Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4048
  • E-ISSN: 1875-6581

Abstract

Introduction

It was suggested that prenatal use of the Stange test in combination with fetal biomechanics monitoring would provide an early diagnosis of excessively low fetal resistance to hypoxia, which could be a criterion for timely cesarean section to prevent stillbirths and perinatal encephalopathy.

Objective

The purpose of this study was to investigate the movement dynamics of fetuses and aquarium fish during acute model hypoxia, which revealed that the duration of their immobility phase may serve as a biomarker of resistance to hypoxia.

Methods

This manuscript is a review of scientific articles and inventions using major international databases, taking into account the selected keywords.

Results and Discussion

The use of the modified Stange test has been shown to provide real-time assessment of fetal resistance to hypoxia for physicians and pregnant women. It has been shown that in normal pregnancy and high fetal resistance to hypoxia, the fetus maintains a state of immobility for at least 30 seconds during maternal apnea. In the presence of severe feto-placental insufficiency, the duration of fetal immobility during maternal apnea is less than 10 seconds. Therefore, fetal immobility during maternal apnea with a duration close to zero indicates excessively low fetal resistance to hypoxia. In such a case, an emergency cesarean section is recommended to prevent stillbirth and encephalopathy.

Conclusion

The duration of fetal immobility during maternal apnea may serve as a biomarker of fetal resistance to hypoxia. Prenatal screening of fetal resistance to hypoxia can improve the outcome of pregnancy and childbirth.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cwhr/10.2174/0115734048344660250220054204
2025-02-24
2026-01-03
Loading full text...

Full text loading...

/deliver/fulltext/cwhr/22/1/CWHR-22-1-06.html?itemId=/content/journals/cwhr/10.2174/0115734048344660250220054204&mimeType=html&fmt=ahah

