Skip to content
2000
Volume 25, Issue 21
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Introduction

The programmed cell death (PCD) is crucial in inhibiting cancer cell proliferation and enhancing anti-tumor immune responses. Mining targeted therapeutics for liver hepatocellular carcinoma (LIHC) based on PCD genes and revealing their molecular mechanisms are essential for the development of effective clinical treatments for LIHC.

Methods

Key genes associated with PCD characteristics of LIHC were identified in cancer genome mapping by the weighted gene co-expression network analysis (WGCNA). In this study, the performance and clinical value of key genes were evaluated by the receiver operating characteristic curve (ROC). The relative expressions of genes related to PCD in LIHC cells were measured employing QRT-PCR. The practical regulation of PCD-correlated key genes on the migration and invasion levels of LIHC cells was assessed by transwell and wound healing assays. Functional and pathway characterization of gene sets was performed by Gene Set Enrichment Analysis (GSEA). CIBERSORT was used to assess immune cell infiltration in the samples. DSigDB and AutoDock tools were used for molecular docking of key genes and downstream targeted drugs. Impact omics characterization of the samples was determined by the nomogram.

Results

Three genes, CAMK4, CD200R1, and KCNA3, were screened as key PCD-related genes in LIHC. Cellular experiments verified that CD200R1 knockdown repressed the migration and invasion in LIHC cells. GSEA showed that these three genes were enriched for cytokine release, apoptosis, and other pathways. In immune profiling, we revealed that the three genes were related to the infiltration of immune cells such as CD4+ memory T cells and CD8+ T cells. Molecular docking predicted potential drugs for the three biomarkers, among which CAMK4 was tightly bound to GSK1838705A and had the highest AUC value in the ROC curve. In addition, we constructed a nomogram to accurately assess the imaging features of LIHC.

Discussion

This study provided a new strategy for precision treatment of LIHC by screening key genes associated with PCD in LIHC (CAMK4, CD200R1, and KCNA3), revealing their roles in the regulation of the tumor immune microenvironment and predicting potential target drugs, as well as constructing a diagnostic model based on imaging histology; however, the study did not delve deeper into the long-range drug-target interaction mechanism and lacked molecular dynamics simulation validation, which limited the comprehensiveness of the results.

Conclusion

This study identified key genes associated with PCD in LIHC, revealed its immunoregulatory mechanism, and predicted potential target drugs, providing new ideas for precision treatment and diagnosis of LIHC.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266397340250701110954
2025-07-08
2025-11-09
Loading full text...

Full text loading...

