Skip to content
2000
image of Mining of Targeted Therapeutic Drugs for Hepatocellular Carcinoma based on Programmed Cell Death-related Features and Construction of an Imaging Histology Diagnostic Model

Abstract

Introduction

The programmed cell death (PCD) is crucial in inhibiting cancer cell proliferation and enhancing anti-tumor immune responses. Mining targeted therapeutics for liver hepatocellular carcinoma (LIHC) based on PCD genes and revealing their molecular mechanisms are essential for the development of effective clinical treatments for LIHC.

Methods

Key genes associated with PCD characteristics of LIHC were identified in cancer genome mapping by the weighted gene co-expression network analysis (WGCNA). In this study, the performance and clinical value of key genes were evaluated by the receiver operating characteristic curve (ROC). The relative expressions of genes related to PCD in LIHC cells were measured employing QRT-PCR. The practical regulation of PCD-correlated key genes on the migration and invasion levels of LIHC cells was assessed by transwell and wound healing assays. Functional and pathway characterization of gene sets was performed by Gene Set Enrichment Analysis (GSEA). CIBERSORT was used to assess immune cell infiltration in the samples. DSigDB and AutoDock tools were used for molecular docking of key genes and downstream targeted drugs. Impact omics characterization of the samples was determined by the nomogram.

Results

Three genes, CAMK4, CD200R1, and KCNA3, were screened as key PCD-related genes in LIHC. Cellular experiments verified that CD200R1 knockdown repressed the migration and invasion in LIHC cells. GSEA showed that these three genes were enriched for cytokine release, apoptosis, and other pathways. In immune profiling, we revealed that the three genes were related to the infiltration of immune cells such as CD4+ memory T cells and CD8+ T cells. Molecular docking predicted potential drugs for the three biomarkers, among which CAMK4 was tightly bound to GSK1838705A and had the highest AUC value in the ROC curve. In addition, we constructed a nomogram to accurately assess the imaging features of LIHC.

Discussion

This study provided a new strategy for precision treatment of LIHC by screening key genes associated with PCD in LIHC (CAMK4, CD200R1, and KCNA3), revealing their roles in the regulation of the tumor immune microenvironment and predicting potential target drugs, as well as constructing a diagnostic model based on imaging histology; however, the study did not delve deeper into the long-range drug-target interaction mechanism and lacked molecular dynamics simulation validation, which limited the comprehensiveness of the results.

Conclusion

This study identified key genes associated with PCD in LIHC, revealed its immunoregulatory mechanism, and predicted potential target drugs, providing new ideas for precision treatment and diagnosis of LIHC.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266397340250701110954
2025-07-08
2025-09-14
Loading full text...

Full text loading...

