Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4048
  • E-ISSN: 1875-6581

Abstract

Osteoporosis is a silent epidemic that has become a serious health concern in recent years. It increases bone fragility, which increases the risk of fractures and is connected with high mortality and medical costs throughout the world. Postmenopausal osteoporosis (PMO) is an epidemic illness characterized by a decrease in bone mineral density in older women. It is a disease with several causes that are influenced by environmental, genetic, and hormonal factors. Though ovarian hormone insufficiency is a major risk factor for osteoporosis in PMO females, hormone replacement therapy, which is perhaps the most effective treatment, is not recommended because it increases the risk of cardiovascular disease and breast cancer. The other possible treatments and medications are also linked with certain side effects. Traditional folk medicine is a rich source of bio-active substances awaiting discovery and inquiry that may be employed in such patients; therefore, botanicals have recently gained more attention. Therefore, through a comprehensive review of current research and experimentation, this investigation elucidates the plant-derived substances that may be utilized to preserve bone health in PMO women. Furthermore, this review discusses the common name, phytochemical constituents, and various and investigations of these plants that prevented or treated the PMO in females.

Loading

Article metrics loading...

/content/journals/cwhr/10.2174/0115734048323452241203180545
2025-05-07
2026-01-11
Loading full text...

Full text loading...

References

  1. SözenT. ÖzışıkL. Calik BasaranN. An overview and management of osteoporosis.Eur. J. Rheumatol.201741465610.5152/eurjrheum.2016.04828293453
    [Google Scholar]
  2. PouresmaeiliF. Kamali DehghanB. KamareheiM. Yong MengG. A comprehensive overview on osteoporosis and its risk factors.Ther. Clin. Risk Manag.2018142029204910.2147/TCRM.S13800030464484
    [Google Scholar]
  3. BlackD.M. RosenC.J. Postmenopausal osteoporosis.N. Engl. J. Med.2016374325426210.1056/NEJMcp151372426789873
    [Google Scholar]
  4. SharmaA. SharmaC. ShahO.P. ChigurupatiS. AshokanB. MeerasaS.S. RashidS. BehlT. BungauS.G. Understanding the mechanistic potential of plant based phytochemicals in management of postmenopausal osteoporosis.Biomed. Pharmacother.202316311485010.1016/j.biopha.2023.11485037172332
    [Google Scholar]
  5. AndersenT.L. SondergaardT.E. SkorzynskaK.E. Dagnaes-HansenF. PlesnerT.L. HaugeE.M. PlesnerT. DelaisseJ.M. A physical mechanism for coupling bone resorption and formation in adult human bone.Am. J. Pathol.2009174123924710.2353/ajpath.2009.08062719095960
    [Google Scholar]
  6. MederleO.A. BalasM. IoanoviciuS.D. GurbanC.V. TudorA. BorzaC. Correlations between bone turnover markers, serum magnesium and bone mass density in postmenopausal osteoporosis.Clin. Interv. Aging2018131383138910.2147/CIA.S17011130122910
    [Google Scholar]
  7. SharmaA. SharmaL. SainiR.V. KumarA. GoyalR. Pinus roxburghii alleviates bone porosity and loss in postmenopausal osteoporosis by regulating estrogen, calcium homeostasis and receptor activator of nuclear factor-κB, osteoprotegerin, cathepsin bone markers.J. Pharm. Pharmacol.202173790191510.1093/jpp/rgaa01433769535
    [Google Scholar]
  8. ManolagasS.C. Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis.Endocr. Rev.200021211513710782361
    [Google Scholar]
  9. ShirwaikarA. KhanS. KamariyaY.H. PatelB.D. GajeraF.P. Medicinal plants for the management of post menopausal osteoporosis: A review.Open Bone J.20102111310.2174/1876525401002010001
    [Google Scholar]
  10. KhatuneN.A. Ekramul IslamM. Ekramul HaqueM. KhondkarP. Mukhlesur RahmanM. Antibacterial compounds from the seeds of Psoralea corylifolia.Fitoterapia200475222823010.1016/j.fitote.2003.12.01815030932