References

  1. Ganne-CarriéN. NahonP. Hepatocellular carcinoma in the setting of alcohol-related liver disease.J. Hepatol.201970228429310.1016/j.jhep.2018.10.00830658729
    [Google Scholar]
  2. ChandaranaC.V. MithaniN.T. SinghD.V. KikaniU.B. Vibrational spectrophotometry: A comprehensive review on the diagnosis of gastric and liver cancer.Curr. Pharm. Anal.202420745346510.2174/0115734129322567240821052326
    [Google Scholar]
  3. MahmudN. FrickerZ. HubbardR.A. IoannouG.N. LewisJ.D. TaddeiT.H. RothsteinK.D. SerperM. GoldbergD.S. KaplanD.E. Risk prediction models for post‐operative mortality in patients with cirrhosis.Hepatology202173120421810.1002/hep.3155832939786
    [Google Scholar]
  4. SensiB. AngelicoR. TotiL. ConteL.E. CoppolaA. TisoneG. ManziaT.M. Mechanism, potential, and concerns of immunotherapy for hepatocellular carcinoma and liver transplantation.Curr. Mol. Pharmacol.202417e1876142931070310.2174/011876142931070324082304580839225204
    [Google Scholar]
  5. WolfE. RichN.E. MarreroJ.A. ParikhN.D. SingalA.G. Use of hepatocellular carcinoma surveillance in patients with cirrhosis: A systematic review and meta‐analysis.Hepatology202173271372510.1002/hep.3130932383272
    [Google Scholar]
  6. ZhangX. JinM. YaoX. LiuJ. YangY. HuangJ. JinG. LiuS. ZhangB. Upregulation of LncRNA WT1-AS inhibits tumor growth and promotes autophagy in gastric cancer via suppression of PI3K/Akt/mTOR pathway.Curr. Mol. Pharmacol.202417e1876142931839810.2174/011876142931839824091806345039592900
    [Google Scholar]
  7. GrandhiM.S. KimA.K. Ronnekleiv-KellyS.M. KamelI.R. GhasebehM.A. PawlikT.M. Hepatocellular carcinoma: From diagnosis to treatment.Surg. Oncol.2016252748510.1016/j.suronc.2016.03.00227312032
    [Google Scholar]
  8. ObengE. Apoptosis (programmed cell death) and its signals - A review.Braz J. Biol.20218141133114310.1590/1519‑6984.22843733111928
    [Google Scholar]
  9. LiuJ. HongM. LiY. ChenD. WuY. HuY. Programmed cell death tunes tumor immunity.Front. Immunol.20221384734510.3389/fimmu.2022.84734535432318
    [Google Scholar]
  10. HsuS.K. LiC.Y. LinI.L. SyueW.J. ChenY.F. ChengK.C. TengY.N. LinY.H. YenC.H. ChiuC.C. Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment.Theranostics202111188813883510.7150/thno.6252134522213
    [Google Scholar]
  11. YaoF. DengY. ZhaoY. MeiY. ZhangY. LiuX. MartinezC. SuX. RosatoR.R. TengH. HangQ. YapS. ChenD. WangY. ChenM.J.M. ZhangM. LiangH. XieD. ChenX. ZhuH. ChangJ.C. YouM.J. SunY. GanB. MaL. A targetable LIFR−NF-κB−LCN2 axis controls liver tumorigenesis and vulnerability to ferroptosis.Nat. Commun.2021121733310.1038/s41467‑021‑27452‑934921145
    [Google Scholar]
  12. LeeS.Y. KimS. SongY. KimN. NoJ. KimK.M. SeoH.R. Sorbitol dehydrogenase induction of cancer cell necroptosis and macrophage polarization in the HCC microenvironment suppresses tumor progression.Cancer Lett.202255121596010.1016/j.canlet.2022.21596036244575
    [Google Scholar]
  13. QinH. AbulaitiA. MaimaitiA. AbulaitiZ. FanG. AiliY. JiW. WangZ. WangY. Integrated machine learning survival framework develops a prognostic model based on inter-crosstalk definition of mitochondrial function and cell death patterns in a large multicenter cohort for lower-grade glioma.J. Transl. Med.202321158810.1186/s12967‑023‑04468‑x37660060
    [Google Scholar]
  14. ChenY. MengZ. ZhangY. XiangZ. Natural Killer Cell- Associated Radiogenomics Model for Hepatocellular Carcinoma: Integrating CD2 and Enhanced CT-Derived Radiomics Signatures.Acad Radiol.20253241981199210.1016/j.acra.2024.10.043.39542805
    [Google Scholar]
  15. LangfelderP. HorvathS. WGCNA: An R package for weighted correlation network analysis.BMC Bioinformatics20089155910.1186/1471‑2105‑9‑55919114008
    [Google Scholar]
