Skip to content
2000
Volume 20, Issue 27
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background: Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that play a key role in both physiological and pathological tissue degradation. MMPs have reportedly shown great potentials in the degradation of the Extracellular Matrix (ECM), have shown great potentials in targeting bioactive and imaging agents in cancer treatment. MMPs could provoke Epithelial to Mesenchymal Transition (EMT) of cancer cells and manipulate their signaling, adhesion, migration and invasion to promote cancer cell aggressiveness. Therefore, targeting and particularly inhibiting MMPs within the tumor microenvironment is an effective strategy for cancer treatment. Based on this idea, different MMP inhibitors (MMPIs) have been developed to manipulate the tumor microenvironment towards conditions appropriate for the actions of antitumor agents. Studies are ongoing to improve the selectivity and specificity of MMPIs. Structural optimization has facilitated the discovery of selective inhibitors of the MMPs. However, so far no selective inhibitor for MMP-7 has been proposed. Aims: This study aims to comprehensively review the potentials and advances in applications of MMPs particularly MMP-7 in targeted cancer treatment approaches with the main focus on targeted drug delivery. Different targeting strategies for manipulating and inhibiting MMPs for the treatment of cancer are discussed. MMPs are upregulated at all stages of expression in cancers. Different MMP subtypes have shown significant targeting applicability at the genetic, protein, and activity levels in both physiological and pathophysiological conditions in a variety of cancers. The expression of MMPs significantly increases at advanced cancer stages, which can be used for controlled release in cancers in advance stages. Methods: Moreover, this study presents the synthesis and characteristics of a new and highly selective inhibitor against MMP-7 and discusses its applications in targeted drug delivery systems for therapeutics and diagnostics modalities. Results: Our findings showed that the structure of the inhibitor P3’ side chains play the crucial role in developing an optimized MMP-7 inhibitor with high selectivity and significant degradation activities against ECM. Conclusion: Optimized NDC can serve as a highly potent and selective inhibitor against MMP-7 following screening and optimization of the P3’ side chains, with a Ki of 38.6 nM and an inhibitory selectivity of 575 of MMP-7 over MMP-1.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/1568026620666200722104928
2020-10-01
2025-12-19
Loading full text...

Full text loading...

/content/journals/ctmc/10.2174/1568026620666200722104928
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test