation, and histopathological effects.

Results

Formulations exhibited pH values between 6.11 ± 0.01 and 6.70 ± 0.03, indicating good skin compatibility. Viscosity ranged from 0.38 ± 0.11 to 0.50 ± 0.24 Pa.s, spreadability from 19.80 ± 1.02 to 26.75 ± 1.03 g.cm/s, and drug content between 92.45 ± 1.21% and 98.95 ± 1.7%. The optimized Sertaconazole Nitrate Organogel (SNO) achieved 99.16 ± 0.11% drug release and 98.1 ± 1.50% release within 24 hours. Minimal systemic absorption (1.64 ± 0.15%) confirmed localized drug delivery. The zeta potential was -27.90 mV, indicating stable dispersion. The antifungal efficacy was confirmed by a 2 cm inhibition zone against and , which outperformed the plain gel, marketed product, and SN alone. No signs of irritation or tissue damage were observed in skin histology.

Discussion

The optimized formulation effectively delivered Sertaconazole Nitrate to the targeted skin layers, demonstrating superior antifungal activity and excellent physicochemical characteristics. The combination of TTO and SN provided enhanced therapeutic outcomes with a reduced risk of systemic side effects. The negative surface charge and appropriate rheological properties further supported its stability and usability as a topical preparation.

Conclusion

The developed Sertaconazole nitrate-Tea Tree Oil organogel proved to be a safe, effective, and non-invasive option for treating dermal fungal infections, with enhanced localized delivery and promising antifungal performance.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031390164250903115621
2025-09-16
2025-10-30
Loading full text...

Full text loading...

References

  1. Ahad A. Aqil M. Kohli K. Chaudhary H. Sultana Y. Mujeeb M. Talegaonkar S. Chemical penetration enhancers: A patent review. Expert Opin. Ther. Pat. 2009 19 7 969 988 10.1517/13543770902989983 19552513
    [Google Scholar]
  2. Venugopal V. Goh R. Ping T.Y. Jin T.J. Formulation development and characterization of tea tree oil loaded ethosomes. Indones. J. Pharm. 2016 27 1 44 52 10.14499/indonesianjpharm27iss1pp44
    [Google Scholar]
  3. Croxtall J.D. Plosker G.L. Bassetti M. Carrillo-Munoz A.J. Pfaller M.A. Sertaconazole: A review of its use in the management of superficial mycoses in dermatology and gynaecology. Drugs 2009 69 3 339 359 10.2165/00003495‑200969030‑00009 19275277
    [Google Scholar]
  4. Lopez-Montero E. Rosa dos Santos J-F. Torres-Labandeira J.J. Concheiro A. Alvarez-Lorenzo C. Sertaconazole-loaded cyclodextrin-polysaccharide hydrogels as antifungal devices. Open Drug Delivery Journal 2009 3 1 1 9 10.2174/1874126600903010001
    [Google Scholar]
  5. Güngör S. Erdal M.S. Aksu B. New formulation strategies in topical antifungal therapy. J. Cosmet Dermatol. Sci. Appl. 2013 3 1 56 65 10.4236/jcdsa.2013.31A009
    [Google Scholar]
  6. Lee C.M. Maibach H.I. Deep percutaneous penetration into muscles and joints. J. Pharm. Sci. 2006 95 7 1405 1413 10.1002/jps.20666 16729269
    [Google Scholar]
  7. Hammer K.A. Carson C.F. Riley T.V. Nielsen J.B. A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food Chem. Toxicol. 2006 44 5 616 625 10.1016/j.fct.2005.09.001 16243420
    [Google Scholar]
  8. Kim H.J. Chen F. Wu C. Wang X. Chung H.Y. Jin Z. Evaluation of antioxidant activity of Australian tea tree (Melaleuca alternifolia) oil and its components. J. Agric. Food Chem. 2004 52 10 2849 2854 10.1021/jf035377d 15137824
    [Google Scholar]