  16. WangY. ZhangW. CaiF. TaoY. Integrated bioinformatics analysis identifies vascular endothelial cell-related biomarkers for hypertrophic cardiomyopathy.Congenit Heart Dis.202419665366910.32604/chd.2025.060406
    [Google Scholar]
  17. YiM. NissleyD.V. McCormickF. StephensR.M. ssGSEA score-based Ras dependency indexes derived from gene expression data reveal potential Ras addiction mechanisms with possible clinical implications.Sci. Rep20201011025810.1038/s41598‑020‑66986‑832581224
    [Google Scholar]
  18. VaretH. Brillet-GuéguenL. CoppéeJ.Y. DilliesM.A. SARTools: A DESeq2- and EdgeR-Based R pipeline for comprehensive differential analysis of RNA-Seq data.PLoS One2016116e015702210.1371/journal.pone.015702227280887
    [Google Scholar]
  19. GustavssonE.K. ZhangD. ReynoldsR.H. Garcia-RuizS. RytenM. ggtranscript: An R package for the visualization and interpretation of transcript isoforms using ggplot2.Bioinformatics202238153844384610.1093/bioinformatics/btac40935751589
    [Google Scholar]
  20. FranzM. RodriguezH. LopesC. ZuberiK. MontojoJ. BaderG.D. MorrisQ. GeneMANIA update 2018.Nucleic Acids Res.201846W1W60W6410.1093/nar/gky31129912392
    [Google Scholar]
  21. SubramanianA. TamayoP. MoothaV.K. MukherjeeS. EbertB.L. GilletteM.A. PaulovichA. PomeroyS.L. GolubT.R. LanderE.S. MesirovJ.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. USA200510243155451555010.1073/pnas.050658010216199517
    [Google Scholar]
  22. WangS. XieC. HuH. YuP. ZhongH. WangY. ShanL. iTRAQ-based proteomic analysis unveils NCAM1 as a novel regulator in doxorubicin-induced cardiotoxicity and DT-010-exerted cardioprotection.Curr. Pharm. Anal.202520996697710.2174/0115734129331758241022113026
    [Google Scholar]
  23. ChenB. KhodadoustM.S. LiuC.L. NewmanA.M. AlizadehA.A. Profiling tumor infiltrating immune cells with CIBERSORT.Methods Mol. Biol.2018171124325910.1007/978‑1‑4939‑7493‑1_1229344893
    [Google Scholar]
  24. Spearman’s rank correlation coefficient.BMJ2018362k413110.1136/bmj.k413130270200
    [Google Scholar]
  25. YooM. ShinJ. KimJ. RyallK.A. LeeK. LeeS. JeonM. KangJ. TanA.C. DSigDB: Drug signatures database for gene set analysis.Bioinformatics201531183069307110.1093/bioinformatics/btv31325990557
    [Google Scholar]
  26. KerwinS.M. ChemBioOffice Ultra 2010 suite.J. Am. Chem. Soc.201013272466246710.1021/ja100530620121088
    [Google Scholar]
  27. SeeligerD. de GrootB.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑620401516
    [Google Scholar]
  28. TrottO. OlsonA.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  29. XiaoX. LiuY. HuangY. ZengW. LuoZ. Identification of the NF-κB inhibition peptides in asthma from Pheretima aspergillum decoction and formula granules using molecular docking and dynamics simulations.Curr. Pharm. Anal.202420320221110.2174/0115734129298587240322073956
    [Google Scholar]
  30. EngebretsenS. BohlinJ. Statistical predictions with glmnet.Clin. Epigenetics201911112310.1186/s13148‑019‑0730‑131443682
    [Google Scholar]
  31. BlancheP. DartiguesJ.F. Jacqmin-GaddaH. Estimating and comparing time‐dependent areas under receiver operating characteristic curves for censored event times with competing risks.Stat. Med.201332305381539710.1002/sim.595824027076
    [Google Scholar]
  32. GentlemanR.C. CareyV.J. BatesD.M. BolstadB. DettlingM. DudoitS. EllisB. GautierL. GeY. GentryJ. HornikK. HothornT. HuberW. IacusS. IrizarryR. LeischF. LiC. MaechlerM. RossiniA.J. SawitzkiG. SmithC. SmythG. TierneyL. YangJ.Y.H. ZhangJ. Bioconductor: Open software development for computational biology and bioinformatics.Genome Biol.2004510R8010.1186/gb‑2004‑5‑10‑r8015461798
    [Google Scholar]