    [Google Scholar]
  11. QiaoC.F. HanQ.B. MoS.F. SongJ.Z. XuL.J. ChenS.L. YangD.J. KongL.D. KungH.F. XuH.X. Psoralenoside and isopsoralenoside, two new benzofuran glycosides from Psoralea corylifolia.Chem. Pharm. Bull.(Tokyo)200654571471610.1248/cpb.54.71416651775
    [Google Scholar]
  12. TsaiM.H. HuangG.S. HungY.C. BinL. LiaoL.T. LinL.W. Psoralea corylifolia extract ameliorates experimental osteoporosis in ovariectomized rats.Am. J. Chin. Med.200735466968010.1142/S0192415X0700516817708633
    [Google Scholar]
  13. NissleinT. FreudensteinJ. Effects of an isopropanolic extract of Cimicifuga racemosa on urinary crosslinks and other parameters of bone quality in an ovariectomized rat model of osteoporosis.J. Bone Miner. Metab.200321637037610.1007/s00774‑003‑0431‑914586793
    [Google Scholar]
  14. ZhangR.X. LiM.X. JiaZ.P. Rehmannia glutinosa: Review of botany, chemistry and pharmacology.J. Ethnopharmacol.2008117219921410.1016/j.jep.2008.02.01818407446
    [Google Scholar]
  15. OhH.C. Remophilanetriol: A new eremophilane from the roots of Rehmannia glutinosa.Bull. Korean Chem. Soc.20052681303130510.5012/bkcs.2005.26.8.1303
    [Google Scholar]
  16. RaoPV GanSH Cinnamon: A multifaceted medicinal plant.Evid. Based Complement. Alternat. Med.2014201464294210.1155/2014/64294224817901
    [Google Scholar]
  17. WinuthayanonW. PiyachaturawatP. SuksamrarnA. PonglikitmongkolM. AraoY. HewittS.C. KorachK.S. Diarylheptanoid phytoestrogens isolated from the medicinal plant Curcuma comosa: Biologic actions in vitro and in vivo indicate estrogen receptor-dependent mechanisms.Environ. Health Perspect.200911771155116110.1289/ehp.090061319654927
    [Google Scholar]
  18. SunL.R. QingC. ZhangY.L. JiaS.Y. LiZ.R. PeiS.J. QiuM.H. GrossM.L. QiuS.X. Cimicifoetisides A and B, two cytotoxic cycloartane triterpenoid glycosides from the rhizomes of Cimicifuga foetida, inhibit proliferation of cancer cells.Beilstein J. Org. Chem.200731310.1186/1860‑5397‑3‑317266751
    [Google Scholar]
  19. ReddyN.M. ReddyR.N. Tinospora cordifolia chemical constituents and medicinal properties: A review.Sch. Acad. J. Pharm.201548364369
    [Google Scholar]
  20. KapurP. JarryH. WuttkeW. PereiraB.M.J. Seidlova-WuttkeD. Evaluation of the antiosteoporotic potential of Tinospora cordifolia in female rats.Maturitas200859432933810.1016/j.maturitas.2008.03.00618482809
    [Google Scholar]
  21. AbiramasundariG. SumalathaK.R. SreepriyaM. Effects of Tinospora cordifolia (Menispermaceae) on the proliferation, osteogenic differentiation and mineralization of osteoblast model systems in vitro.J. Ethnopharmacol.2012141147448010.1016/j.jep.2012.03.01522449439
    [Google Scholar]
  22. SharmaP. DwivedeeB.P. BishtD. DashA.K. KumarD. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia.Heliyon201959e0243710.1016/j.heliyon.2019.e0243731701036
    [Google Scholar]
  23. LiuH. ShiY. WangD. YangG. YuA. ZhangH. MECC determination of oleanolic acid and ursolic acid isomers in Ligustrum lucidum Ait.J. Pharm. Biomed. Anal.200332347948510.1016/S0731‑7085(03)00235‑814565552
    [Google Scholar]
  24. ZhangJ.L. DuC. PoonC.C.W. HeM.C. WongM.S. WangN.N. ZhangY. Structural characterization and protective effect against renal fibrosis of polysaccharide from Ligustrum lucidum Ait.J. Ethnopharmacol.2023302(Pt A)11589810.1016/j.jep.2022.11589836372193
    [Google Scholar]
  25. ZhangY. LaiW.P. LeungP.C. CheC.T. WongM.S. Improvement of Ca balance by Fructus Ligustri Lucidi extract in aged female rats.Osteoporos. Int.200819223524210.1007/s00198‑007‑0442‑917768588
    [Google Scholar]
  26. ZadehJ.B. KorN.M. Physiological and pharmaceutical effects of ginger (Zingiber officinale Roscoe) as a valuable medicinal plant.Eur. J. Exp. Biol.2014418790
    [Google Scholar]
  27. AliB.H. BlundenG. TaniraM.O. NemmarA. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research.Food Chem. Toxicol.200846240942010.1016/j.fct.2007.09.08517950516