References

  1. BekiouA. GourountiK. Reduced fetal movements and perinatal mortality.Mater. Sociomed.202032322723410.5455/msm.2020.32.227‑23433424454
    [Google Scholar]
  2. HantoushzadehS. GargariO.K. JamaliM. FarrokhF. EshraghiN. AsadiF. MirzamoradiM. RazaviS.J. GhaemiM. AskiS.K. PanhiZ. HabibiG.R. The association between increased fetal movements in the third trimester and perinatal outcomes; A systematic review and meta-analysis.BMC Pregnancy Childbirth202424136510.1186/s12884‑024‑06547‑338750467
    [Google Scholar]
  3. CarrollL. GallagherL. SmithV. Risk factors for reduced fetal movements in pregnancy: A systematic review and meta-analysis.Eur. J. Obstet. Gynecol. Reprod. Biol.2019243728210.1016/j.ejogrb.2019.09.02831677496
    [Google Scholar]
  4. CarrollL. GallagherL. SmithV. Pregnancy, birth and neonatal outcomes associated with reduced fetal movements: A systematic review and meta-analysis of non-randomised studies.Midwifery202311610352410.1016/j.midw.2022.10352436343466
    [Google Scholar]
  5. BinderJ. MonaghanC. ThilaganathanB. Morales-RosellóJ. KhalilA. Reduced fetal movements and cerebroplacental ratio: Evidence for worsening fetal hypoxemia.Ultrasound Obstet. Gynecol.201851337538010.1002/uog.1883028782146
    [Google Scholar]
  6. ThompsonJ.M.D. HeazellA.E.P. CroninR.S. WilsonJ. LiM. GordonA. AskieL.M. O’BrienL.M. Raynes-GreenowC. StaceyT. MitchellE.A. McCowanL.M.E. BradfordB.F. Does fetal size affect maternal perception of fetal movements? Evidence from an individual participant data meta‐analysis.Acta Obstet. Gynecol. Scand.2023102111586159210.1111/aogs.1465237553853
    [Google Scholar]
  7. HayesD.J.L. DumvilleJ.C. WalshT. HigginsL.E. FisherM. AkselssonA. WhitworthM. HeazellA.E.P. Effect of encouraging awareness of reduced fetal movement and subsequent clinical management on pregnancy outcome: A systematic review and meta-analysis.Am. J. Obstet. Gynecol. MFM20235310082110.1016/j.ajogmf.2022.10082136481411
    [Google Scholar]
  8. HeazellA.E.P. BuddJ. LiM. CroninR. BradfordB. McCowanL.M.E. MitchellE.A. StaceyT. MartinB. RobertsD. ThompsonJ.M.D. Alterations in maternally perceived fetal movement and their association with late stillbirth: Findings from the Midland and North of England stillbirth case–control study.BMJ Open201887e02003110.1136/bmjopen‑2017‑02003129982198
    [Google Scholar]
  9. ThompsonJ.M.D. WilsonJ. BradfordB.F. LiM. CroninR.S. GordonA. Raynes-GreenowC.H. StaceyT. CulllingV.M. AskieL.M. O’BrienL.M. MitchellE.A. McCowanL.M.E. HeazellA.E.P. A better understanding of the association between maternal perception of foetal movements and late stillbirth-findings from an individual participant data meta-analysis.BMC Med.202119126710.1186/s12916‑021‑02140‑z34775977
    [Google Scholar]
  10. FerraroZ.M. SilverbergO.M. KingdomJ.C. ShirreffL. Cord entrapment in a footling breech presentation with decreased fetal movements.CMAJ202319546E1577E157910.1503/cmaj.22126438011923
    [Google Scholar]
  11. TveitJ.V.H. SaastadE. Stray-PedersenB. BørdahlP.E. FlenadyV. FrettsR. FrøenJ.F. Reduction of late stillbirth with the introduction of fetal movement information and guidelines – A clinical quality improvement.BMC Pregnancy Childbirth2009913210.1186/1471‑2393‑9‑3219624847
    [Google Scholar]
  12. TurnerJ.M. FlenadyV. EllwoodD. CooryM. KumarS. Evaluation of pregnancy outcomes among women with decreased fetal movements.JAMA Netw. Open202144e21507110.1001/jamanetworkopen.2021.507133830228
    [Google Scholar]
  13. TanL.K. Revisiting decreased fetal movements after 28 weeks gestation-An important obstetric symptom and surrogate associated with placental insufficiency.JAMA Netw. Open202144e21536510.1001/jamanetworkopen.2021.536533830231
    [Google Scholar]
  14. MarxV. NagyE. Fetal behavioural responses to maternal voice and touch.PLoS One2015106e012911810.1371/journal.pone.012911826053388
    [Google Scholar]
  15. Correction to "Cord entrapment in a footling breech presentation with decreased fetal movements".CMAJ20241963E10310.1503/cmaj.23181438286496
    [Google Scholar]
  16. FlenadyV. GardenerG. BoyleF.M. CallanderE. CooryM. EastC. EllwoodD. GordonA. GroomK.M. MiddletonP.F. NormanJ.E. WarrilowK.A. WellerM. WojcieszekA.M. CrowtherC. My baby’s movements: A stepped wedge cluster randomised controlled trial to raise maternal awareness of fetal movements during pregnancy study protocol.BMC Pregnancy Childbirth201919143010.1186/s12884‑019‑2575‑131752771
    [Google Scholar]
  17. BradfordB.F. HayesD.J.L. DamhuisS. ShubA. AkselssonA. RadestadI. HeazellA.E.P. FlenadyV. GordijnS.J. Decreased fetal movements: Report from the International Stillbirth Alliance conference workshop.Int. J. Gynaecol. Obstet.2024165257958510.1002/ijgo.1524238064233
    [Google Scholar]
  18. BradfordB.F. ThompsonJ.M.D. HeazellA.E.P. MccowanL.M.E. McKinlayC.J.D. Understanding the associations and significance of fetal movements in overweight or obese pregnant women: A systematic review.Acta Obstet. Gynecol. Scand.2018971132410.1111/aogs.1325029068467
    [Google Scholar]
  19. LevyM. KovoM. IzaikY. Luwisch CohenI. SchreiberL. Ganer HermanH. BardaG. BarJ. WeinerE. Reduced fetal movements at term in singleton low risk pregnancies-Is there an association with placental histopathological findings?Acta Obstet. Gynecol. Scand.202099788489010.1111/aogs.1381031960411
    [Google Scholar]
  20. LevyM. KovoM. IzaikY. Ben-EzryE. GonenN. BardaG. BarJ. WeinerE. Reduced fetal movements is twin pregnancies and the association with adverse neonatal outcomes.Eur. J. Obstet. Gynecol. Reprod. Biol.202024616516810.1016/j.ejogrb.2020.01.05032032929
    [Google Scholar]