References

  1. Ganne-Carrié N. Nahon P. Hepatocellular carcinoma in the setting of alcohol-related liver disease. J. Hepatol. 2019 70 2 284 293 10.1016/j.jhep.2018.10.008 30658729
    [Google Scholar]
  2. Chandarana C.V. Mithani N.T. Singh D.V. Kikani U.B. Vibrational spectrophotometry: A comprehensive review on the diagnosis of gastric and liver cancer. Curr. Pharm. Anal. 2024 20 7 453 465 10.2174/0115734129322567240821052326
    [Google Scholar]
  3. Mahmud N. Fricker Z. Hubbard R.A. Ioannou G.N. Lewis J.D. Taddei T.H. Rothstein K.D. Serper M. Goldberg D.S. Kaplan D.E. Risk prediction models for post‐operative mortality in patients with cirrhosis. Hepatology 2021 73 1 204 218 10.1002/hep.31558 32939786
    [Google Scholar]
  4. Sensi B. Angelico R. Toti L. Conte L.E. Coppola A. Tisone G. Manzia T.M. Mechanism, potential, and concerns of immunotherapy for hepatocellular carcinoma and liver transplantation. Curr. Mol. Pharmacol. 2024 17 e18761429310703 10.2174/0118761429310703240823045808 39225204
    [Google Scholar]
  5. Wolf E. Rich N.E. Marrero J.A. Parikh N.D. Singal A.G. Use of hepatocellular carcinoma surveillance in patients with cirrhosis: A systematic review and meta‐analysis. Hepatology 2021 73 2 713 725 10.1002/hep.31309 32383272
    [Google Scholar]
  6. Zhang X. Jin M. Yao X. Liu J. Yang Y. Huang J. Jin G. Liu S. Zhang B. Upregulation of LncRNA WT1-AS inhibits tumor growth and promotes autophagy in gastric cancer via suppression of PI3K/Akt/mTOR pathway. Curr. Mol. Pharmacol. 2024 17 e18761429318398 10.2174/0118761429318398240918063450 39592900
    [Google Scholar]
  7. Grandhi M.S. Kim A.K. Ronnekleiv-Kelly S.M. Kamel I.R. Ghasebeh M.A. Pawlik T.M. Hepatocellular carcinoma: From diagnosis to treatment. Surg. Oncol. 2016 25 2 74 85 10.1016/j.suronc.2016.03.002 27312032
    [Google Scholar]
  8. Obeng E. Apoptosis (programmed cell death) and its signals - A review. Braz. J. Biol. 2021 81 4 1133 1143 10.1590/1519‑6984.228437 33111928
    [Google Scholar]
  9. Liu J. Hong M. Li Y. Chen D. Wu Y. Hu Y. Programmed cell death tunes tumor immunity. Front. Immunol. 2022 13 847345 10.3389/fimmu.2022.847345 35432318
    [Google Scholar]
  10. Hsu S.K. Li C.Y. Lin I.L. Syue W.J. Chen Y.F. Cheng K.C. Teng Y.N. Lin Y.H. Yen C.H. Chiu C.C. Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment. Theranostics 2021 11 18 8813 8835 10.7150/thno.62521 34522213
    [Google Scholar]
  11. Yao F. Deng Y. Zhao Y. Mei Y. Zhang Y. Liu X. Martinez C. Su X. Rosato R.R. Teng H. Hang Q. Yap S. Chen D. Wang Y. Chen M.J.M. Zhang M. Liang H. Xie D. Chen X. Zhu H. Chang J.C. You M.J. Sun Y. Gan B. Ma L. A targetable LIFR−NF-κB−LCN2 axis controls liver tumorigenesis and vulnerability to ferroptosis. Nat. Commun. 2021 12 1 7333 10.1038/s41467‑021‑27452‑9 34921145
    [Google Scholar]
  12. Lee S.Y. Kim S. Song Y. Kim N. No J. Kim K.M. Seo H.R. Sorbitol dehydrogenase induction of cancer cell necroptosis and macrophage polarization in the HCC microenvironment suppresses tumor progression. Cancer Lett. 2022 551 215960 10.1016/j.canlet.2022.215960 36244575
    [Google Scholar]
  13. Qin H. Abulaiti A. Maimaiti A. Abulaiti Z. Fan G. Aili Y. Ji W. Wang Z. Wang Y. Integrated machine learning survival framework develops a prognostic model based on inter-crosstalk definition of mitochondrial function and cell death patterns in a large multicenter cohort for lower-grade glioma. J. Transl. Med. 2023 21 1 588 10.1186/s12967‑023‑04468‑x 37660060
    [Google Scholar]
  14. Chen Y. Meng Z. Zhang Y. Xiang Z. Natural Killer Cell-Associated Radiogenomics Model for Hepatocellular Carcinoma: Integrating CD2 and Enhanced CT-Derived Radiomics Signatures. Acad Radiol. 2025 32 4 1981 1992> 10.1016/j.acra.2024.10.043 39542805
    [Google Scholar]
  15. Langfelder P. Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 2008 9 1 559 10.1186/1471‑2105‑9‑559 19114008
    [Google Scholar]