    [Google Scholar]
  28. MustafaM.S. MahmoudO.M. HusseinH.H. Histological and morphometric effects of CdCl2 and ginger on osteoporosis induced by bilateral ovariectomy in adult albino rats.Eur. J. Anat.2013172102114
    [Google Scholar]
  29. MishraG. SrivastavaS. NagoriB.P. Pharmacological and therapeutic activity of Cissus quadrangularis: An overview.Int. J. Pharm. Tech. Res.20102212981310
    [Google Scholar]
  30. ShuklaR. PathakA. KambujaS. SachanS. MishraA. KumarS. Pharmacognostical, phytochemical and pharmacological overview: Cissus quadrangularis Linn.Ind. J. Pharma. Biolog. Res.201533596510.30750/ijpbr.3.3.10
    [Google Scholar]
  31. PotuB.K. RaoM.S. NampurathG.K. ChamallamudiM.R. PrasadK. NayakS.R. DharmavarapuP.K. KedageV. BhatK.M.R. Evidence-based assessment of antiosteoporotic activity of petroleum-ether extract of Cissus quadrangularis Linn. on ovariectomy-induced osteoporosis.Ups. J. Med. Sci.2009114314014810.1080/0300973090289178419736603
    [Google Scholar]
  32. WangL. LiY. GuoY. MaR. FuM. NiuJ. GaoS. ZhangD. Herba Epimedii: An ancient Chinese herbal medicine in the prevention and treatment of osteoporosis.Curr. Pharm. Des.201522332834910.2174/138161282266615111214590726561074
    [Google Scholar]
  33. LinL. NiB. LinH. ZhangM. LiX. YinX. QuC. NiJ. Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb.: A review.J. Ethnopharmacol.201515915818310.1016/j.jep.2014.11.00925449462
    [Google Scholar]
  34. HwangY.H. KangK.Y. KimJ.J. LeeS.J. SonY.J. PaikS.H. YeeS.T. Effects of hot water extracts from Polygonum multiflorum on ovariectomy induced osteopenia in mice.Evid. Based Complement. Alternat. Med.201620161897058510.1155/2016/897058527746822
    [Google Scholar]
  35. PatilR. MohanM. KastureV. KastureS. Rubia cordifolia: A review.Adv. Tradit. Med.20099113
    [Google Scholar]
  36. ShivakumarK. MukundH. RabinP. Evaluation of antiosteoporotic activity of root extract of Rubia Cordifolia in ovariectomized Rats.Int. J. Drug Dev. Res.201243163172
    [Google Scholar]
  37. YangY. ZhengX. LiB. JiangS. JiangL. Increased activity of osteocyte autophagy in ovariectomized rats and its correlation with oxidative stress status and bone loss.Biochem. Biophys. Res. Commun.20144511869210.1016/j.bbrc.2014.07.06925063028
    [Google Scholar]
  38. HussainK. HashmiF.K. LatifA. IsmailZ. SadikunA. A review of the literature and latest advances in research of Piper sarmentosum.Pharm. Biol.20125081045105210.3109/13880209.2011.65422922486533
    [Google Scholar]
  39. RukachaisirikulT. SiriwattanakitP. SukcharoenpholK. WongveinC. RuttanaweangP. WongwattanavuchP. SuksamrarnA. Chemical constituents and bioactivity of Piper sarmentosum.J. Ethnopharmacol.2004932-317317610.1016/j.jep.2004.01.02215234750
    [Google Scholar]
  40. SunX. ChenW. DaiW. XinH. RahmandK. WangY. ZhangJ. ZhangS. XuL. HanT. Piper sarmentosum Roxb.: A review on its botany, traditional uses, phytochemistry, and pharmacological activities.J. Ethnopharmacol.202026311289710.1016/j.jep.2020.11289732620264
    [Google Scholar]
  41. KimJ.H. Pharmacological and medical applications of Panax ginseng and ginsenosides: A review for use in cardiovascular diseases.J. Ginseng Res.201842326426910.1016/j.jgr.2017.10.00429983607
    [Google Scholar]
  42. SiddiqiM.H. SiddiqiM.Z. AhnS. KangS. KimY.J. SathishkumarN. YangD.U. YangD.C. Ginseng saponins and the treatment of osteoporosis: Mini literature review.J. Ginseng Res.201337326126810.5142/jgr.2013.37.26124198650
    [Google Scholar]
  43. KimH.R. CuiY. HongS.J. ShinS.J. KimD.S. KimN.M. SoS.H. LeeS.K. KimE.C. ChaeS.W. ChaeH.J. Effect of ginseng mixture on osteoporosis in ovariectomized rats.Immunopharmacol. Immunotoxicol.200830233334510.1080/0892397080194912518569088
    [Google Scholar]