  9. Giordani C. Molinari A. Toccacieli L. Calcabrini A. Stringaro A. Chistolini P. Arancia G. Diociaiuti M. Interaction of tea tree oil with model and cellular membranes. J. Med. Chem. 2006 49 15 4581 4588 10.1021/jm060228i 16854063
    [Google Scholar]
  10. Szczerbanik M. Jobling J. Morris S. Holford P. Essential oil vapours control some common postharvest fungal pathogens. Aust. J. Exp. Agric. 2007 47 1 103 109 10.1071/EA05236
    [Google Scholar]
  11. Rosslenbroich H-J. Stuebler D. Botrytis cinerea - History of chemical control and novel fungicides for its management. Pestic. Sci. 2000 56 1 1 11
    [Google Scholar]
  12. Cheng S. Shao X. In vivo antifungal activities of the tea tree oil vapor against Botrytis cinerea. International Conference on New Technology of Agricultural Zibo, China, 27-29 May 2011 949 951 10.1109/ICAE.2011.5943945
    [Google Scholar]
  13. Carson C.F. Hammer K.A. Riley T.V. Melaleuca alternifolia (Tea Tree) oil: A review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev. 2006 19 1 50 62 10.1128/CMR.19.1.50‑62.2006 16418522
    [Google Scholar]
  14. Hammer K.A. Carson C.F. Riley T.V. Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components: A review. Int. J. Antimicrob. Agents 2016 28 6 735 746 10.1016/j.ijantimicag.2006.09.006
    [Google Scholar]
  15. Roana J. Mandras N. Scalas D. Campagna P. Tullio V. Antifungal activity of Melaleuca alternifolia essential oil (TTO) and its synergy with itraconazole or ketoconazole against Trichophyton rubrum. Molecules 2021 26 2 461 10.3390/molecules26020461 33477259
    [Google Scholar]
  16. Asbill C.S. Michniak B.B. Percutaneous penetration enhancers: Local versus transdermal activity. Pharm. Sci. Technol. Today 2000 3 1 36 41 10.1016/S1461‑5347(99)00225‑4 10637599
    [Google Scholar]
  17. Dayal P. Pillay V. Babu R.J. Singh M. Box-Behnken experimental design in the development of a nasal drug delivery system of model drug hydroxyurea: Characterization of viscosity, in vitro drug release, droplet size, and dynamic surface tension. AAPS PharmSciTech 2005 6 4 E573 E585 10.1208/pt060472 16408859
    [Google Scholar]
  18. Singh S.K. Reddy I.K. Khan M.A. Optimization and characterization of controlled release pellets coated with an experimental latex: II. Cationic drug. Int. J. Pharm. 1996 141 1-2 179 195 10.1016/0378‑5173(96)04635‑2
    [Google Scholar]
  19. Singh B. Chakkal S.K. Ahuja N. Formulation and optimization of controlled release mucoadhesive tablets of atenolol using response surface methodology. AAPS PharmSciTech 2006 7 1 E19 E28 10.1208/pt070103 16584139
    [Google Scholar]
  20. Box G.E.P. Wilson K.B. On the experimental attainment of optimum conditions. J. R. Stat. Soc. Series B Stat. Methodol. 1951 13 1 1 38 10.1111/j.2517‑6161.1951.tb00067.x
    [Google Scholar]
  21. Boza A. De la Cruz Y. Jordán G. Jáuregui-Haza U. Alemán A. Caraballo I. Statistical optimization of a sustained-release matrix tablet of lobenzarit disodium. Drug Dev. Ind. Pharm. 2000 26 12 1303 1307 10.1081/DDC‑100102313 11147132
    [Google Scholar]
  22. Sánchez-Lafuente C. Furlanetto S. Fernández-Arévalo M. Alvarez-Fuentes J. Rabasco A.M. Faucci M.T. Pinzauti S. Mura P. Didanosine extended-release matrix tablets: Optimization of formulation variables using statistical experimental design. Int. J. Pharm. 2002 237 1-2 107 118 10.1016/S0378‑5173(02)00028‑5 11955809
    [Google Scholar]
