Skip to content
2000
Volume 10, Issue 7
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Cathepsin S has been of increasing interest as a target of medicinal chemistry efforts given its role in modulating antigen-presentation by major histocompatibility class II (MHC II) molecules as well as its involvement in extracellular proteolytic activities. Inhibition of the cathepsin S enzyme reduces degradation of the invariant chain, a crucial chaperon which also blocks peptide-binding by MHC II molecules, thereby decreasing antigen presentation to CD4+ T-cells. Extracellular cathepsin S may also be involved in angiogenesis and initiation and/or maintenance of neuropathic pain by cleavage of the membrane-bound chemokine fractalkine (CX3CL1). Cathepsin S inhibitors have thus been suggested to hold potential as therapeutics for a variety of diseases. The initial development of cathepsin S inhibitors targeted irreversible, covalent inhibitors, but more recently the focus has been on reversible inhibitors, representing both covalent modifiers of the enzyme and, of late, noncovalent inhibitors. This review details advances in cathepsin S inhibitor design as reported in the primary literature since 2006, focusing especially on structure-activity relationships of the various covalent and noncovalent inhibitor series.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/156802610791113432
2010-05-01
2025-12-08
Loading full text...

Full text loading...

/content/journals/ctmc/10.2174/156802610791113432
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test