  44. GonzalesG.F. GonzalesC. Gonzales-CastañedaC. Lepidium meyenii (Maca): A plant from the highlands of Peru–from tradition to science.Res. Complement. Med.200916637338010.1159/00026461820090350
    [Google Scholar]
  45. GonzalesG.F. CórdovaA. VegaK. ChungA. VillenaA. GóñezC. Effect of Lepidium meyenii (Maca), a root with aphrodisiac and fertility-enhancing properties, on serum reproductive hormone levels in adult healthy men.J. Endocrinol.2003176116316810.1677/joe.0.176016312525260
    [Google Scholar]
  46. OshimaM. GuY. TsukadaS. Effects of Lepidium meyenii Walp and Jatropha macrantha on blood levels of estradiol-17 β, progesterone, testosterone and the rate of embryo implantation in mice.J. Vet. Med. Sci.200365101145114610.1292/jvms.65.114514600359
    [Google Scholar]
  47. ChaudharyM. SharmaV. BediO. KaurA. SinghT.G. SGK-1 signalling pathway is a key factor in cell survival in ischemic injury.Curr. Drug Targets202324141117112610.2174/011389450123994823101307290137904552
    [Google Scholar]
  48. ZhangY. YuL. AoM. JinW. Effect of ethanol extract of Lepidium meyenii Walp. on osteoporosis in ovariectomized rat.J. Ethnopharmacol.20061051-227427910.1016/j.jep.2005.12.01316466876
    [Google Scholar]
  49. SuraiP. Silymarin as a natural antioxidant: An overview of the current evidence and perspectives.Antioxidants20154120424710.3390/antiox401020426785346
    [Google Scholar]
  50. KarimiG. VahabzadehM. LariP. RashediniaM. MoshiriM. “Silymarin”, a promising pharmacological agent for treatment of diseases.Iran. J. Basic Med. Sci.201114430831723492971
    [Google Scholar]
  51. KimJ.L. KimY.H. KangM.K. GongJ.H. HanS.J. KangY.H. Antiosteoclastic activity of milk thistle extract after ovariectomy to suppress estrogen deficiency-induced osteoporosis.BioMed Res. Int.2013201311110.1155/2013/91937423781510
    [Google Scholar]
  52. AnwarF. LatifS. AshrafM. GilaniA.H. Moringa oleifera: A food plant with multiple medicinal uses.Phytother. Res.2007211172510.1002/ptr.202317089328
    [Google Scholar]
  53. BuraliS.C. KangralkarV. SravaniO.S. PatilS.L. The beneficial effect of ethanolic extract of Moringa oleifera on osteoporosis.Int. J. Pharm. Appl.2010115058
    [Google Scholar]
  54. BrownJ. MerrittE. MowaC.N. McAnultyS. Effect of Moringa oleifera on bone density in post menopausal women.FASEB J.201630S110.1096/fasebj.30.1_supplement.678.21
    [Google Scholar]
  55. IslamZ. IslamS.M.R. HossenF. Mahtab-ul-IslamK. HasanM.R. KarimR. Moringa oleifera is a prominent source of nutrients with potential health benefits.Int. J. Food Sci.2021202111110.1155/2021/662726534423026
    [Google Scholar]
  56. ZervakisG.I. VenturellaG. PapadopoulouK. Genetic polymorphism and taxonomic infrastructure of the Pleurotus eryngii species-complex as determined by RAPD analysis, isozyme profiles and ecomorphological characters.Microbiology2001147113183319410.1099/00221287‑147‑11‑318311700370
    [Google Scholar]
  57. ShamtsyanM. KonusovaV. MaksimovaY. GoloshchevA. PanchenkoA. SimbirtsevA. PetrishchevN. DenisovaN. Immunomodulating and anti-tumor action of extracts of several mushrooms.J. Biotechnol.20041131-3778310.1016/j.jbiotec.2004.04.03415380649
    [Google Scholar]
  58. AhnM.S. KimH.J. SeoM.S. Physicochemical characteristics of ethanol extracts from each part of the Pleurotus eryngii.J. Kor. Soci. Food Cult.2006213297302
    [Google Scholar]
  59. UpadhyayR.K. Nutraceutical, pharmaceutical and therapeutic uses of Allium cepa: A review.Int. J. Green Pharm.20161014664
    [Google Scholar]
  60. TeshikaJ.D. ZakariyyahA.M. ZaynabT. ZenginG. RengasamyK.R. PandianS.K. FawziM.M. Traditional andmodern uses of onion bulb (Allium cepa L.): A systematic review.Criti. Revi. Food Sci. Nutri.201959(sup1)S39S70
    [Google Scholar]
  61. TangC.H. HuangT.H. ChangC.S. FuW.M. YangR.S. Water solution of onion crude powder inhibits RANKL-induced osteoclastogenesis through ERK, p38 and NF-κB pathways.Osteoporos. Int.20092019310310.1007/s00198‑008‑0630‑218506384