  33. ChenY. MengZ. ZhangY. XiangZ. Natural killer cell-associated radiogenomics model for hepatocellular carcinoma: Integrating CD2 and enhanced CT-derived radiomics signatures.Acad. Radiol.20253241981199210.1016/j.acra.2024.10.04339542805
    [Google Scholar]
  34. SuZ. YangZ. XuY. ChenY. YuQ. Apoptosis, autophagy, necroptosis, and cancer metastasis.Mol. Cancer20151414810.1186/s12943‑015‑0321‑525743109
    [Google Scholar]
  35. ChenS. DongZ. YangP. WangX. JinG. YuH. ChenL. LiL. TangL. BaiS. YanH. ShenF. CongW. WenW. WangH. Hepatitis B virus X protein stimulates high mobility group box 1 secretion and enhances hepatocellular carcinoma metastasis.Cancer Lett.2017394223210.1016/j.canlet.2017.02.01128216372
    [Google Scholar]
  36. LiZ. LuJ. ZengG. PangJ. ZhengX. FengJ. ZhangJ. MiR-129-5p inhibits liver cancer growth by targeting calcium calmodulin-dependent protein kinase IV (CAMK4).Cell Death Dis.2019101178910.1038/s41419‑019‑1923‑431624237
    [Google Scholar]
  37. WangX. TanX. ZhangJ. WuJ. ShiH. The emerging roles of MAPK-AMPK in ferroptosis regulatory network.Cell. Commun. Signal.202321120010.1186/s12964‑023‑01170‑937580745
    [Google Scholar]
  38. SunH. XuJ. HuangM. HuangQ. SunR. XiaoW. SunC. CD200R, a co-inhibitory receptor on immune cells, predicts the prognosis of human hepatocellular carcinoma.Immunol. Lett201617810511310.1016/j.imlet.2016.08.00927562325
    [Google Scholar]
  39. NipC. WangL. LiuC. CD200/CD200R: Bidirectional role in cancer progression and immunotherapy.Biomedicines20231112332610.3390/biomedicines1112332638137547
    [Google Scholar]
  40. LiuJ.Q. HuA. ZhuJ. YuJ. TalebianF. BaiX.F. CD200-CD200R pathway in the regulation of tumor immune microenvironment and immunotherapy.Adv. Exp. Med. Biol.2020122315516510.1007/978‑3‑030‑35582‑1_832030689
    [Google Scholar]
  41. AngiB. MuccioliS. SzabòI. LeanzaL. A meta-analysis study to infer voltage-gated K+ channels prognostic value in different cancer types.Antioxidants202312357310.3390/antiox1203057336978819
    [Google Scholar]
  42. GajewskiT.F. SchreiberH. FuY.X. Innate and adaptive immune cells in the tumor microenvironment.Nat. Immunol.201314101014102210.1038/ni.270324048123
    [Google Scholar]
  43. LiuY. XunZ. MaK. LiangS. LiX. ZhouS. SunL. LiuY. DuY. GuoX. CuiT. ZhouH. WangJ. YinD. SongR. ZhangS. CaiW. MengF. GuoH. ZhangB. YangD. BaoR. HuQ. WangJ. YeY. LiuL. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy.J. Hepatol.202378477078210.1016/j.jhep.2023.01.01136708811
    [Google Scholar]
  44. KogaT. KawakamiA. The role of CaMK4 in immune responses.Mod Rheumatol.201828221121410.1080/14397595.2017.141396429252071
    [Google Scholar]
  45. AndersonK.A. MeansA.R. Defective signaling in a subpopulation of CD4(+) T cells in the absence of Ca(2+)/calmodulin-dependent protein kinase IV.Mol. Cell. Biol.2002221232910.1128/MCB.22.1.23‑29.200211739719
    [Google Scholar]
  46. ScherlingerM. LiH. PanW. LiW. KarinoK. VichosT. BoulougouraA. YoshidaN. TsokosM.G. TsokosG.C. CaMK4 controls follicular helper T cell expansion and function during normal and autoimmune T-dependent B cell responses.Nat. Commun.202415184010.1038/s41467‑024‑45080‑x38287012
    [Google Scholar]
  47. HuangS. PanY. ZhangQ. SunW. Role of CD200/CD200R signaling pathway in regulation of CD4+T cell subsets during thermal ablation of hepatocellular carcinoma.Med. Sci. Monit2019251718172810.12659/MSM.91309430838977
    [Google Scholar]
  48. ChoeD. ChoiD. Cancel cancer: The immunotherapeutic potential of CD200/CD200R blockade.Front. Oncol.202313108803810.3389/fonc.2023.108803836756156
    [Google Scholar]
  49. SelvakumarP. Fernández-MariñoA.I. KhanraN. HeC. PaquetteA.J. WangB. HuangR. SmiderV.V. RiceW.J. SwartzK.J. MeyersonJ.R. Structures of the T cell potassium channel Kv1.3 with immunoglobulin modulators.Nat. Commun.2022131385410.1038/s41467‑022‑31285‑535788586
