Skip to content
2000
Volume 17, Issue 19
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Introduction: Mosquito borne diseases continue to propagate and cause millions of deaths annually. They are caused either by protozoan parasites such as Plasmodium, Toxoplasma or by flaviviruses including Dengue and Zika. Among the proteome of such parasitic organisms, proteases play essential roles in events such as host invasion, hemoglobin hydrolysis, replication and immune evasion. Plasmepsin V (PMV), an endoplasmic reticulum resident aspartic protease of Plasmodium spp., is involved in the export of ~400 proteins containing the conserved Plasmodium Export Element motif (PEXEL). Interactions and cleavage of PEXEL proteins by PM V is necessary for export to and across the parasitophorous vacuole membrane. Protease System: Similarly in flaviviruses, a two-component protease system consisting of nonstructural proteins, NS2B and NS3, interacts with other non-structural proteins and plays a major role in viral replication, polyprotein cleavage and virion particle assembly. Thus, proteases involved in indispensable roles in pathogen machinery can be considered as attractive drug targets. Inhibitors against proteases are being used in clinical trials for other communicable and non-communicable diseases. Currently, hydroxyethylamine based inhibitors targeting the catalytic site of PM V with picomolar inhibitory concentrations have been tested in vitro. Conclusion: For recently characterized disease such as Zika, no known treatments exist while compound such as Policresulen has high affinity for Dengue NS2B/NS3 complex. Understanding proteases structure-function relationship and protease-inhibitor interactions can provide new insights for novel chemotherapeutic strategies.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/1568026617666170130122231
2017-07-01
2025-10-10
Loading full text...

Full text loading...

/content/journals/ctmc/10.2174/1568026617666170130122231
Loading

  • Article Type:
    Review Article
Keyword(s): Dengue; Malaria; NS2B-NS3; Plasmepsin V; Protease; Protease Inhibition; Protein Interaction; Zika
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test