    [Google Scholar]
  62. ShayganniaE. BahmaniM. ZamanzadB. Rafieian-KopaeiM. A review study on Punica granatum L. J.Evid. Based Compl. Altern. Med.201621322122710.1177/215658721559803926232244
    [Google Scholar]
  63. SpilmontM. LéotoingL. DaviccoM.J. LebecqueP. Miot-NoiraultE. PiletP. RiosL. WittrantY. CoxamV. Pomegranate peel extract prevents bone loss in a preclinical model of osteoporosis and stimulates osteoblastic differentiation in vitro.Nutrients20157119265928410.3390/nu711546526569295
    [Google Scholar]
  64. SpilmontM. LéotoingL. DaviccoM.J. LebecqueP. MercierS. Miot-NoiraultE. PiletP. RiosL. WittrantY. CoxamV. Pomegranate and its derivatives can improve bone health through decreased inflammation and oxidative stress in an animal model of postmenopausal osteoporosis.Eur. J. Nutr.20145351155116410.1007/s00394‑013‑0615‑624232379
    [Google Scholar]
  65. LimT.K. Punica granatum: Edible medicinal and non-medicinal plants.Fruits20135136194
    [Google Scholar]
  66. AdomėnienėA. VenskutonisP.R. Dioscorea spp.: Comprehensive review of antioxidant properties and their relation to phytochemicals and health benefits.Molecules2022278253010.3390/molecules2708253035458730
    [Google Scholar]
  67. PengK.Y. HorngL.Y. SungH.C. HuangH.C. WuR.T. Antiosteoporotic activity of Dioscorea alata L. cv. phyto through driving mesenchymal stem cells differentiation for bone formation.Evid. Based Compl. Alternat. Med.20112011171289210.1155/2011/71289221760825
    [Google Scholar]
  68. TasminatunS. Nurul MakiyahS.N. The effect of ethanolic extract of purple yam tuber (Dioscorea alata L.) on bone calcium levels in ovariectomized. Rat. J. Health.Med. Nurs.201517
    [Google Scholar]
  69. DuttaB. Food and medicinal values of certain species of Dioscorea with special reference to Assam.J. Pharmacogn. Phytochem.2015351518
    [Google Scholar]
  70. SalehiB. SenerB. KilicM. Sharifi-RadJ. NazR. YousafZ. MudauF.N. FokouP.V.T. EzzatS.M. El BishbishyM.H. TaheriY. LucarielloG. DurazzoA. LucariniM. SuleriaH.A.R. SantiniA. Dioscorea plants: A genus rich in vital nutra-pharmaceuticals-A review.Iran. J. Pharm. Res.201918Suppl. 1688932802090
    [Google Scholar]
  71. RossoB.S. PaganoE.M. Evaluation of introduced and naturalised populations of red clover (Trifolium pratense L.) at Pergamino EEA-INTA, Argentina.Genet. Resour. Crop Evol.200552550751110.1007/s10722‑005‑0777‑z
    [Google Scholar]
  72. DornstauderE. JisaE. UnterriederI. KrennL. KubelkaW. JungbauerA. Estrogenic activity of two standardized red clover extracts (Menoflavon®) intended for large scale use in hormone replacement therapy.J. Steroid Biochem. Mol. Biol.2001781677510.1016/S0960‑0760(01)00075‑911530286
    [Google Scholar]
  73. OcchiutoF. PasqualeR.D. GuglielmoG. PalumboD.R. ZanglaG. SamperiS. RenzoA. CircostaC. Effects of phytoestrogenic isoflavones from red clover (Trifolium pratense L.) on experimental osteoporosis.Phytother. Res.200721213013410.1002/ptr.203717117453
    [Google Scholar]
  74. ZałuskiD. OlechM. GalantyA. VerpoorteR. KuźniewskiR. NowakR. Bogucka-KockaA. Phytochemical content and pharma-nutrition study on Eleutherococcus senticosus fruits intractum.Oxid. Med. Cell. Longev.201620161927069110.1155/2016/927069127843534
    [Google Scholar]
  75. LimD. KimJ. LeeY. ChaS. KimY. Preventive effects of Eleutherococcus senticosus bark extract in OVX-induced osteoporosis in rats.Molecules20131877998800810.3390/molecules1807799823884131
    [Google Scholar]
  76. YangX. ChangZ. MaR. GuoH. ZhaoQ. WangX. KongL. HaoD. Eleutherococcus senticosus inhibits RANKL-induced osteoclast formation by attenuating the NF-κB and MAPKs signaling pathway.Int. J. Clin. Exp. Pathol.20171045144521
    [Google Scholar]
