Skip to content
2000
Volume 20, Issue 18
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background: Graph edit distance is a methodology used to solve error-tolerant graph matching. This methodology estimates a distance between two graphs by determining the minimum number of modifications required to transform one graph into the other. These modifications, known as edit operations, have an edit cost associated that has to be determined depending on the problem. Objective: This study focuses on the use of optimization techniques in order to learn the edit costs used when comparing graphs by means of the graph edit distance. Methods: Graphs represent reduced structural representations of molecules using pharmacophore-type node descriptions to encode the relevant molecular properties. This reduction technique is known as extended reduced graphs. The screening and statistical tools available on the ligand-based virtual screening benchmarking platform and the RDKit were used. Results: In the experiments, the graph edit distance using learned costs performed better or equally good than using predefined costs. This is exemplified with six publicly available datasets: DUD-E, MUV, GLL&GDD, CAPST, NRLiSt BDB, and ULS-UDS. Conclusion: This study shows that the graph edit distance along with learned edit costs is useful to identify bioactivity similarities in a structurally diverse group of molecules. Furthermore, the target-specific edit costs might provide useful structure-activity information for future drug-design efforts.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/1568026620666200603122000
2020-07-01
2025-12-19
Loading full text...

Full text loading...

/content/journals/ctmc/10.2174/1568026620666200603122000
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test