  21. HeazellA.E.P. SumathiG.M. BhattiN.R. What investigation is appropriate following maternal perception of reduced fetal movements?J. Obstet. Gynaecol.200525764865010.1080/0144361050027830316263536
    [Google Scholar]
  22. O’ConnellL. HeazellA.E.P. Evolving pattern of fetal movements throughout a healthy pregnancy.BMJ Case Rep.2021145e24334910.1136/bcr‑2021‑24334934059548
    [Google Scholar]
  23. BhatiaM. MitsiV. CourtL. ThampiP. El-NashartyM. HeshamS. RandallW. DaviesR. ImpeyL. The outcomes of pregnancies with reduced fetal movements: A retrospective cohort study.Acta Obstet. Gynecol. Scand.201998111450145410.1111/aogs.1367131148156
    [Google Scholar]
  24. ScalaC. BhideA. FamiliariA. PaganiG. KhalilA. PapageorghiouA. ThilaganathanB. Number of episodes of reduced fetal movement at term: Association with adverse perinatal outcome.Am. J. Obstet. Gynecol.20152135678.e1678.e610.1016/j.ajog.2015.07.01526205461
    [Google Scholar]
  25. SmithV. MuldoonK. BradyV. DelaneyH. Assessing fetal movements in pregnancy: A qualitative evidence synthesis of women’s views, perspectives and experiences.BMC Pregnancy Childbirth202121119710.1186/s12884‑021‑03667‑y33691666
    [Google Scholar]
  26. PaganiG. D’AntonioF. KhalilA. AkolekarR. PapageorghiouA. BhideA. ThilaganathanB. Association between reduced fetal movements at term and abnormal uterine artery Doppler indices.Ultrasound Obstet. Gynecol.201443554855210.1002/uog.1322024123633
    [Google Scholar]
  27. Skornick-RapaportA. MaslovitzS. KupfermincM. LessingJ.B. ManyA. Proposed management for reduced fetal movements: Five years’ experience in one medical center.J. Matern. Fetal Neonatal Med.201124461061310.3109/14767058.2010.51133820828236
    [Google Scholar]
  28. HofmeyrG.J. NovikovaN. Management of reported decreased fetal movements for improving pregnancy outcomes.Cochrane Libr.201244CD00914810.1002/14651858.CD009148.pub222513971
    [Google Scholar]
  29. HuangC. HanW. FanY. Correlation study between increased fetal movement during the third trimester and neonatal outcome.BMC Pregnancy Childbirth201919146710.1186/s12884‑019‑2637‑431801506
    [Google Scholar]
  30. O’sullivanO. StephenG. MartindaleE. HeazellA.E.P. Predicting poor perinatal outcome in women who present with decreased fetal movements.J. Obstet. Gynaecol.200929870571010.3109/0144361090322959819821662
    [Google Scholar]
  31. HeazellA.P. GreenM. WrightC. FlenadyV. Frederik FrøenJ. Midwives’ and obstetricians’ knowledge and management of women presenting with decreased fetal movements.Acta Obstet. Gynecol. Scand.200887333133910.1080/0001634080190203418307074
    [Google Scholar]
  32. HeazellA.E.P. WeirC.J. StockS.J.E. CalderwoodC.J. BurleyS.C. FroenJ.F. GearyM. HunterA. McAuliffeF.M. MurdochE. RodriguezA. Ross-DavieM. ScottJ. WhyteS. NormanJ.E. Can promoting awareness of fetal movements and focusing interventions reduce fetal mortality? A stepped-wedge cluster randomised trial (AFFIRM).BMJ Open201778e01481310.1136/bmjopen‑2016‑01481328801392
    [Google Scholar]
  33. CamachoE.M. WhyteS. StockS.J. WeirC.J. NormanJ.E. HeazellA.E.P. Awareness of fetal movements and care package to reduce fetal mortality (AFFIRM): A trial-based and model-based cost-effectiveness analysis from a stepped wedge, cluster-randomised trial.BMC Pregnancy Childbirth202222123510.1186/s12884‑022‑04563‑935317772
    [Google Scholar]
  34. AiobA. TomaR. WolfM. HaddadY. OdehM. Cerebroplacental ratio and neonatal outcome in low-risk pregnancies with reduced fetal movement: A prospective study.Eur. J. Obstet. Gynecol. Reprod. Biol. X20221410014610.1016/j.eurox.2022.10014635308423
    [Google Scholar]
  35. EshraghiN. JamalA. EshraghiN. KashanianM. SheikhansariN. Cerebroplacental ratio (CPR) and reduced fetal movement: Predicting neonatal outcomes.J. Matern. Fetal Neonatal Med.202235101923192810.1080/14767058.2020.177454432495705
    [Google Scholar]
  36. DrukkerL. NobleJ.A. PapageorghiouA.T. Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology.Ultrasound Obstet. Gynecol.202056449850510.1002/uog.2212232530098
    [Google Scholar]
  37. MedjedovicE. StanojevicM. Jonuzovic-ProsicS. RibicE. BegicZ. CerovacA. BadnjevicA. Artificial intelligence as a new answer to old challenges in maternal-fetal medicine and obstetrics.Technol. Health Care20243231273128710.3233/THC‑23148238073356
    [Google Scholar]
  38. HjartardóttirH. LundS.H. BenediktsdóttirS. GeirssonR.T. EggebøT.M. Fetal descent in nulliparous women assessed by ultrasound: A longitudinal study.Am. J. Obstet. Gynecol.20212244378.e1378.e1510.1016/j.ajog.2020.10.00433039395
    [Google Scholar]
  39. MahonyB.S. FillyR.A. High-resolution sonographic assessment of the fetal extremities.J. Ultrasound Med.198431148949810.7863/jum.1984.3.11.4896392577
    [Google Scholar]
  40. KozumaS. OkaiT. NemotoA. KagawaH. SakaiM. NishinaH. TaketaniY. Developmental sequence of human fetal body movements in the second half of pregnancy.Am. J. Perinatol.199714316516910.1055/s‑2007‑9941209259921
    [Google Scholar]
  41. HigginbottomJ. BagnallK.M. HarrisP.F. SlaterJ.H. PorterG.A. Ultrasound monitoring of fetal movements. A method for assessing fetal development?Lancet1976307796271972110.1016/S0140‑6736(76)93092‑056535
    [Google Scholar]
  42. ZhaoX. AwrejcewiczJ. LiJ. HeY. GuY. The lower limb movements of the fetus in uterus: A narrative review.Appl. Bionics Biomech.202320231610.1155/2023/432488936726392
    [Google Scholar]
  43. StevannyB. MiraniP. TheneE.R.F. KestyC. Prenatal diagnosis of well-developed fetus in fetu with spontaneous movement in a resource-limited setting: A case report.Case Rep. Womens Health202441e0058110.1016/j.crwh.2024.e0058138298889
    [Google Scholar]
  44. ChenP.S. ChiuW.T. HsuP.L. LinS.C. PengI.C. WangC.Y. TsaiS.J. Pathophysiological implications of hypoxia in human diseases.J. Biomed. Sci.20202716310.1186/s12929‑020‑00658‑732389123