  77. Guil-GuerreroJ.L. Rebolloso-FuentesM.M. IsasaM.E.T. Fatty acids and carotenoids from stinging nettle (Urtica dioica L.).J. Food Compos. Anal.200316211111910.1016/S0889‑1575(02)00172‑2
    [Google Scholar]
  78. PinelliP. IeriF. VignoliniP. BacciL. BarontiS. RomaniA. Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica dioica L.J. Agric. Food Chem.200856199127913210.1021/jf801552d18778029
    [Google Scholar]
  79. IrginC. ÇörekçiB. OzanF. HalicioğluK. ToptaşO. Birinci YildirimA. TürkerA. YilmazF. Does stinging nettle (Urtica dioica) have an effect on bone formation in the expanded inter-premaxillary suture?Arch. Oral Biol.201669131810.1016/j.archoralbio.2016.05.00327209059
    [Google Scholar]
  80. GuptaR. SinghM. KumarM. KumarS. SinghS.P. Anti-osteoporotic effect of Urtica dioica on ovariectomised rat.Ind. J. Res. Pharm. Biotechnol.2014211015
    [Google Scholar]
  81. LimT.K. Edible medicinal and non-medicinal plants 1st Ed.;Springer Dordrecht: The Netherlands,20121, p. 83510.1007/978‑90‑481‑8661‑7
    [Google Scholar]
  82. ChunlingZ. ZhexingW. Studies on the constituents of Cibotium barometz (L.) J. Sm. rhizome.Zhongguo Yaowu Huaxue Zazhi2001115279280
    [Google Scholar]
  83. ZhaoX. WuZ.X. ZhangY. YanY.B. HeQ. CaoP.C. LeiW. Anti-osteoporosis activity of Cibotium barometz extract on ovariectomy-induced bone loss in rats.J. Ethnopharmacol.201113731083108810.1016/j.jep.2011.07.01721782010
    [Google Scholar]
  84. HuangD. HouX. ZhangD. ZhangQ. YanC. Two novel polysaccharides from rhizomes of Cibotium barometz promote bone formation via activating the BMP2/SMAD1 signaling pathway in MC3T3-E1 cells.Carbohydr. Polym.202023111573210.1016/j.carbpol.2019.11573231888819
    [Google Scholar]
  85. MishraJ.N. VermaN.K. Asparagus racemosus: Chemical constituents and pharmacological activities: A review.Eur. J. Biomed. Pharm. Sci.20174207213
    [Google Scholar]
  86. ChitmeH.R. MuchandiI.S. BurliS.C. Effect of Asparagus racemosus willd root extract on ovariectomized rats.Open Nat. Prod. J.20092162310.2174/1874848100902010016
    [Google Scholar]
  87. AlokS. JainSK VermaA. KumarM. MahorA. SabharwalM. Plant profile, phytochemistry and pharmacology of Asparagus racemosus: A review.Asi. Pac. J. Trop. Dis.20133324225110.1016/S2222‑1808(13)60049‑3
    [Google Scholar]
  88. AsgarpanahJ. KazemivashN. Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L.Chin. J. Integr. Med.201319215315910.1007/s11655‑013‑1354‑523371463
    [Google Scholar]
  89. AlamM.R. KimS.M. LeeJ.I. ChonS.K. ChoiS.J. ChoiI.H. KimN.S. Effects of Safflower seed oil in osteoporosis induced-ovariectomized rats.Am. J. Chin. Med.200634460161210.1142/S0192415X0600413216883631
    [Google Scholar]
  90. LongM.C. KrebsS.L. HokansonS.C. Susceptibility of deciduous azalea cultivars to powdery mildew disease.HortScience2004394773A77310.21273/HORTSCI.39.4.773A
    [Google Scholar]
  91. RougheadZ.K.F. HuntJ.R. JohnsonL.K. BadgerT.M. LykkenG.I. Controlled substitution of soy protein for meat protein: effects on calcium retention, bone, and cardiovascular health indices in postmenopausal women.J. Clin. Endocrinol. Metab.200590118118910.1210/jc.2004‑039315483071
    [Google Scholar]
  92. DasA.S. MukherjeeM. MitraC. Evidence for a prospective anti-osteoporosis effect of black tea (Camellia Sinensis) extract in a bilaterally ovariectomized rat model.Asia Pac. J. Clin. Nutr.200413221021615228990
    [Google Scholar]
  93. DasA.S. DasD. MukherjeeM. MukherjeeS. MitraC. Phytoestrogenic effects of black tea extract (Camellia sinensis) in an oophorectomized rat (Rattus norvegicus) model of osteoporosis.Life Sci.200577243049305710.1016/j.lfs.2005.02.03515996685
    [Google Scholar]
  94. GheorgheG. TothP.P. BungauS. BehlT. IlieM. Pantea StoianA. BratuO.G. BacalbasaN. RusM. DiaconuC.C. Cardiovascular risk and statin therapy considerations in women.Diagnostics202010748310.3390/diagnostics1007048332708558