  16. Wang Y. Zhang W. Cai F. Tao Y. Integrated bioinformatics analysis identifies vascular endothelial cell-related biomarkers for hypertrophic cardiomyopathy. Congenit. Heart Dis. 2024 19 6 653 669 10.32604/chd.2025.060406
    [Google Scholar]
  17. Yi M. Nissley D.V. McCormick F. Stephens R.M. ssGSEA score-based Ras dependency indexes derived from gene expression data reveal potential Ras addiction mechanisms with possible clinical implications. Sci. Rep. 2020 10 1 10258 10.1038/s41598‑020‑66986‑8 32581224
    [Google Scholar]
  18. Varet H. Brillet-Guéguen L. Coppée J.Y. Dillies M.A. SARTools: A DESeq2- and EdgeR-Based R pipeline for comprehensive differential analysis of RNA-Seq data. PLoS One 2016 11 6 e0157022 10.1371/journal.pone.0157022 27280887
    [Google Scholar]
  19. Gustavsson E.K. Zhang D. Reynolds R.H. Garcia-Ruiz S. Ryten M. ggtranscript: An R package for the visualization and interpretation of transcript isoforms using ggplot2. Bioinformatics 2022 38 15 3844 3846 10.1093/bioinformatics/btac409 35751589
    [Google Scholar]
  20. Franz M. Rodriguez H. Lopes C. Zuberi K. Montojo J. Bader G.D. Morris Q. GeneMANIA update 2018. Nucleic Acids Res. 2018 46 W1 W60 W64 10.1093/nar/gky311 29912392
    [Google Scholar]
  21. Subramanian A. Tamayo P. Mootha V.K. Mukherjee S. Ebert B.L. Gillette M.A. Paulovich A. Pomeroy S.L. Golub T.R. Lander E.S. Mesirov J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005 102 43 15545 15550 10.1073/pnas.0506580102 16199517
    [Google Scholar]
  22. Wang S. Xie C. Hu H. Yu P. Zhong H. Wang Y. Shan L. iTRAQ-based proteomic analysis unveils NCAM1 as a novel regulator in doxorubicin-induced cardiotoxicity and DT-010-exerted cardioprotection. Curr. Pharm. Anal. 2025 20 9 966 977 10.2174/0115734129331758241022113026
    [Google Scholar]
  23. Chen B. Khodadoust M.S. Liu C.L. Newman A.M. Alizadeh A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol. 2018 1711 243 259 10.1007/978‑1‑4939‑7493‑1_12 29344893
    [Google Scholar]
  24. Spearman’s rank correlation coefficient. BMJ 2018 362 k4131 10.1136/bmj.k4131 30270200
    [Google Scholar]
  25. Yoo M. Shin J. Kim J. Ryall K.A. Lee K. Lee S. Jeon M. Kang J. Tan A.C. DSigDB: Drug signatures database for gene set analysis. Bioinformatics 2015 31 18 3069 3071 10.1093/bioinformatics/btv313 25990557
    [Google Scholar]
  26. Kerwin S.M. ChemBioOffice Ultra 2010 suite. J. Am. Chem. Soc. 2010 132 7 2466 2467 10.1021/ja1005306 20121088
    [Google Scholar]
  27. Seeliger D. de Groot B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 2010 24 5 417 422 10.1007/s10822‑010‑9352‑6 20401516
    [Google Scholar]
  28. Trott O. Olson A.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  29. Xiao X. Liu Y. Huang Y. Zeng W. Luo Z. Identification of the NF-κB inhibition peptides in asthma from Pheretima aspergillum decoction and formula granules using molecular docking and dynamics simulations. Curr. Pharm. Anal. 2024 20 3 202 211 10.2174/0115734129298587240322073956
    [Google Scholar]
  30. Engebretsen S. Bohlin J. Statistical predictions with glmnet. Clin. Epigenetics 2019 11 1 123 10.1186/s13148‑019‑0730‑1 31443682
    [Google Scholar]
  31. Blanche P. Dartigues J.F. Jacqmin-Gadda H. Estimating and comparing time‐dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat. Med. 2013 32 30 5381 5397 10.1002/sim.5958 24027076
    [Google Scholar]
  32. Gentleman R.C. Carey V.J. Bates D.M. Bolstad B. Dettling M. Dudoit S. Ellis B. Gautier L. Ge Y. Gentry J. Hornik K. Hothorn T. Huber W. Iacus S. Irizarry R. Leisch F. Li C. Maechler M. Rossini A.J. Sawitzki G. Smith C. Smyth G. Tierney L. Yang J.Y.H. Zhang J. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 2004 5 10 R80 10.1186/gb‑2004‑5‑10‑r80 15461798
    [Google Scholar]
  33. Chen Y. Meng Z. Zhang Y. Xiang Z. Natural killer cell-associated radiogenomics model for hepatocellular carcinoma: Integrating CD2 and enhanced CT-derived radiomics signatures. Acad. Radiol. 2025 32 4 1981 1992 10.1016/j.acra.2024.10.043 39542805