  23. Govender S. Pillay V. Chetty D.J. Essack S.Y. Dangor C.M. Govender T. Optimisation and characterisation of bioadhesive controlled release tetracycline microspheres. Int. J. Pharm. 2005 306 1-2 24 40 10.1016/j.ijpharm.2005.07.026 16246512
    [Google Scholar]
  24. Palamakula A. Nutan M.T.H. Khan M.A. Response surface methodology for optimization and characterization of limonene-based coenzyme Q10 self-nanoemulsified capsule dosage form. AAPS PharmSciTech 2004 5 4 114 121 10.1208/pt050466 15760063
    [Google Scholar]
  25. Ragonese R. Macka M. Hughes J. Petocz P. The use of the Box–Behnken experimental design in the optimisation and robustness testing of a capillary electrophoresis method for the analysis of ethambutol hydrochloride in a pharmaceutical formulation. J. Pharm. Biomed. Anal. 2002 27 6 995 1007 10.1016/S0731‑7085(01)00659‑8 11836062
    [Google Scholar]
  26. Rhee Y.S. Chang S.Y. Park C.W. Chi S.C. Park E.S. Optimization of ibuprofen gel formulations using experimental design technique for enhanced transdermal penetration. Int. J. Pharm. 2008 364 1 14 20 10.1016/j.ijpharm.2008.07.029 18755258
    [Google Scholar]
  27. Agyralides G.G. Dallas P.P. Rekkas D.M. Development and in vitro evaluation of furosemide transdermal formulations using experimental design techniques. Int. J. Pharm. 2004 281 1-2 35 43 10.1016/j.ijpharm.2004.05.011 15288341
    [Google Scholar]
  28. Gannu R. Yamsani V.V. Yamsani S.K. Palem C.R. Yamsani M.R. Optimization of hydrogels for transdermal delivery of lisinopril by Box-Behnken statistical design. AAPS PharmSciTech 2009 10 2 505 514 10.1208/s12249‑009‑9230‑5 19399627
    [Google Scholar]
  29. Mohamed M.I. Optimization of chlorphenesin emulgel formulation. AAPS J. 2004 6 3 81 87 10.1208/aapsj060326 15760111
    [Google Scholar]
  30. Giannakou S.A. Dallas P.P. Rekkas D.M. Choulis N.H. Development and in vitro evaluation of nitrendipine transdermal formulations using experimental design techniques. Int. J. Pharm. 1995 125 1 7 15 10.1016/0378‑5173(95)00103‑P
    [Google Scholar]
  31. Chaudhary H. Kohli K. Amin S. Rathee P. Kumar V. Optimization and formulation design of gels of Diclofenac and Curcumin for transdermal drug delivery by Box-Behnken statistical design. J. Pharm. Sci. 2011 100 2 580 593 10.1002/jps.22292 20669331
    [Google Scholar]
  32. Morteza-Semnani K. Saeedi M. Akbari J. Moazeni M. Babaei A. Negarandeh R. Azizi M. Eghbali M. Hashemi S.M.H. Preparation and in-vitro evaluation of ketoconazole-loaded niosome (Ketosome) for drug delivery to cutaneous candidiasis. Ulum-i Daruyi 2023 29 2 208 218 10.34172/PS.2022.34
    [Google Scholar]
  33. Ahmadi F. Saeedi M. Akbari J. Seyedabadi M. Ebrahimnejad P. Morteza-Semnani K. Ghasemi S. Moalem-Banhangi M. Babaei A. Hashemi S.M.H. Asare-Addo K. Nokhodchi A. Nanohybrid based on (Mn, Zn) ferrite nanoparticles functionalized with chitosan and sodium alginate for loading of curcumin against human breast cancer cells. AAPS PharmSciTech 2023 24 8 222 10.1208/s12249‑023‑02683‑9 37935931
    [Google Scholar]
  34. Saeedi M. Akbari J. Semnani K. Hashemi S.M.H. Ghasemi S. Tahmasbi N. Azizpoor E. Faghani N. Rostamkalaei S.S. Nokhodchi A. Controlling atorvastatin release from liquisolid systems. J. Dispers. Sci. Technol. 2022 43 3 375 384 10.1080/01932691.2020.1842211
    [Google Scholar]
  35. Omidi M. Morteza-Semnani K. Saeedi M. Frahmand M. Kamali M. Mohammadian E. Mohammad S. Hashemi H. Lavender essential oil nanoemulsion gel as skin lightener: Green formulation, full characterization, anti-melanogenesis effect, and in-vitro/in-vivo safety profile assessment. Nanomed. J. 2025 12 1 1 13 10.22038/nmj.2025.80954.2004