    [Google Scholar]
  45. UrakovA. UrakovaN. GurevichK. MuhutdinovN. Cardiology, respiratory failure, and tolerance of hypoxia in the context of COVID-19: A multidisciplinary perspective.Rev. Cardiovasc. Med.20222312110.31083/j.rcm230102135092213
    [Google Scholar]
  46. SatarM. OkuluE. YıldızdaşH.Y. New perspectives of hypoxic ischemic encephalopathy.Front Pediatr.202311125144610.3389/fped.2023.1251446
    [Google Scholar]
  47. UrakovaN. UrakovA. SuntsovaD. Comment on “Retrospective analysis of stillbirth and induced termination of pregnancies: Factors affecting determination”.Taiwan. J. Obstet. Gynecol.2022616109610.1016/j.tjog.2022.08.01236427986
    [Google Scholar]
  48. A UrakovaN. L UrakovA. Natural periods of fetal hypoxia during vaginal childbirth are a unique physiological phenomenon. Why women should know about it.Acta Scientific Women’s Health202354667110.31080/ASWH.2023.05.0492
    [Google Scholar]
  49. UrakovA.L. UrakovaN.A. SokolovaN.V. SokolovN.V. Method for assessment of fetus resistance to hypoxia by MY Gausnekht.RU Patent 2432118C12011
    [Google Scholar]
  50. GiussaniD.A. The fetal brain sparing response to hypoxia: Physiological mechanisms.J. Physiol.201659451215123010.1113/JP27109926496004
    [Google Scholar]
  51. ShabanovP. SamorodovA. UrakovaN. FisherE. ShchemelevaA. Low fetal resistance to hypoxia as a cause of stillbirth and neonatal encephalopathy.Clin. Exp. Obstet. Gynecol.20245123310.31083/j.ceog5102033
    [Google Scholar]
  52. UrakovA.L. UrakovaN.A. Modified Stange test gives new gynecological criteria and recommendations for choosing caesarean section childbirth.Bioimpacts202212547747810.34172/bi.2022.2399536381636
    [Google Scholar]
  53. DelayU. NawarathneB. DissanayakeD. EkanayakeM. GodaliyaddaG. WijayakulasooriyaJ. Non invasive wearable device for fetal movement detection2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS),RUPNAGAR, India, 2020: 285-290.10.1109/ICIIS51140.2020.9342662
    [Google Scholar]
  54. DelayU. NawarathneT. DissanayakeS. GunarathneS. WithanageT. GodaliyaddaR. RathnayakeC. EkanayakeP. WijayakulasooriyaJ. Novel non-invasive in-house fabricated wearable system with a hybrid algorithm for fetal movement recognition.PLoS One2021167e025456010.1371/journal.pone.025456034255780
    [Google Scholar]
  55. UrakovA.L. UrakovaN.A. Intrauterine hypoxia: Causes, mechanisms, symptoms, diagnosis, compensation, prevention.J Obstet Gynecol Probl: JOGP.202021100015
    [Google Scholar]
  56. RayburnW.F. Fetal movement monitoring.Clin. Obstet. Gynecol.1995381596710.1097/00003081‑199503000‑000087796553
    [Google Scholar]
  57. LaiJ. NowlanN.C. VaidyanathanR. ShawC.J. LeesC.C. Fetal movements as a predictor of health.Acta Obstet. Gynecol. Scand.201695996897510.1111/aogs.1294427374723
    [Google Scholar]
  58. LaiJ. WoodwardR. AlexandrovY. ain Munnee, Q.; Lees, C.C.; Vaidyanathan, R.; Nowlan, N.C. Performance of a wearable acoustic system for fetal movement discrimination.PLoS One2018135e019572810.1371/journal.pone.019572829734344
    [Google Scholar]
  59. GhoshA.K. BurnistonS.F. KrentzelD. RoyA. SheikhA.S. SiddiqT. TrinhP.M.P. VelazquezM.M. VielleH.T. NowlanN.C. VaidyanathanR. A novel fetal movement simulator for the performance evaluation of vibration sensors for wearable fetal movement monitors.Sensors20202021602010.3390/s2021602033114007
    [Google Scholar]
  60. UrakovaN.A. UrakovA.L. Low value of apnea-test on fetal survival in intrauterine hypoxia is universal indicator for planned Caesarean section.Acta Scientific Women’s Health202029111510.31080/ASWH.2020.02.0137
    [Google Scholar]
  61. LiangS. PengJ. XuY. YeH. Passive fetal movement recognition approaches using hyperparameter tuned LightGBM model and bayesian optimization.Comput. Intell. Neurosci.202120211625236210.1155/2021/625236234925493
    [Google Scholar]
  62. QinM. XuY. LiangY. SunT. A wearable fetal movement detection system for pregnant women.Front. Med.202310116037310.3389/fmed.2023.116037337554507
    [Google Scholar]
  63. UrakovA.L. KasatkinA.A. UrakovaN.A. AmmerK. Infrared thermographic investigation of fingers and palms during and after application of cuff occlusion test in patients with hemorrhagic shock.Thermol. Int.2014241510
    [Google Scholar]
  64. UrakovA.L. UrakovaN.A. KasatkinA.A. Thermal imaging improves the accuracy hemorrhagic shock diagnostics: The concept and practical recommendations.LAP LAMBERT Academic Publishing2016
    [Google Scholar]
  65. UrakovA.L. UrakovaT.V. KasatkinA.A. Infrared thermography to assess the blood donors adaptation to blood loss.Thermol. Int.2016262Suppl.S13
    [Google Scholar]
  66. UrakovA. UrakovaN. KasatkinA. DementyevV. Temperature and blood rheology in fingertips as signs of adaptation to acute hypoxia.J. Phys. Conf. Ser.201779001203410.1088/1742‑6596/790/1/012034
    [Google Scholar]
  67. UrakovA. UrakovaN. Thermal imaging improves the accuracy of estimation of human resistance to sudden hypoxia.In:VipIMAGE 2017. ECCOMAS 2017. Lecture Notes in Computational Vision and Biomechanics; Springer: Cham,20172795796110.1007/978‑3‑319‑68195‑5_104
    [Google Scholar]
  68. KasatkinA.A. UrakovA.L. Correlation between arterial blood gases indices and the temperature of fingers after cuff occlusion test in patients with acute blood loss.Thermol. Int.2018282123
    [Google Scholar]
  69. UrakovA.L. KasatkinA.A. AmmerK. GurevichK.G. The dynamics of fingertip temperature during voluntary breath holding and its relationship to transcutaneous oximetry.Thermol. Int.20192926566
    [Google Scholar]
