Skip to content
2000
Volume 17, Issue 26
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Prostate cancer is the most common male cancer in the world. The diagnosis, staging, prognosis and monitoring are usually done with Prostate Specific Antigen (PSA). Biosensors are emerging as a novel analytical technology for PSA detection. They provide several advantages for clinical applications and will benefit clinicians, patients and forensic workers in the future. Among them, electrochemical immunosensors have gained growing interests. Hence, their sensitivity is often improved by modifying them with nanoparticles especially iron oxide (IONP). Functionalized IONP attracted much attention in the fabrication of biosensing systems, due to their multiple properties, such as biocompatibility and signal amplification, and their ability to bind covalently to antibodies via their functional groups. In the present study, two electrochemical immunosensors were investigated for PSA detection. The first one was functionalized with 3- glycidoxypropyltrimethoxysilane self-assembled monolayer, while the second one was based on iron oxide nanoparticles functionalized with 3-aminopropyltriethoxysilane. Square wave voltammetry (SWV) has been investigated to follow-up the PSA detection in a phosphate buffer solution, in an artificial serum and in a human serum. The limit of detection (LOD) of both immunosensors was found of order of 10 fg/ml. When estimated in human serum this value increases up to 50 pg/ml.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/1568026617666170821152757
2017-10-01
2025-09-18
Loading full text...

Full text loading...

/content/journals/ctmc/10.2174/1568026617666170821152757
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test