    [Google Scholar]
  50. ZhangQ. LiuL. HuY. ShenL. LiL. WangY. Kv1.3 channel is involved In Ox-LDL-induced macrophage inflammation via ERK/NF-κB signaling pathway.Arch. Biochem. Biophys.202273010939410.1016/j.abb.2022.10939436100082
    [Google Scholar]
  51. XieZ. ZhaoY. YangW. LiW. WuY. ChenZ. Methotrexate, a small molecular scaffold targeting Kv1.3 channel extracellular pore region.Biochem. Biophys. Res. Commun.2020532226527010.1016/j.bbrc.2020.08.05032863001
    [Google Scholar]
  52. Malek-EsfandiariZ. Rezvani-NoghaniA. SohrabiT. MokaberiP. Amiri-TehranizadehZ. ChamaniJ. Molecular dynamics and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf thymus DNA with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway.J. Fluoresc.20233341537155710.1007/s10895‑023‑03169‑436787038
    [Google Scholar]
  53. BrownJ.S. Treatment of cancer with antipsychotic medications: Pushing the boundaries of schizophrenia and cancer.Neurosci. Biobehav. Rev.202214110480910.1016/j.neubiorev.2022.10480935970416
    [Google Scholar]
  54. RamamoorthyM.D. KumarA. AyyavuM. DhiraviamK.N. Reserpine induces apoptosis and cell cycle arrest in hormone independent prostate cancer cells through mitochondrial membrane potential failure.Anticancer. Agents Med. Chem.20191891313132210.2174/187152061866618020915221529424320
    [Google Scholar]
  55. HuangX.H. WangY. HongP. YangJ. ZhengC.C. YinX.F. SongW.B. XuW.W. LiB. HeQ.Y. Benzethonium chloride suppresses lung cancer tumorigenesis through inducing p38-mediated cyclin D1 degradation.Am. J. Cancer Res.20199112397241231815042
    [Google Scholar]
  56. LiH. ShenX. MaM. LiuW. YangW. WangP. CaiZ. MiR. LuY. ZhuangJ. JiangY. SongY. WuY. ShenH. ZIP10 drives osteosarcoma proliferation and chemoresistance through ITGA10-mediated activation of the PI3K/AKT pathway.J. Exp. Clin. Cancer Res.202140134010.1186/s13046‑021‑02146‑834706747
    [Google Scholar]
  57. ZhouF. ChenX. FanS. TaiS. JiangC. ZhangY. HaoZ. ZhouJ. ShiH. ZhangL. LiangC. GSK1838705A, an insulin-like growth factor-1 receptor/insulin receptor inhibitor, induces apoptosis and reduces viability of docetaxel-resistant prostate cancer cells both in vitro and in vivo.OncoTargets Ther.2015875376010.2147/OTT.S7910525926740
    [Google Scholar]
  58. ZhouX. ShenF. MaP. HuiH. PeiS. ChenM. WangZ. ZhouW. JinB. GSK1838705A, an IGF-1R inhibitor, inhibits glioma cell proliferation and suppresses tumor growth in vivo.Mol. Med. Rep.20151245641564610.3892/mmr.2015.412926238593
    [Google Scholar]
  59. TabasiM. MaghamiP. Amiri-TehranizadehZ. Reza SaberiM. ChamaniJ. New perspective of the ternary complex of nano-curcumin with β-lactoglobulin in the presence of α-lactalbumin: Spectroscopic and molecular dynamic investigations.J. Mol. Liq202339212347210.1016/j.molliq.2023.123472
    [Google Scholar]
  60. NishioM. NagashimaC. Computer-aided diagnosis for lung cancer.Acad. Radiol.201724332833610.1016/j.acra.2016.11.00728110797
    [Google Scholar]
  61. Baidya KayalE. KandasamyD. KhareK. BakhshiS. SharmaR. MehndirattaA. Texture analysis for chemotherapy response evaluation in osteosarcoma using MR imaging.NMR Biomed.2021342e442610.1002/nbm.442633078438
    [Google Scholar]
  62. JainP. KhorramiM. GuptaA. RajiahP. BeraK. ViswanathanV.S. FuP. DowlatiA. MadabhushiA. Novel non-invasive radiomic signature on CT scans predicts response to platinum-based chemotherapy and is prognostic of overall survival in small cell lung cancer.Front. Oncol.20211174472410.3389/fonc.2021.74472434745966
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266397340250701110954
Loading
/content/journals/ctmc/10.2174/0115680266397340250701110954
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test