  70. UrakovA. UrakovaN. Fetal hypoxia: Temperature value for oxygen exchange, resistance to hypoxic damage, and diagnostics using a thermal imager.Indian J Obstet Gynecol Res.20207223223810.18231/j.ijogr.2020.048
    [Google Scholar]
  71. BurdJ. Quist-NelsonJ. MoorsS. RaghuramanN. AlyH. BerghellaV. Effect of intrapartum oxygen on the rate of cesarean delivery: A meta-analysis.Am. J. Obstet. Gynecol. MFM20213410037410.1016/j.ajogmf.2021.10037433836306
    [Google Scholar]
  72. UrakovA. UrakovaN. KasatkinA. SamorodovA. PavlovV. Dynamics of local temperature in the fingertips after the cuff occlusion test: Infrared diagnosis of adaptation reserves to hypoxia and assessment of survivability of victims at massive blood loss.Rev. Cardiovasc. Med.202223517410.31083/j.rcm230517439077621
    [Google Scholar]
  73. HutterD. KingdomJ. JaeggiE. Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: A review.Int. J. Pediatr.201020101910.1155/2010/40132320981293
    [Google Scholar]
  74. FilippiL. ScaramuzzoR.T. PascarellaF. PiniA. MorgantiR. CammalleriM. BagnoliP. CiantelliM. Fetal oxygenation in the last weeks of pregnancy evaluated through the umbilical cord blood gas analysis.Front Pediatr.202311114002110.3389/fped.2023.114002137152310
    [Google Scholar]
  75. FilippiL. PascarellaF. PiniA. CammalleriM. BagnoliP. MorgantiR. InnocentiF. CastagniniN. MelosiA. ScaramuzzoR.T. Fetal oxygenation from the 23rd to the 36th week of gestation evaluated through the umbilical cord blood gas analysis.Int. J. Mol. Sci.202324151248710.3390/ijms24151248737569862
    [Google Scholar]
  76. MartinC.B.Jr Normal fetal physiology and behavior, and adaptive responses with hypoxemia.Semin. Perinatol.200832423924210.1053/j.semperi.2008.04.00318652920
    [Google Scholar]
  77. MeschiaG. Evolution of thinking in fetal respiratory physiology.Am. J. Obstet. Gynecol.1978132780681310.1016/S0002‑9378(78)80015‑5717491
    [Google Scholar]
  78. FieldD.R. ParerJ.T. AuslenderR.A. CheekD.B. BakerW. JohnsonJ. Cerebral oxygen consumption during asphyxia in fetal sheep.J. Dev. Physiol.19901431311372129242
    [Google Scholar]
  79. RichardsonB.S. The fetal brain: Metabolic and circulatory responses to asphyxia.Clin. Invest. Med.19931621031148513610
    [Google Scholar]
  80. ParerJ.T. Fetal cerebral metabolism: The influence of asphyxia and other factors.J. Perinatol.19941453763857830153
    [Google Scholar]
  81. WoodC.E. Keller-WoodM. Current paradigms and new perspectives on fetal hypoxia: Implications for fetal brain development in late gestation.Am. J. Physiol. Regul. Integr. Comp. Physiol.20193171R1R1310.1152/ajpregu.00008.201931017808
    [Google Scholar]
  82. UrakovA. UrakovaN. A drowning fetus sends a distress signal, which is an indication for a Caesarean section.Indian J. Obstet. Gynecol. Res.20207446146610.18231/j.ijogr.2020.100
    [Google Scholar]
  83. ShabanovP.D. UrakovA.L. UrakovaN.A. Assessment of fetal resistance to hypoxia using the Stange test as an adjunct to Apgar scale assessment of neonatal health status.Med. Acad. J.20232338910210.17816/MAJ568979
    [Google Scholar]
  84. UrakovaN. UrakovA. SokolovaV. ShabanovP. Aerobic brain metabolism, body temperature, oxygen, fetal oxygen supply and fetal movement dynamics as factors in stillbirth and neonatal encephalopathy. Invention review.Azerbaijan Pharma. Pharmacother. J202322210511210.61336/appj/22‑2‑24
    [Google Scholar]
  85. XuY.Y. LiuY. CuiL. WuW.B. QuinnM.J. MenonR. ZhangH.J. Hypoxic effects on the mitochondrial content and functions of the placenta in fetal growth restriction.Placenta202111410010710.1016/j.placenta.2021.09.00334509037
    [Google Scholar]
  86. KremskyI. MaQ. LiB. DasguptaC. ChenX. AliS. AngeloniS. WangC. ZhangL. Fetal hypoxia results in sex and cell type-specific alterations in neonatal transcription in rat oligodendrocyte precursor cells, microglia, neurons, and oligodendrocytes.Cell Biosci.20231315810.1186/s13578‑023‑01012‑836932456
    [Google Scholar]
  87. KorfJ.M. McCulloughL.D. CarettiV. A narrative review on treatment strategies for neonatal hypoxic ischemic encephalopathy.Transl. Pediatr.20231281552157110.21037/tp‑23‑25337692539
    [Google Scholar]
  88. DzhalilovaD. MakarovaO. Differences in tolerance to hypoxia: Physiological, biochemical, and molecular-biological characteristics.Biomedicines202081042810.3390/biomedicines810042833080959
    [Google Scholar]
  89. UrakovaN.A. UrakovA.L. GausknekhtM.Yu. YushkovB.G. ZabokritskyN.A. Transabdominal ultrasonic research of viability of the fetus to intrauterine hypoxia.Bull. Ural. Med. Acad.Sci.,201138083Available from:2011_3_36.pdf
    [Google Scholar]
  90. HankinsG.D.V. ClarkS.M. MunnM.B. Cesarean section on request at 39 weeks: Impact on shoulder dystocia, fetal trauma, neonatal encephalopathy, and intrauterine fetal demise.Semin. Perinatol.200630527628710.1053/j.semperi.2006.07.00917011400
    [Google Scholar]
  91. Salihagić-KadićA. MedićM. JugovićD. KosM. LatinV. Kušan JukićM. ArbeilleP. Fetal cerebrovascular response to chronic hypoxia-Implications for the prevention of brain damage.J. Matern. Fetal Neonatal Med.200619738739610.1080/1476705060063786116923693
    [Google Scholar]
  92. CoenenH. BraunJ. KösterH. MöllersM. SchmitzR. SteinhardJ. OelmeierK. Role of umbilicocerebral and cerebroplacental ratios in prediction of perinatal outcome in FGR pregnancies.Arch. Gynecol. Obstet.202230561383139210.1007/s00404‑021‑06268‑434599678
    [Google Scholar]
  93. WinchesterM.L. McCartherN. CancinoD. FitzgeraldS. ParrishM. Second trimester cerebroplacental ratio versus umbilicocerebral ratio for the prediction of adverse perinatal outcomes.J. Matern. Fetal Neonatal Med.202235257929793510.1080/14767058.2021.193853034151683
    [Google Scholar]