    [Google Scholar]
  36. Ganjipour A. Nasiri-Formi E. Azizi S. Akbari J. Akbari H. Hashemi S.M.H. The effect of Zataria multiflora nanoemulsion gel on rat surgical wound healing. World J. Plast. Surg. 2025 14 1 33 42 10.61186/wjps.14.1.33 40453389
    [Google Scholar]
  37. Gupta A.K. Einarson T.R. Summerbell R.C. Shear N.H. An overview of topical antifungal therapy in dermatomycoses. A North American perspective. Drugs 1998 55 5 645 674 10.2165/00003495‑199855050‑00004 9585862
    [Google Scholar]
  38. Devi K. Agarwal S. Kumari R. Saini V. Overcoming the challenges in topical delivery of antifungal agents for skin fungal infections. Curr. Drug Ther. 2024 19 1 110523216796 10.2174/0115748855307149240725103440
    [Google Scholar]
  39. Rotta I. Sanchez A. Gonçalves P.R. Otuki M.F. Correr C.J. Efficacy and safety of topical antifungals in the treatment of dermatomycosis: A systematic review. Br. J. Dermatol. 2012 166 5 927 933 10.1111/j.1365‑2133.2012.10815.x 22233283
    [Google Scholar]
  40. Lipner S.R. Scher R.K. Onychomycosis: Clinical overview and diagnosis. J. Am. Acad. Dermatol. 2019 80 4 835 851 10.1016/j.jaad.2018.03.062 29959961
    [Google Scholar]
  41. Algın Yapar E. Gökçe E.H. Şahiner A. İnal E. Ulusoy Ş. Souto E.B. Akanoğlu B. Kartal M. Phytoactive essential oils-composed water-free organogels: Development, characterization and proof of antibacterial activity. J. Drug Deliv. Sci. Technol. 2024 97 105811 10.1016/j.jddst.2024.105811
    [Google Scholar]
  42. Saha S. Sanapalli B.K.R. Karri V.V.S.R. Optimization of pluronic lecithin organogel of terbinafine hydrochloride using design of experiments for the treatment of fungal diseases. Int. J. Pharm. Sci. Res. 2019 10 12 5499 5507
    [Google Scholar]
  43. Jadhav K. Jadhav S. Sonawane D. Somvanshi D. Shah H. Patil P. Formulation and evaluation of miconazole nitrate loaded novel nanoparticle gel for topical delivery. J. Pharm. Res. Int. 2021 33 44A 292 307 10.9734/jpri/2021/v33i44A32616
    [Google Scholar]
  44. Atram S.C. Joshi A.V. Bobde N.N. Wankhade V.P. Pande S.D. Formulation and evaluation of pluronic lecithin clotrimazole organogel for topical delivery. Indo Am J. Pharm. Res. 2019 9 1 1790 1799
    [Google Scholar]
  45. Gohil D. Shah M. Shah N. Maheshwari R.A. Fabrication of topical pluronic lecithin organogel containing immunomodulatory drug for site-specific drug delivery. Indian J. Pharm. Educ. Res. 2024 58 2 432 440 10.5530/ijper.58.2.48
    [Google Scholar]
  46. Abasaheb Borse V. Gangude A.B. Deore A.B. Formulation and evaluation of antibacterial topical gel of doxycycline hyclate, neem oil and tea tree oil. Indian J. Pharm. Educ. Res. 2019 54 1 206 212 10.5530/ijper.54.1.24
    [Google Scholar]
  47. Kusuma M.P. Sushmitha C. Design, formulation and optimization of rutin trihydrate emulgel by response surface methodology. Int. J. Pharm. Sci. Res. 2021 11 11 5799 5805
    [Google Scholar]
  48. Tamboli S. Ambekar A.W. Formulation, development and evaluation of herbal antifungal nanoemulgel containing neem seed oil and aloe-vera gel. Int. J. All Res. Educ. Sci. Methods 2021 9 8 2395 2404
    [Google Scholar]
  49. Ilomuanya M.O. Elesho R.F. Amenaghawon A.N. Adetuyi A.O. Velusamy V. Akanmu A.S. Development of trigger sensitive hyaluronic acid/palm oil-based organogel for in vitro release of HIV/AIDS microbicides using artificial neural networks. Future Journal of Pharmaceutical Sciences 2020 6 1 1 10.1186/s43094‑019‑0015‑8 33241057