    [Google Scholar]
  95. ChopraB. DhingraA.K. DharK.L. Psoralea corylifolia L. (Buguchi) — Folklore to modern evidence : ReviewFitoterapia201390445610.1016/j.fitote.2013.06.01623831482
    [Google Scholar]
  96. ShrivastavS. SindhuR. KumarS. KumarP. Anti-psoriatic and phytochemical evaluation of Thespesia populnea bark extracts.Int. J. Pharm. Pharm. Sci.2009117685
    [Google Scholar]
  97. AlamF. KhanG.N. AsadM.H.H.B. Psoralea corylifolia L: Ethnobotanical, biological, and chemical aspects: A review.Phytother. Res.201832459761510.1002/ptr.600629243333
    [Google Scholar]
  98. European Medicines Agency European Medicines Agency. Cimicifugae rhizoma - herbal medicinal product.Available from: https://www.ema.europa.eu/en/medicines/herbal/cimicifugae-rhizoma (Accessed on: 12 Mar 2024)
  99. BianZ. ZhangR. ZhangX. ZhangJ. XuL. ZhuL. MaY. LiuY. Extraction, structure and bioactivities of polysaccharides from Rehmannia glutinosa: A review.J. Ethnopharmacol.202330511613210.1016/j.jep.2022.11613236634722
    [Google Scholar]
  100. SpenceC. Cinnamon: The historic spice, medicinal uses, and flavour chemistry.Int. J. Gastron. Food Sci.20231100858
    [Google Scholar]
  101. OzturkM. EgamberdievaD. PešićM.,Eds Biodiversity and biomedicine: Our future, 1st Ed.; Academic Press: Elsevier B.V.,2020p. 60810.1016/C2018‑0‑05105‑1
    [Google Scholar]
  102. FernandezR.D. CeballosS.J. AragónR. MaliziaA. MonttiL. Whitworth-HulseJ.I. Castro-DíezP. GrauH.R. A global review of Ligustrum lucidum (OLEACEAE) invasion.Bot. Rev.20208629311810.1007/s12229‑020‑09228‑w32836310
    [Google Scholar]
  103. KumarP. KamleM. MahatoD.K. BoraH. SharmaB. RasaneP. BajpaiV.K. Tinospora cordifolia (Giloy): Phytochemistry, ethnopharmacology, clinical application and conservation strategies.Curr. Pharm. Biotechnol.202021121165117510.2174/138920102166620043011454732351180
    [Google Scholar]
  104. SzymczakJ. Grygiel-GórniakB. Cielecka-PiontekJ. Zingiber officinale Roscoe: The antiarthritic potential of a popular spice-preclinical and clinical evidence.Nutrients202416574110.3390/nu1605074138474869
    [Google Scholar]
  105. EklareR.R. BiradarM.M. ChavanA.S. ChavhanV.K. ChopadeA.G. A review on application and scopes for dosage forms of cissus quadrangularis extracts.Int. J. Pharma Sci.20242011
    [Google Scholar]
  106. LiY. WangY. DuX. ZhaoC. HeP. MengF. Spatial distribution dynamics for Epimedium brevicornum Maxim. from 1970 to 2020.Ecol. Evol.2024142e1101010.1002/ece3.1101038390006
    [Google Scholar]
  107. LiL. XuH. QuL. NisarM. Farrukh NisarM. LiuX. XuK. Water extracts of Polygonum Multiflorum Thunb. and its active component emodin relieves osteoarthritis by regulating cholesterol metabolism and suppressing chondrocyte inflammation.Acupuncture Herb. Med.2023329610610.1097/HM9.0000000000000061
    [Google Scholar]
  108. ChandrasekharG. ShuklaM. KaulG.K.R. ChopraS. PandeyR. Characterization and antimicrobial evaluation of anthraquinones and triterpenes from Rubia cordifolia.J. Asian Nat. Prod. Res.202325111110111610.1080/10286020.2023.219369837010931
    [Google Scholar]
  109. GuoN. ChenZ. CaoS.Q. ShangF.D. Sophora japonica L. bioactives: Chemistry, sources, and processing techniques.Food Front.2024531166118710.1002/fft2.367
    [Google Scholar]
  110. AdibA.M. SalminN.N. KasimN. LingS.K. CordellG.A. IsmailN.H. The metabolites of Piper sarmentosum and their biological properties: A recent update.Phytochem. Rev.2024113310.1007/s11101‑024‑09930‑2
    [Google Scholar]
  111. PotenzaM.A. MontagnaniM. SantacroceL. CharitosI.A. BottalicoL. Ancient herbal therapy: A brief history of Panax ginseng.J. Ginseng Res.202347335936510.1016/j.jgr.2022.03.00437252279
    [Google Scholar]
  112. Ulloa del CarpioN. Alvarado-CorellaD. Quiñones-LaverianoD.M. Araya-SibajaA. Vega-BaudritJ. Monagas-JuanM. Navarro-HoyosM. Villar-LópezM. Exploring the chemical and pharmacological variability of Lepidium meyenii: A comprehensive review of the effects of maca.Front. Pharmacol.202415136042210.3389/fphar.2024.136042238440178
