Skip to content
2000
Volume 7, Issue 16
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Fragment-based screening has recently evolved into a promising strategy in drug discovery, and a range of biophysical methods can be employed for fragment library screening. Relevant approaches, such as X-ray, NMR and tethering are briefly introduced focussing on their suitability for fragment-based drug discovery. In particular the application of surface plasmon resonance (SPR) techniques to the primary screening of large libraries comprising small molecules is discussed in detail. SPR is known to be a powerful tool for studying biomolecular interactions in a sensitive and label-free detection format. Advantages of SPR methods over more traditional assay formats are discussed and the application of available channel and array based SPR systems to biosensing are reviewed. Today, SPR protocols have been applied to secondary screening of compound libraries and hit conformation, but primary screening of large fragment libraries for drug discovery is often hampered by the throughput of available systems. Chemical microarrays, in combination with SPR imaging, can simultaneously generate affinity data for protein targets with up to 9,216 immobilized fragments per array. This approach has proven to be suitable for screening fragment libraries of up to 110,000 compounds in a high throughput fashion. The design of fragment libraries and appropriate immobilization chemistries are discussed, as well as suitable follow-up strategies for fragment hit optimization. Finally, described case studies demonstrate the successful identification of selective low molecular weight inhibitors for pharmacologically relevant drug targets through the SPR screening of fragment libraries.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/156802607782341073
2007-08-01
2025-10-03
Loading full text...

Full text loading...

/content/journals/ctmc/10.2174/156802607782341073
Loading

  • Article Type:
    Research Article
Keyword(s): Fragments; screening; surface plasmon imaging
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test