    [Google Scholar]
  50. Oza N. Makwana A. Gohil T.A. One factor response surface methodology (RSM) for the optimization of oral venlafaxine HCL controlled release organogel. Int. J. Appl. Pharm. 2022 14 5 199 207 10.22159/ijap.2022v14i5.45517
    [Google Scholar]
  51. Sindhuri P. Supraneni J.R. Design formulation and evaluation of sertaconazole nanocrystal loaded in aloe vera gel using central composite design. Neuroquantology 2022 20 11 11 65 10.14704/NQ.2022.20.11.NQ66008
    [Google Scholar]
  52. Gopalan K. Jose J. Development of amphotericin b Based organogels against mucocutaneous fungal infections. Braz. J. Pharm. Sci. 2020 56 17509 10.1590/s2175‑97902020000117509
    [Google Scholar]
  53. Montgomery D.C. Design and Analysis of Experiments. 9th ed Hoboken, NJ, USA 2017
    [Google Scholar]
  54. Ferreira S.L.C. Bruns R.E. Ferreira H.S. Matos G.D. David J.M. Brandão G.C. da Silva E.G.P. Portugal L.A. dos Reis P.S. Souza A.S. dos Santos W.N.L. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007 597 2 179 186 10.1016/j.aca.2007.07.011 17683728
    [Google Scholar]
  55. Myers R.H. Montgomery D.C. Anderson-Cook C.M. Response Surface Methodology: Process. and Product Optimization Using Designed Experiments 3rd ed Hoboken, NJ, USA 2017
    [Google Scholar]
  56. Gidwani B. Vyas A. Preparation, characterization, and optimization of altretamine-loaded solid lipid nanoparticles using Box-Behnken design and response surface methodology. Artif. Cells Nanomed. Biotechnol. 2016 44 2 571 580 10.3109/21691401.2014.971462 25363752
    [Google Scholar]
  57. Zhang X. Liu J. Qiao H. Liu H. Ni J. Zhang W. Shi Y. Formulation optimization of dihydroartemisinin nanostructured lipid carrier using response surface methodology. Powder Technol. 2010 197 1-2 120 128 10.1016/j.powtec.2009.09.004
    [Google Scholar]
  58. Adeyemi S.A. Az-Zamakhshariy Z. Choonara Y.E. In vitro prototyping of a nano-organogel for thermo-sonic intra-cervical delivery of 5-fluorouracil-loaded solid lipid nanoparticles for cervical cancer. AAPS PharmSciTech 2023 24 5 123 10.1208/s12249‑023‑02583‑y 37226039
    [Google Scholar]
  59. Abdellatif M.M. Josef M. El-Nabarawi M.A. Teaima M. Sertaconazole-nitrate-loaded leciplex for treating keratomycosis: Optimization using D-optimal design and in vitro, ex vivo, and in vivo studies. Pharmaceutics 2022 14 10 2215 10.3390/pharmaceutics14102215 36297650
    [Google Scholar]
  60. Abdellatif M.M. Khalil I.A. Elakkad Y.E. Eliwa H.A. Samir T. Al-Mokaddem A.K. Formulation and characterization of sertaconazole nitrate mucoadhesive liposomes for vaginal candidiasis. Int. J. Nanomedicine 2020 15 4079 4090 10.2147/IJN.S250960 32606665
    [Google Scholar]
  61. Eldemiri O.M. Girgis G.N.S. Fouad S.H. Borg T.M. Improved topical antifungal medication using sertaconazole bilosomes: In vitro permeability, cytotoxicity, and clinical assessment. J. Pharm. Res. Int. 2024 36 7 96 117 10.9734/jpri/2024/v36i77541
    [Google Scholar]
  62. Pande V. Patel S. Patil V. Sonawane R. Design expert assisted formulation of topical bioadhesive gel of sertaconazole nitrate. Adv. Pharm. Bull. 2014 4 2 121 130 10.5681/apb.2014.019 24511475
    [Google Scholar]
  63. Sahoo S. Pani N.R. Sahoo S.K. Effect of microemulsion in topical sertaconazole hydrogel: in vitro and in vivo study. Drug Deliv. 2016 23 1 338 345 10.3109/10717544.2014.914601 24845480