  94. StumpfeF. MayrA. SchneiderM. KehlS. StübsF. AntoniadisS. TitzmannA. PontonesC. BayerC. BeckmannM. FaschingbauerF. Cerebroplacental versus umbilicocerebral ratio-analyzing the predictive value regarding adverse perinatal outcomes in low- and high-risk fetuses at term.Medicina2023598138510.3390/medicina5908138537629674
    [Google Scholar]
  95. WolfH. StampalijaT. LeesC.C. Fetal cerebral blood‐flow redistribution: Analysis of Doppler reference charts and association of different thresholds with adverse perinatal outcome.Ultrasound Obstet. Gynecol.202158570571510.1002/uog.2361533599336
    [Google Scholar]
  96. RizzoG. MappaI. BitsadzeV. SłodkiM. KhizroevaJ. MakatsariyaA. D’AntonioF. Role of Doppler ultrasound at time of diagnosis of late‐onset fetal growth restriction in predicting adverse perinatal outcome: Prospective cohort study.Ultrasound Obstet. Gynecol.202055679379810.1002/uog.2040631343783
    [Google Scholar]
  97. NewbyE.A. MyersD.A. DucsayC.A. Fetal endocrine and metabolic adaptations to hypoxia: the role of the hypothalamic-pituitary-adrenal axis.Am. J. Physiol. Endocrinol. Metab.20153095E429E43910.1152/ajpendo.00126.201526173460
    [Google Scholar]
  98. UrakovaN.A. UrakovA.L. Thermal imaging for increasing the diagnostic accuracy in fetal hypoxia: Concept and practice suggestions.Application of Infrared to Biomedical Sciences. Series in BioEngineering.SingaporeSpringer NgE. EtehadtavakolM. 201710.1007/978‑981‑10‑3147‑2_16
    [Google Scholar]
  99. UrakovA.L. Infrared monitoring of the dynamics of the local temperature as a symptom of adaptation to hypoxia and efficiency of antihypoxic drugs.Rev Clin Pharmacol Drug Ther.2019171798610.17816/RCF17179‑86
    [Google Scholar]
  100. UrakovA. UrakovaN. A new way obstetric care with the use of infrared thermography the head of the fetus during the final stage of childbirth.Thermol. Int.201525120
    [Google Scholar]
  101. UrakovA. AmmerK. UrakovaN. FisherE. ChernovaL. Infrared thermography can discriminate the cause of skin discolourations.Thermol. Int.201625420921510.21611/qirt.2016.140
    [Google Scholar]
  102. UrakovA.L. KasatkinA.A. UrakovaN.A. UrakovaT.V. Cold sodium chloride solution 0.9% and infrared thermography can be an alternative to radiopaque contrast agents in phlebography.J. Pharmacol. Pharmacother.20167313813910.4103/0976‑500X.18967527651710
    [Google Scholar]
  103. UrakovaN.A. UrakovA.L. A series of multiple spontaneous pregnancy losses in thrombophilia can be interrupted by infrared diagnosis of hypoxia.Acta Scientific Women’s Health.2023563334
    [Google Scholar]
  104. ManJ. HutchinsonJ.C. HeazellA.E. AshworthM. LevineS. SebireN.J. Stillbirth and intrauterine fetal death: Factors affecting determination of cause of death at autopsy.Ultrasound Obstet. Gynecol.201648556657310.1002/uog.1601627781317
    [Google Scholar]
  105. CovarrubiasA. Aguilera-OlguínM. Carrasco-WongI. PardoF. Díaz-AstudilloP. MartínS.S. Feto-placental unit: From development to function.Adv. Exp. Med. Biol.2023142812910.1007/978‑3‑031‑32554‑0_137466767
    [Google Scholar]
  106. GallagherK. ArumaJ.F.C. Oji-MmuoC.N. PauliJ.M. CurtinW.M. GoldsteinJ.A. StuckeyH.L. GernandA.D. Placental pathology reports: A qualitative study in a US university hospital setting on perceived clinical utility and areas for improvement.PLoS One2023186e028629410.1371/journal.pone.028629437289756
    [Google Scholar]
  107. SunC. GroomK.M. OystonC. ChamleyL.W. ClarkA.R. JamesJ.L. The placenta in fetal growth restriction: What is going wrong?Placenta202096101810.1016/j.placenta.2020.05.00332421528
    [Google Scholar]
  108. HutterJ. AL-Wakeel, A.; Kyriakopoulou, V.; Matthew, J.; Story, L.; Rutherford, M. Exploring the role of a time-efficient MRI assessment of the placenta and fetal brain in uncomplicated pregnancies and these complicated by placental insufficiency.Placenta2023139253310.1016/j.placenta.2023.05.01437295055
    [Google Scholar]
  109. LeeJ. RomeroR. LeeK.A. KimE.N. KorzeniewskiS.J. ChaemsaithongP. YoonB.H. Meconium aspiration syndrome: A role for fetal systemic inflammation.Am. J. Obstet. Gynecol.20162143366.e1366.e910.1016/j.ajog.2015.10.00926484777
    [Google Scholar]
  110. GalloD.M. RomeroR. BoscoM. GotschF. JaimanS. JungE. SuksaiM. Ramón y CajalC.L. YoonB.H. ChaiworapongsaT. Meconium-stained amniotic fluid.Am. J. Obstet. Gynecol.20232285S1158S117810.1016/j.ajog.2022.11.128337012128
    [Google Scholar]
  111. WangC.Y. LingC. YangJ.J. GuanL.S. WangX.Q. Impact of perinatal factors on meconium aspiration syndrome in full-term newborns and the construction of a column chart prediction model: An observational study.Medicine (Baltimore)202410320e3827910.1097/MD.000000000003827938758867
    [Google Scholar]
  112. Mota-RojasD. Villanueva-GarcíaD. Mota-ReyesA. OrihuelaA. Hernández-ÁvalosI. Domínguez-OlivaA. Casas-AlvaradoA. Flores-PadillaK. Jacome-RomeroJ. Martínez-BurnesJ. Meconium aspiration syndrome in animal models: Inflammatory process, apoptosis, and surfactant inactivation.Animals20221223331010.3390/ani1223331036496831
    [Google Scholar]
  113. TantuT. ZewduD. DegemuF. YehualeshetT. The incidence and determinants of the meconium-aspiration syndrome among mothers with meconium-stained amniotic fluid after emergency cesarean section: A prospective cross-sectional study in a specialized hospital, south Ethiopia.Front Pediatr.202311114939810.3389/fped.2023.114939837033171
    [Google Scholar]
  114. UrakovA.L. UrakovaN.A. Diagnostic symptoms of hypoxia of the fetus in the womb, and the fish in the water.Int Res J.201311185354
    [Google Scholar]
  115. RadzinskiyV.E. UrakovaN.A. UrakovA.L. NikityukD.B. Gausknecht’s test: A method for prediction of Caesarean section and newborn resuscitation. Arch Obstet Gynecol V.F.Snegirev.2014121418
    [Google Scholar]
