Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

There is no abstract available.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/156802662501241212145625
2024-12-12
2025-09-04
Loading full text...

Full text loading...

/deliver/fulltext/ctmc/25/1/CTMC-25-1-02.html?itemId=/content/journals/ctmc/10.2174/156802662501241212145625&mimeType=html&fmt=ahah

References

  1. AnastasP. EghbaliN. Green chemistry: Principles and practice.Chem. Soc. Rev.201039301312
    [Google Scholar]
  2. BanerjeeB. BhardwajV. KaurA. KaurG. SinghA. Catalytic applications of saccharin and its derivatives in organic synthesis.Curr. Org. Chem.20192331913205
    [Google Scholar]
  3. KaurG. DeviP. ThakurS. KumarA. ChandelR. BanerjeeB. Magnetically separable transition metal ferrites: versatile heterogeneous nano-catalysts for the synthesis of diverse bioactive heterocycles.ChemistrySelect2019421812199
    [Google Scholar]
  4. KaurG. SharmaA. BanerjeeB. Ultrasound and ionic liquid: An ideal combination for organic transformations.ChemistrySelect2018352835295
    [Google Scholar]
  5. BanerjeeB. Ultrasound and nano-catalysts: An ideal and sustainable combination to carry out diverse organic transformations.ChemistrySelect2019424842500
    [Google Scholar]
  6. KaurM. KaurM. BandopadhyayT. SharmaA. PriyaA. SinghA. BanerjeeB. Naturally occurring, natural product inspired and synthetic heterocyclic anti-cancer drugs.Phys. Sci. Rev.2023833933446
    [Google Scholar]
  7. BanerjeeB. TajtiA. KeglevichG. Ultrasound-assisted synthesis of organophosphorus compounds.In 'Organophosphorus chemistry: novel developments.’ Eds by György Keglevich2018248263Berlin, Boston: De Gruyter
    [Google Scholar]
  8. BanerjeeB. Recent developments on organo-bycyclo-bases catalyzed multicomponent synthesis of biologically relevant heterocycles.Curr. Org. Chem.201822208233
    [Google Scholar]
  9. BanerjeeB. SinghA. KaurM. PriyaA. SharmaA. Synthesis of biologically promising spiroheterocycles through electrolysis.Curr. Green Chem.in press202510.2174/0122133461332614240919091051
    [Google Scholar]
  10. BanerjeeB. KaurM. PriyaA. SharmaA. SinghA. Ionic liquid promoted synthesis of structurally diverse pyrans, pyran annulated heterocycles and spiropyrans.Curr. Org. Chem.202428526544
    [Google Scholar]
  11. BanerjeeB. SinghA. SharmaA. PriyaA. KaurM. KaurG. Ultrasound-assisted synthesis of biologically promising organoselenium scaffolds.Curr. Org. Chem.202327568579
    [Google Scholar]
  12. BanerjeeB. SharmaA. KaurG. PriyaA. KaurM. SinghA. Latest developments on the synthesis of bioactive organotellurium scaffolds.Phys. Sci. Rev.2023846114629
    [Google Scholar]
  13. BanerjeeB. SinghA. KaurG. Baker’s yeast (Saccharomyces cerevisiae) catalyzed synthesis of bioactive heterocycles and some stereoselective reactions.Phys. Sci. Rev.20227301323
    [Google Scholar]
  14. BanikB.K. BanerjeeB. KaurG. SarochS. KumarR. Tetrabutylammonium bromide (TBAB) catalyzed synthesis of bioactive heterocycles.Molecules202025591810.3390/molecules25245918
    [Google Scholar]
  15. Aqueous-Mediated Synthesis: Bioactive Heterocycles. Eds by Asit K. Chakraborti and Bubun BanerjeeDe Gruyter publisher Germany.2024
    [Google Scholar]
  16. Non-Conventional Synthesis: Bioactive Heterocycles. Eds by Gyorgy Keglevich and Bubun BanerjeeDe Gruyter publisher Germany2023
    [Google Scholar]
  17. Non-Metal Catalyzed Synthesis: Bioactive Heterocycles. Eds by Yunfei Du and Bubun Banerjee2023De Gruyter publisher, Germany.
    [Google Scholar]
  18. Solvent-Free Synthesis: Bioactive Heterocycles. Eds by Sreekantha B. Jonnalagadda and Bubun Banerjee2023De Gruyter publisher, Germany.
    [Google Scholar]
  19. MulticomponentSynthesis Bioactive Heterocycles Eds by Basudeb Basu and Bubun Banerjee2023De Gruyter publisher, Germany
    [Google Scholar]
  20. Non-conventional Solvents: Organic Synthesis, Natural Products Isolation, Drug Design, Industry and the Environment. Eds by Chhanda Mukhopadhyay and Bubun Banerjee2023De Gruyter publisher, Germany
    [Google Scholar]
  21. Non-conventional Solvents: Ionic Liquids, Deep Eutectic Solvents, Crown Ethers, Fluorinated Solvents, Glycols and Glycerol. Eds by Chhanda Mukhopadhyay and Bubun Banerjee2023De Gruyter publisher, Germany.
    [Google Scholar]
  22. MagneticNanocatalysis Synthetic Applications Eds by Rajender S. Varma and Bubun Banerjee2022De Gruyter publisher, Germany.