    [Google Scholar]
  64. Younes N.F. Abdel-Halim S.A. Elassasy A.I. Corneal targeted Sertaconazole nitrate loaded cubosomes: Preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo studies. Int. J. Pharm. 2018 553 1-2 386 397 10.1016/j.ijpharm.2018.10.057 30393167
    [Google Scholar]
  65. Flecknell P. Laboratory Animal Anaesthesia. 4th ed London, UK Academic Press 2015
    [Google Scholar]
  66. Percie du Sert N. Hurst V. Ahluwalia A. Alam S. Avey M.T. Baker M. Browne W.J. Clark A. Cuthill I.C. Dirnagl U. Emerson M. Garner P. Holgate S.T. Howells D.W. Karp N.A. Lazic S.E. Lidster K. MacCallum C.J. Macleod M. Pearl E.J. Petersen O.H. Rawle F. Reynolds P. Rooney K. Sena E.S. Silberberg S.D. Steckler T. Würbel H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. BMC Vet. Res. 2020 16 1 242 10.1186/s12917‑020‑02451‑y 32660541
    [Google Scholar]
  67. Harsha G. Shaik N.B. Lakshmi P.K. Latha K. Formulation and evaluation of sertaconazole nitrate loaded nanosponges for topical application. Res. J. Pharm. Technol 2021 14 2 895 902 10.5958/0974‑360X.2021.00159.1
    [Google Scholar]
  68. Da Violante G. Zerrouk N. Richard I. Provot G. Chaumeil J.C. Arnaud P. Evaluation of the cytotoxicity effect of dimethyl sulfoxide (DMSO) on Caco2/TC7 colon tumor cell cultures. Biol. Pharm. Bull. 2002 25 12 1600 1603 10.1248/bpb.25.1600 12499647
    [Google Scholar]
  69. Hebling J. Bianchi L. Basso F.G. Scheffel D.L. Soares D.G. Carrilho M.R.O. Pashley D.H. Tjäderhane L. de Souza Costa C.A. Cytotoxicity of dimethyl sulfoxide (DMSO) in direct contact with odontoblast-like cells. Dent. Mater. 2015 31 4 399 405 10.1016/j.dental.2015.01.007 25681221
    [Google Scholar]
  70. Jorgensen J.H. Ferraro M.J. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clin. Infect. Dis. 2009 49 11 1749 1755 10.1086/647952 19857164
    [Google Scholar]
  71. Carrillo-Muñoz A.J. Tur-Tur C. Cárdenes D.C. Estivill D. Giusiano G. Sertaconazole nitrate shows fungicidal and fungistatic activities against Trichophyton rubrum, Trichophyton mentagrophytes, and Epidermophyton floccosum, causative agents of tinea pedis. Antimicrob. Agents Chemother. 2011 55 9 4420 4421 10.1128/AAC.00219‑11 21746955
    [Google Scholar]
  72. Patil M.P. Shinde G.P. Kshirsagar S.J. Parakh D.R. Development and characterization of ketoconazole loaded organogel for topical drug delivery. Inventi Impact Pharm. Tech. 2015 3 1 10
    [Google Scholar]
  73. Khullar R. Kumar D. Seth N. Saini S. Formulation and evaluation of mefenamic acid emulgel for topical delivery. Saudi Pharm. J. 2012 20 1 63 67 10.1016/j.jsps.2011.08.001 23960777
    [Google Scholar]
  74. Nikumbh K.V. Sevankar S.G. Patil M.P. Formulation development, in vitro and in vivo evaluation of microemulsion-based gel loaded with ketoprofen. Drug Deliv. 2015 22 4 509 515 10.3109/10717544.2013.859186 24266589
    [Google Scholar]
  75. Garg B.J. Garg N.K. Beg S. Singh B. Katare O.P. Nanosized ethosomes-based hydrogel formulations of methoxsalen for enhanced topical delivery against vitiligo: Formulation optimization, in vitro evaluation and preclinical assessment. J. Drug Target. 2016 24 3 233 246 10.3109/1061186X.2015.1070855 26267289
    [Google Scholar]
  76. Mohammed M.I. Makky A.M.A. Teaima M.H.M. Abdellatif M.M. Hamzawy M.A. Khalil M.A.F. Transdermal delivery of vancomycin hydrochloride using combination of nano-ethosomes and iontophoresis: In vitro and in vivo study. Drug Deliv. 2016 23 5 1558 1564 10.3109/10717544.2015.1013200 25726990