    [Google Scholar]
  34. Su Z. Yang Z. Xu Y. Chen Y. Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol. Cancer 2015 14 1 48 10.1186/s12943‑015‑0321‑5 25743109
    [Google Scholar]
  35. Chen S. Dong Z. Yang P. Wang X. Jin G. Yu H. Chen L. Li L. Tang L. Bai S. Yan H. Shen F. Cong W. Wen W. Wang H. Hepatitis B virus X protein stimulates high mobility group box 1 secretion and enhances hepatocellular carcinoma metastasis. Cancer Lett. 2017 394 22 32 10.1016/j.canlet.2017.02.011 28216372
    [Google Scholar]
  36. Li Z. Lu J. Zeng G. Pang J. Zheng X. Feng J. Zhang J. MiR-129-5p inhibits liver cancer growth by targeting calcium calmodulin-dependent protein kinase IV (CAMK4). Cell Death Dis. 2019 10 11 789 10.1038/s41419‑019‑1923‑4 31624237
    [Google Scholar]
  37. Wang X. Tan X. Zhang J. Wu J. Shi H. The emerging roles of MAPK-AMPK in ferroptosis regulatory network. Cell Commun. Signal. 2023 21 1 200 10.1186/s12964‑023‑01170‑9 37580745
    [Google Scholar]
  38. Sun H. Xu J. Huang M. Huang Q. Sun R. Xiao W. Sun C. CD200R, a co-inhibitory receptor on immune cells, predicts the prognosis of human hepatocellular carcinoma. Immunol. Lett. 2016 178 105 113 10.1016/j.imlet.2016.08.009 27562325
    [Google Scholar]
  39. Nip C. Wang L. Liu C. CD200/CD200R: Bidirectional role in cancer progression and immunotherapy. Biomedicines 2023 11 12 3326 10.3390/biomedicines11123326 38137547
    [Google Scholar]
  40. Liu J.Q. Hu A. Zhu J. Yu J. Talebian F. Bai X.F. CD200-CD200R pathway in the regulation of tumor immune microenvironment and immunotherapy. Adv. Exp. Med. Biol. 2020 1223 155 165 10.1007/978‑3‑030‑35582‑1_8 32030689
    [Google Scholar]
  41. Angi B. Muccioli S. Szabò I. Leanza L. A meta-analysis study to infer voltage-gated K+ channels prognostic value in different cancer types. Antioxidants 2023 12 3 573 10.3390/antiox12030573 36978819
    [Google Scholar]
  42. Gajewski T.F. Schreiber H. Fu Y.X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 2013 14 10 1014 1022 10.1038/ni.2703 24048123
    [Google Scholar]
  43. Liu Y. Xun Z. Ma K. Liang S. Li X. Zhou S. Sun L. Liu Y. Du Y. Guo X. Cui T. Zhou H. Wang J. Yin D. Song R. Zhang S. Cai W. Meng F. Guo H. Zhang B. Yang D. Bao R. Hu Q. Wang J. Ye Y. Liu L. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. J. Hepatol. 2023 78 4 770 782 10.1016/j.jhep.2023.01.011 36708811
    [Google Scholar]
  44. Koga T. Kawakami A. The role of CaMK4 in immune responses. Mod. Rheumatol. 2018 28 2 211 214 10.1080/14397595.2017.1413964 29252071
    [Google Scholar]
  45. Anderson K.A. Means A.R. Defective signaling in a subpopulation of CD4(+) T cells in the absence of Ca(2+)/calmodulin-dependent protein kinase IV. Mol. Cell. Biol. 2002 22 1 23 29 10.1128/MCB.22.1.23‑29.2002 11739719
    [Google Scholar]
  46. Scherlinger M. Li H. Pan W. Li W. Karino K. Vichos T. Boulougoura A. Yoshida N. Tsokos M.G. Tsokos G.C. CaMK4 controls follicular helper T cell expansion and function during normal and autoimmune T-dependent B cell responses. Nat. Commun. 2024 15 1 840 10.1038/s41467‑024‑45080‑x 38287012
    [Google Scholar]
  47. Huang S. Pan Y. Zhang Q. Sun W. Role of CD200/CD200R signaling pathway in regulation of CD4+T cell subsets during thermal ablation of hepatocellular carcinoma. Med. Sci. Monit. 2019 25 1718 1728 10.12659/MSM.913094 30838977
    [Google Scholar]
  48. Choe D. Choi D. Cancel cancer: The immunotherapeutic potential of CD200/CD200R blockade. Front. Oncol. 2023 13 1088038 10.3389/fonc.2023.1088038 36756156
    [Google Scholar]
  49. Selvakumar P. Fernández-Mariño A.I. Khanra N. He C. Paquette A.J. Wang B. Huang R. Smider V.V. Rice W.J. Swartz K.J. Meyerson J.R. Structures of the T cell potassium channel Kv1.3 with immunoglobulin modulators. Nat. Commun. 2022 13 1 3854 10.1038/s41467‑022‑31285‑5 35788586