    [Google Scholar]
  23. Organocatalysis: A green tool for sustainable developments’ Editor Bimal Krishna Banik and Bubun Banerjee2022De Gruyter publisher, Germany
    [Google Scholar]
  24. Aqueous mediated heterogeneous catalysis. Editors Asit Kumar Chakraborti and Bubun Banerjee2022De Gruyter publisher Germany
    [Google Scholar]
  25. Green bond forming reactions: Carbon-carbon and Carbon-heteroatom’. Eds by Rakesh Kumar Sharma and Bubun Banerjee2022De Gruyter publisher, Germany
    [Google Scholar]
  26. Green bond forming reactions: Synthesis of bioactive scaffolds’. Eds by Rakesh Kumar Sharma and Bubun Banerjee.2022De Gruyter publisher, Germany
    [Google Scholar]
  27. BanerjeeB. Non-conventional approaches towards various organic transformations -(Part I).Curr. Org. Chem.202327557558
    [Google Scholar]
  28. BanerjeeB. Non-conventional approaches towards various organic transformations -(Part II).Curr. Org. Chem.202327983984
    [Google Scholar]
  29. BanerjeeB. Microwave-assisted synthesis of bioactive heterocycles.Curr. Microwave Chem.2023106769
    [Google Scholar]
  30. BanerjeeB. Green synthesis of bioactive heterocycles-Part 1B.Curr. Green Chem.20231034
    [Google Scholar]
  31. BanerjeeB. Role of the heterocycles to design anti-cancer agents.Anticancer. Agents Med. Chem.20222231943195
    [Google Scholar]
  32. BanerjeeB. Green synthesis of bioactive heterocycles-Part 1A.Curr. Green Chem.20229124126
    [Google Scholar]
  33. BanerjeeB. Microwave-assisted carbon-carbon and carbon-heteroatom bond forming reactions - Part 1A.Curr. Microwave Chem.2020734
    [Google Scholar]
  34. BanerjeeB. Microwave-assisted carbon-carbon and carbon-heteroatom bond forming reactions - Part 1B.Curr. Microwave Chem.202078485
    [Google Scholar]
  35. BanerjeeB. Carbon-carbon and carbon-heteroatom bond-forming reactions under greener conditions-part 1B.Curr. Org. Chem.20202423
    [Google Scholar]
  36. BanerjeeB. Organic transformations by following green credentials-part 1B.Curr. Green Chem.2020734
    [Google Scholar]
  37. BanerjeeB. Organic transformations by following green credentials-Part 1A.Curr. Green Chem.20196154
    [Google Scholar]
  38. PellissierH. Green synthesis of biorelevant scaffolds through organocatalytic/enzymatic dynamic kinetic resolution.Curr. Top. Med. Chem.202525434
    [Google Scholar]
  39. Geszke-MoritzM. NowakG. MoritzM. FeistB. NyczJ.E. Role of plant materials with anti-inflammatory effects in phytotherapy of osteoarthritis.Curr. Top. Med. Chem.2025253546
    [Google Scholar]
  40. FarooqS. NgainiZ. Facile synthesis and applications of flavonoid-heterocyclic derivatives.Curr. Top. Med. Chem.2025254762
    [Google Scholar]
  41. BanikB.K. BanerjeeB. Heterocyclic Anticancer Agents. Editors Bimal Krishna Banik and Bubun Banerjee2022De Gruyter publisher Germany
    [Google Scholar]
  42. MajhiS. Recent advances in nanocatalyzed one-pot sustainable synthesis of bioactive N,N-heterocycles with anticancer activities: An outlook of medicinal chemistry.Curr. Top. Med. Chem.2025256395
    [Google Scholar]
  43. BanerjeeB. SharmaA. Multicomponent synthesis of isatin-based bioactive heterocycles.Adv. Heterocyclic Chem.2024142170
    [Google Scholar]
  44. BanerjeeB. SharmaA. SinghA. KaurM. PriyaA. Synthesis of isatin-derived heterocycles with promising anticancer activities.Curr. Top. Med. Chem.20252596123
    [Google Scholar]
  45. BanerjeeB. KaurG. Recent advances in photo-irradiated synthesis of bioactive heterocycles in Sustainable Organic Synthesis2020407452Eds. Dr. Inamuddin, Rajender Boddula, Abdullah M. Asiri. Elsevier, Netherlands.
    [Google Scholar]
  46. GhoshT. SantraS. ZyryanovG.V. RanuB.C. ‘Recent developments on the synthesis of oxygen- and sulfur-containing heterocycles and their derivatives under visible light induced reactions.Curr. Top. Med. Chem.202525124140
    [Google Scholar]
  47. VianaL.P.S. PinheiroL.R. PetrilloL.W. MedeirosI.G. RizoT.G. ModoloL.V. da SilvaC.M. de FátimaÂ. Hydroxamic acids derivatives: Greener synthesis, antiureolytic properties and potential medicinal chemistry applications - A concise review.Curr. Top. Med. Chem.202525141161
    [Google Scholar]
/content/journals/ctmc/10.2174/156802662501241212145625
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test