    [Google Scholar]
  77. Manconi M. Sinico C. Valenti D. Lai F. Fadda A.M. Niosomes as carriers for tretinoin. Int. J. Pharm. 2006 311 1-2 11 19 10.1016/j.ijpharm.2005.11.045 16439071
    [Google Scholar]
  78. Sharma D. Maheshwari D. Philip G. Rana R. Bhatia S. Singh M. Gabrani R. Sharma S.K. Ali J. Sharma R.K. Dang S. Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: In vitro and in vivo evaluation. BioMed Res. Int. 2014 2014 1 14 10.1155/2014/156010 25126544
    [Google Scholar]
  79. Abdellatif A.A.H. Tawfeek H.M. Transfersomal nanoparticles for enhanced transdermal delivery of clindamycin. AAPS PharmSciTech 2016 17 5 1067 1074 10.1208/s12249‑015‑0441‑7 26511937
    [Google Scholar]
  80. Khadka P. Ro J. Kim H. Kim I. Kim J.T. Kim H. Cho J.M. Yun G. Lee J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci. 2014 9 6 304 316 10.1016/j.ajps.2014.05.005
    [Google Scholar]
  81. Narala A. Veerabrahma K. Preparation, characterization and evaluation of quetiapine fumarate solid lipid nanoparticles to improve the oral bioavailability. J. Pharm. 2013 2013 1 7 10.1155/2013/265741 26555970
    [Google Scholar]
  82. Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev. 2004 56 5 675 711 10.1016/j.addr.2003.10.028 15019752
    [Google Scholar]
  83. Higuchi T. Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 1963 52 12 1145 1149 10.1002/jps.2600521210 14088963
    [Google Scholar]
  84. Korsmeyer R.W. Gurny R. Doelker E. Buri P. Peppas N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983 15 1 25 35 10.1016/0378‑5173(83)90064‑9
    [Google Scholar]
  85. Jain A. Sharma G. Thakur K. Topical delivery of antifungal drugs: Potential of organogels and nanoemulsions. Curr. Drug Deliv. 2021 18 5 617 632 33106142
    [Google Scholar]
  86. Raza K. Lohan S. Singh B. Topical delivery of antifungal agents: Current status and prospects for controlled delivery of poorly water-soluble drugs. Int. J. Pharm. Investig. 2020 10 2 86 92
    [Google Scholar]
  87. Knudsen N.Ø. Rønholt S. Salte R.D. Jorgensen L. Thormann T. Basse L.H. Hansen J. Frokjaer S. Foged C. Calcipotriol delivery into the skin with PEGylated liposomes. Eur. J. Pharm. Biopharm. 2012 81 3 532 539 10.1016/j.ejpb.2012.04.005 22538098
    [Google Scholar]
  88. Touitou E. Dayan N. Bergelson L. Godin B. Eliaz M. Ethosomes - novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release 2000 65 3 403 418 10.1016/S0168‑3659(99)00222‑9 10699298
    [Google Scholar]
  89. El Maghraby G.M.M. Williams A.C. Barry B.W. Skin hydration and possible shunt route penetration in controlled estradiol delivery from ultradeformable and standard liposomes. J. Pharm. Pharmacol. 2001 53 10 1311 1322 10.1211/0022357011777800 11697538
    [Google Scholar]
  90. Williams A.C. Transdermal and Topical Drug Delivery From Theory to Clinical Practice. London, UK Pharmaceutical Press 2004
    [Google Scholar]
  91. Godin B. Touitou E. Rubinstein E. Athamna A. Athamna M. A new approach for treatment of deep skin infections by an ethosomal antibiotic preparation: An in vivo study. J. Antimicrob. Chemother. 2005 55 6 989 994 10.1093/jac/dki125 15857943
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031390164250903115621
Loading
/content/journals/ddl/10.2174/0122103031390164250903115621
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test