Skip to content
2000
Volume 12, Issue 12
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Despite the rapidly growing knowledge of functional and structural information regarding pharmaceutically relevant targets during the past decade, target-based drug discovery has remained a high-cost and low-yield process. Particularly, single-target drugs often turn out to be less effective in treating complicated diseases such as cancers, metabolic disorders and CNS diseases. However, discovering compounds that are effective against multiple desired targets raises an enormous challenge to the current mode of drug innovation. Computational chemogenomics approaches aim at predicting all potential interactions between small molecular ligands and biomolecular targets, thus the derived information can be directly applied to “design in” (i.e. engineer desirable binding spectrum) and “design out” (i.e. eliminate the unwanted interactions) specific biological activities. The present review will focus on introducing the recent methodological development and successful applications of structure-based and ligand-based approaches on predicting the ligand binding profiles, which is the very first and essential step toward rationally designing the multiple-target ligands. Structure-based methods (e.g. binding site mapping and inverse molecular docking) generally require the structures of known targets to navigate the receptor-ligand binding space, while ligand-based approaches (e.g. chemical similarity analysis and pharmacophore search) can only rely on the series of active compounds to derive the structural characteristics for describing certain biological activities.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/156802612801319016
2012-06-01
2025-12-07
Loading full text...

Full text loading...

/content/journals/ctmc/10.2174/156802612801319016
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test