    [Google Scholar]
  50. Zhang Q. Liu L. Hu Y. Shen L. Li L. Wang Y. Kv1.3 channel is involved In Ox-LDL-induced macrophage inflammation via ERK/NF-κB signaling pathway. Arch. Biochem. Biophys. 2022 730 109394 10.1016/j.abb.2022.109394 36100082
    [Google Scholar]
  51. Xie Z. Zhao Y. Yang W. Li W. Wu Y. Chen Z. Methotrexate, a small molecular scaffold targeting Kv1.3 channel extracellular pore region. Biochem. Biophys. Res. Commun. 2020 532 2 265 270 10.1016/j.bbrc.2020.08.050 32863001
    [Google Scholar]
  52. Malek-Esfandiari Z. Rezvani-Noghani A. Sohrabi T. Mokaberi P. Amiri-Tehranizadeh Z. Chamani J. Molecular dynamics and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf thymus DNA with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway. J. Fluoresc. 2023 33 4 1537 1557 10.1007/s10895‑023‑03169‑4 36787038
    [Google Scholar]
  53. Brown J.S. Treatment of cancer with antipsychotic medications: Pushing the boundaries of schizophrenia and cancer. Neurosci. Biobehav. Rev. 2022 141 104809 10.1016/j.neubiorev.2022.104809 35970416
    [Google Scholar]
  54. Ramamoorthy M.D. Kumar A. Ayyavu M. Dhiraviam K.N. Reserpine induces apoptosis and cell cycle arrest in hormone independent prostate cancer cells through mitochondrial membrane potential failure. Anticancer. Agents Med. Chem. 2019 18 9 1313 1322 10.2174/1871520618666180209152215 29424320
    [Google Scholar]
  55. Huang X.H. Wang Y. Hong P. Yang J. Zheng C.C. Yin X.F. Song W.B. Xu W.W. Li B. He Q.Y. Benzethonium chloride suppresses lung cancer tumorigenesis through inducing p38-mediated cyclin D1 degradation. Am. J. Cancer Res. 2019 9 11 2397 2412 31815042
    [Google Scholar]
  56. Li H. Shen X. Ma M. Liu W. Yang W. Wang P. Cai Z. Mi R. Lu Y. Zhuang J. Jiang Y. Song Y. Wu Y. Shen H. ZIP10 drives osteosarcoma proliferation and chemoresistance through ITGA10-mediated activation of the PI3K/AKT pathway. J. Exp. Clin. Cancer Res. 2021 40 1 340 10.1186/s13046‑021‑02146‑8 34706747
    [Google Scholar]
  57. Zhou F. Chen X. Fan S. Tai S. Jiang C. Zhang Y. Hao Z. Zhou J. Shi H. Zhang L. Liang C. GSK1838705A, an insulin-like growth factor-1 receptor/insulin receptor inhibitor, induces apoptosis and reduces viability of docetaxel-resistant prostate cancer cells both in vitro and in vivo. OncoTargets Ther. 2015 8 753 760 10.2147/OTT.S79105 25926740
    [Google Scholar]
  58. Zhou X. Shen F. Ma P. Hui H. Pei S. Chen M. Wang Z. Zhou W. Jin B. GSK1838705A, an IGF-1R inhibitor, inhibits glioma cell proliferation and suppresses tumor growth in vivo. Mol. Med. Rep. 2015 12 4 5641 5646 10.3892/mmr.2015.4129 26238593
    [Google Scholar]
  59. Tabasi M. Maghami P. Amiri-Tehranizadeh Z. Reza Saberi M. Chamani J. New perspective of the ternary complex of nano-curcumin with β-lactoglobulin in the presence of α-lactalbumin: Spectroscopic and molecular dynamic investigations. J. Mol. Liq. 2023 392 123472 10.1016/j.molliq.2023.123472
    [Google Scholar]
  60. Nishio M. Nagashima C. Computer-aided diagnosis for lung cancer. Acad. Radiol. 2017 24 3 328 336 10.1016/j.acra.2016.11.007 28110797
    [Google Scholar]
  61. Baidya Kayal E. Kandasamy D. Khare K. Bakhshi S. Sharma R. Mehndiratta A. Texture analysis for chemotherapy response evaluation in osteosarcoma using MR imaging. NMR Biomed. 2021 34 2 e4426 10.1002/nbm.4426 33078438
    [Google Scholar]
  62. Jain P. Khorrami M. Gupta A. Rajiah P. Bera K. Viswanathan V.S. Fu P. Dowlati A. Madabhushi A. Novel non-invasive radiomic signature on CT scans predicts response to platinum-based chemotherapy and is prognostic of overall survival in small cell lung cancer. Front. Oncol. 2021 11 744724 10.3389/fonc.2021.744724 34745966
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266397340250701110954
Loading
/content/journals/ctmc/10.2174/0115680266397340250701110954
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test