  116. UrakovA.L. UrakovaN.A. ChernovaL.V. The analogy of the behavior of fish in the water and fetuses in the womb of pregnant womens with acute hypoxia.Int J Exp Educ.2014128386
    [Google Scholar]
  117. UrakovAL. FisherEL. LebedevAA. ShabanovPD. Aquarium fish and temperature neuropharmacology: Update.Psychopharmacol. Biol. Narcology2024151415210.17816/phbn625545
    [Google Scholar]
  118. UrakovA.L. UrakovaN.A. ChernovaL.V. The influence of temperature, atmospheric pressure, antihypoxant and chemical “battery oxygen” on the sustainability of fish in the water without air.Int. J. Appl. Fundam. Res.201484852
    [Google Scholar]
  119. LiuL. YenariM.A. Therapeutic hypothermia: Neuroprotective mechanisms.Front. Biosci.20071281682510.2741/2104
    [Google Scholar]
  120. PauliahS.S. ShankaranS. WadeA. CadyE.B. ThayyilS. Therapeutic hypothermia for neonatal encephalopathy in low- and middle-income countries: A systematic review and meta-analysis.PLoS One201383e5883410.1371/journal.pone.005883423527034
    [Google Scholar]
  121. JacobsS.E. BergM. HuntR. Tarnow-MordiW.O. InderT.E. DavisP.G. Cooling for newborns with hypoxic ischaemic encephalopathy.Cochrane Libr.201320131CD00331110.1002/14651858.CD003311.pub323440789
    [Google Scholar]
  122. BhatB.V. AdhisivamB. Therapeutic cooling for perinatal asphyxia-Indian experience.Indian J. Pediatr.201481658559110.1007/s12098‑014‑1348‑024619565
    [Google Scholar]
  123. UzianbaevaL. YanY. JoshiT. YinN. HsuC.D. Hernandez-AndradeE. MehrmohammadiM. Methods for monitoring risk of hypoxic damage in fetal and neonatal brains: A review.Fetal Diagn. Ther.2022491-212410.1159/00052098734872080
    [Google Scholar]
  124. KumarJ. YadavA. Therapeutic hypothermia as standard care in India: A long way to go.Paediatr. Int. Child Health201939430510.1080/20469047.2018.153330530328391
    [Google Scholar]
  125. PrashanthaY.N. Suman RaoP.N. NesargiS. ChandrakalaB.S. BallaK.C. ShashidharA. Therapeutic hypothermia for moderate and severe hypoxic ischaemic encephalopathy in newborns using low-cost devices – ice packs and phase changing material.Paediatr. Int. Child Health201939423423910.1080/20469047.2018.150080530109814
    [Google Scholar]
  126. AkerK. StøenR. EikenesL. Martinez-BiargeM. NakkenI. HåbergA.K. GibikoteS. ThomasN. Therapeutic hypothermia for neonatal hypoxic-ischaemic encephalopathy in India (THIN study): A randomised controlled trial.Arch. Dis. Child. Fetal Neonatal Ed.2020105440541110.1136/archdischild‑2019‑31731131662328
    [Google Scholar]
  127. AbateB.B. BimerewM. GebremichaelB. Mengesha KassieA. KassawM. GebremeskelT. BayihW.A. Effects of therapeutic hypothermia on death among asphyxiated neonates with hypoxic-ischemic encephalopathy: A systematic review and meta-analysis of randomized control trials.PLoS One2021162e024722910.1371/journal.pone.024722933630892
    [Google Scholar]
  128. OgawaY. TanakaE. SatoY. TsujiM. Brain damage caused by neonatal hypoxia-ischemia and the effects of hypothermia in severe combined immunodeficient (SCID) mice.Exp. Neurol.202133711357710.1016/j.expneurol.2020.11357733359474
    [Google Scholar]
  129. OliveiraN.R.G. TeixeiraG.G. FernandesK.T.M.S. AvelarM.M. MedeirosM. FormigaC.K.M.R. Therapeutic hypothermia as a neuroprotective strategy in newborns with perinatal asphyxia—Case report.Front. Rehabil. Sci.20234113277910.3389/fresc.2023.1132779
    [Google Scholar]
  130. UrakovA.L. UrakovaN.A. ShabanovP.D. Hypoxic irreversible brain cells damage, associated risk factors and antihypoxants.Rev. Clin. Pharmacol. Drug Ther.202422327728810.17816/RCF629408
    [Google Scholar]
  131. StaceyT. ThompsonJ.M.D. MitchellE.A. EkeromaA. ZuccolloJ. McCowanL.M.E. Maternal perception of fetal activity and late stillbirth risk: Findings from the Auckland Stillbirth Study.Birth201138431131610.1111/j.1523‑536X.2011.00490.x22112331
    [Google Scholar]
  132. LiuY. XuanR. HeY. RenF. GuY. Computation of fetal kicking in various fetal health examinations: A systematic review.Int. J. Environ. Res. Public Health2022197436610.3390/ijerph1907436635410056
    [Google Scholar]
  133. BellussiF. Po’G. LiviA. SacconeG. De VivoV. OliverE.A. BerghellaV. Fetal movement counting and perinatal mortality.Obstet. Gynecol.2020135245346210.1097/AOG.000000000000364531923063
    [Google Scholar]
  134. ChenH. SongY. XuanR. HuQ. BakerJ.S. GuY. Kinematic comparison on lower limb kicking action of fetuses in different gestational weeks: A pilot study.Health Care202198105710.3390/healthcare9081057
    [Google Scholar]
  135. UrakovaN.A. UrakovA.L. Stability of fetus to hypoxia and birth.Bull. Russ. Mil. Med. Acad.2012440221223
    [Google Scholar]
  136. AltiniM. MullanP. RooijakkersM. GradlS. PendersJ. GeusensN. GrietenL. EskofierB. Detection of fetal kicks using body-worn accelerometers during pregnancy: Trade-offs between sensors number and positioning.Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.201620165319532210.1109/EMBC.2016.759192828269461
    [Google Scholar]
  137. HanQ. HaoD. YangL. YangY. LiG. Non-contact monitoring of fetal movement using abdominal video recording.Sensors20232310475310.3390/s2310475337430667
    [Google Scholar]
  138. NishiharaK. OhkiN. KamataH. RyoE. HoriuchiS. Automated software analysis of fetal movement recorded during a pregnant woman’s sleep at home.PLoS One2015106e013050310.1371/journal.pone.013050326083422
    [Google Scholar]
  139. RyoE. NishiharaK. MatsumotoS. KamataH. A new method for long-term home monitoring of fetal movement by pregnant women themselves.Med. Eng. Phys.201234556657210.1016/j.medengphy.2011.09.00121962570
    [Google Scholar]