    [Google Scholar]
  113. ElnesrS.S. ElwanH.A.M. El SabryM.I. ShehataA.M. The nutritional importance of milk thistle (Silybum marianum) and its beneficial influence on poultry.Worlds Poult. Sci. J.202379475176810.1080/00439339.2023.2234339
    [Google Scholar]
  114. CamilleriE. BlundellR. A comprehensive review of the phytochemicals, health benefits, pharmacological safety and medicinal prospects of Moringa oleifera.Heliyon2024106e2780710.1016/j.heliyon.2024.e27807
    [Google Scholar]
  115. HeA. XuJ. HuQ. ZhaoL. MaG. ZhongL. LiuR. Effects of gums on 3D printing performance of Pleurotus eryngii powder.J. Food Eng.202335111151410.1016/j.jfoodeng.2023.111514
    [Google Scholar]
  116. AliasC. ZerbiniI. FerettiD. A scoping review of recent advances in the application of comet assay to Allium cepa roots.Environ. Mol. Mutagen.202364526428110.1002/em.2255337235708
    [Google Scholar]
  117. DimitrijevicJ. TomovicM. BradicJ. PetrovicA. JakovljevicV. AndjicM. ŽivkovićJ. MiloševićS.Đ. SimanicI. DragicevicN. Punica granatum L. (Pomegranate) extracts and their effects on healthy and diseased skin.Pharmaceutics202416445810.3390/pharmaceutics1604045838675119
    [Google Scholar]
  118. WallaceK. WrightR. Williams-LongmoreM. WrightS.G. AsemotaH. Phytochemical content and anticancer activity of Jamaican dioscorea alata cv.White Yam Extracts. Separations.202411244
    [Google Scholar]
  119. Al-ShamiA.S. EssawyA.E. ElkaderH.T.A.E.A. Molecular mechanisms underlying the potential neuroprotective effects of Trifolium pratense and its phytoestrogen‐isoflavones in neurodegenerative disorders.Phytother. Res.20233762693273710.1002/ptr.787037195042
    [Google Scholar]
  120. SharmaV. SinghT.G. Drug induced nephrotoxicity- A mechanistic approach.Mol. Biol. Rep.20235086975698610.1007/s11033‑023‑08573‑437378746
    [Google Scholar]
  121. FristiohadyA. Al-RamadanW. AsasutjaritR. JulianL.O. Pytochemistry, pharmacology and medicinal uses of Carthamus tinctorius Linn: An updated review.Biointerface Res. Appl. Chem.202313441
    [Google Scholar]
  122. ŁotockaB. BączekK. Anatomy of vegetative organs of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (Araliaceae).Flora202431415247010.1016/j.flora.2024.152470
    [Google Scholar]
  123. RamlalA. MehtaS. NautiyalA. BawejaP. SharmaD. LalS.K. VijayanR. RajuD. SubramaniamS. RajendranA. Androgenesis in soybean (Glycine max (L.) Merr.): A critical revisit.In Vitro Cell. Develop. Biol. Plant20246081510.1007/s11627‑023‑10402‑z
    [Google Scholar]
  124. ĐurovićS. KojićI. RadićD. SmyatskayaY.A. BazarnovaJ.G. FilipS. TostiT. Chemical constituents of stinging nettle (Urtica dioica L.): A comprehensive review on phenolic and polyphenolic compounds and their bioactivity.Int. J. Mol. Sci.2024256343010.3390/ijms2506343038542403
    [Google Scholar]
  125. BoroughaniM. TahmasbiZ. HeidariM.M. JohariM. HashempurM.H. HeydariM. Potential therapeutic effects of green tea (Camellia sinensis) in eye diseases, a review.Heliyon2024107e2882910.1016/j.heliyon.2024.e2882938601618
    [Google Scholar]
  126. JiZ. FanB. ChenY. YueJ. ChenJ. ZhangR. TongY. LiuZ. LiangJ. DuanL. Functional characterization of triterpene synthases in Cibotium barometz.Synth. Syst. Biotechnol.20238343744410.1016/j.synbio.2023.06.00537416896
    [Google Scholar]
  127. SinghN. GargM. PrajapatiP. SinghP.K. ChopraR. KumariA. MittalA. Adaptogenic property of Asparagus racemosus: Future trends and prospects.Heliyon202394e1493210.1016/j.heliyon.2023.e1493237095959
    [Google Scholar]
/content/journals/cwhr/10.2174/0115734048323452241203180545
Loading
/content/journals/cwhr/10.2174/0115734048323452241203180545
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test