  140. RyoE. YatsukiK. SetoM. KamataH. YonagaY. Continuous monitoring of fetal gross movement and maternal glucose level using newly developed methods.AJOG Global. Reports.20233210019710.1016/j.xagr.2023.10019737064783
    [Google Scholar]
  141. YonagaY. RyoE. YatsukiK. KamataH. ItoA. Effect of ritodrine hydrochloride infusion on fetal movement with the use of a fetal movement acceleration measurement recorder (FMAM recorder).J. Obstet. Gynaecol. Res.202349260661310.1111/jog.1551236443932
    [Google Scholar]
  142. YatsukiK. RyoE. MoritaM. SetoM. KamataH. YonagaY. Correlation between newborn size and gross fetal movement as counted by a fetal movement acceleration measurement recorder.J. Dev. Orig. Health Dis.202112345245510.1017/S204017442000064132662381
    [Google Scholar]
  143. UrakovA.L. UrakovaN.A. RadzinskijV.E. SokolovaN.V. GausknekhtM.J. Method for assessing foetus resistance to obstetric hypoxiaRU Patent 2511084C2,2014
    [Google Scholar]
  144. UrakovA.L. UrakovaN.A. KasatkinA.A. N.A. Urakova's method for antenatal assessment of foetal adaptation to repeated hypoxia.RU Patent 2529377C12014
    [Google Scholar]
  145. UrakovA.L. UrakovaN.A. Method for choosing the type of deliveryRU Patent 2749637C12021
    [Google Scholar]
  146. UrakovaN.A. UrakovA.L. StolyarenkoA.P. Diagnostic bandage for a pregnant womanRU Patent 2780137C12022
    [Google Scholar]
  147. UrakovaN.A. UrakovA.L. StolyarenkoA.P. Tag with sensors and sticky tape for measuring the duration of the immobile state of the fetus during diagnostic apneaRU Patent 2780274C12022
    [Google Scholar]
  148. JugovićD. TumbriJ. MedićM. JukićM.K. KurjakA. ArbeilleP. Salihagić-KadićA. New Doppler index for prediction of perinatal brain damage in growth‐restricted and hypoxic fetuses.Ultrasound Obstet. Gynecol.200730330331110.1002/uog.409417721870
    [Google Scholar]
  149. GebregziabherG.T. HadguF.B. AbebeH.T. Prevalence and associated factors of perinatal asphyxia in neonates admitted to Ayder comprehensive specialized hospital, Northern Ethiopia: A cross-sectional study.Int. J. Pediatr.202020201810.1155/2020/436724832110243
    [Google Scholar]
  150. SchneiderH. Birth asphyxia - A still unsolved problem in perinatal medicine1.Z Obstetrics Neonatol.2001205620521210.1055/s‑2001‑1905111745005
    [Google Scholar]
  151. RazazN. NormanM. AlfvénT. CnattingiusS. Low Apgar score and asphyxia complications at birth and risk of longer-term cardiovascular disease: A nationwide population-based study of term infants.Lancet Reg. Health Eur.20232410053210.1016/j.lanepe.2022.10053236643664
    [Google Scholar]
  152. UrakovaNA UrakovAL StolyarenkoAP What is the disadvantage of the apgar score? What is the advantage of the obstetric stange test? Acta Sci. Women's Health20224100102
    [Google Scholar]
  153. MolinaG. WeiserT.G. LipsitzS.R. EsquivelM.M. Uribe-LeitzT. AzadT. ShahN. SemrauK. BerryW.R. GawandeA.A. HaynesA.B. Relationship between Cesarean delivery rate and maternal and neonatal mortality.JAMA2015314212263227010.1001/jama.2015.1555326624825
    [Google Scholar]
  154. UrakovA.L. UrakovaN.A. Targeted temperature management in obstetrics for prevention perinatal encephalopathy.Turk. J. Med. Sci.202454487687710.55730/1300‑0144.585939295622
    [Google Scholar]
  155. ChughA. LalS. NijhawanT. BiradarP. Evaluation of primary caesarean section and neonatal outcomes in a tertiary care hospital and impact on current obstetric practice.Eur. J. Obstet. Gynecol. Reprod. Biol. X20231910021310.1016/j.eurox.2023.10021337448754
    [Google Scholar]
  156. MaskeyS. BajracharyaM. BhandariS. Prevalence of Cesarean section and its indications in a tertiary care hospital.JNMA J. Nepal Med. Assoc.201957216707310.31729/jnma.428231477935
    [Google Scholar]
  157. RajuT. The birth of Caesar and the cesarean misnomer.Am. J. Perinatol.2007241056756810.1055/s‑2007‑98669317893840
    [Google Scholar]
  158. MauriF. SchumacherF. WeberM. Gayet-AgeronA. Martinez de TejadaB. Clinicians’ views regarding caesarean section rates in Switzerland: A cross-sectional web-based survey.Eur. J. Obstet. Gynecol. Reprod. Biol. X20231710018210.1016/j.eurox.2023.10018236879907
    [Google Scholar]
  159. VerbruggenS.W. LooJ.H.W. HayatT.T.A. HajnalJ.V. RutherfordM.A. PhillipsA.T.M. NowlanN.C. Modeling the biomechanics of fetal movements.Biomech. Model. Mechanobiol.2016154995100410.1007/s10237‑015‑0738‑126534772
    [Google Scholar]
  160. KessousR. Aricha-TamirB. WeintraubA.Y. SheinerE. HershkovitzR. Umbilical artery peak systolic velocity measurements for prediction of perinatal outcome among IUGR fetuses.J. Clin. Ultrasound201442740541010.1002/jcu.2215224633994
    [Google Scholar]
  161. TercanliS. PrüferF. Fetal neurosonogaphy: Ultrasound and magnetic resonance imaging in competition.Ultraschall Med.201637655555710.1055/s‑0042‑11714227978593
    [Google Scholar]
  162. SadovskyE. YaffeH. Daily fetal movement recording and fetal prognosis.Obstet. Gynecol.19734168458504196643
    [Google Scholar]
  163. StangeV.A. Prognosis in general anesthesia.J. Am. Med. Assoc.1914621132
    [Google Scholar]
  164. HedhliA. SlimA. OuahchiY. MjidM. KoumenjiJ. Cheikh RouhouS. ToujaniS. DhahriB. Maximal voluntary breath-holding tele-inspiratory test in patients with chronic obstructive pulmonary disease.Am. J. Men Health20211531557988321101585710.1177/1557988321101585733993797
    [Google Scholar]
  165. BruceC.D. Vanden BergE.R. PfohJ.R. SteinbackC.D. DayT.A. Prior oxygenation, but not chemoreflex responsiveness, determines breath‐hold duration during voluntary apnea.Physiol. Rep.202191e1466410.14814/phy2.1466433393725
    [Google Scholar]
/content/journals/cwhr/10.2174/0115734048344660250220054204
Loading
/content/journals/cwhr/10.2174/0115734048344660250220054204
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test