Skip to content
2000
image of An Overview of Novel Indole Scaffolds with Structural Aspects and Receptor Inhibition for Cancer Treatment

Abstract

Cancer has consistently posed a concern on a worldwide scale. Numerous studies were conducted to establish the best and most efficient treatment for this illness. We attempted to determine the function and mechanism of indole analogs as molecularly targeted anticancer treatment in this review. These indole analogs target various molecules, influencing the development, growth, and spread of tumors. Target anticancer medications function cytostatically and are typically made to accomplish specific goals, in contrast to traditional chemotherapeutics, which act cytotoxically. Small molecules and macromolecules are a novel class of targeted drugs that resulted from this approach. Certain receptor-targeted drugs are superior to macromolecule medicines in terms of improved patient care. Various receptor inhibitors and tyrosine protein kinase receptors that are currently being targeted by anticancer drugs are studied in this review. The different indole analogs target all of these receptors to identify a successful cancer treatment. The Structural Relationship (SAR) between several indole analogs with anticancer action is also highlighted in the present work in U.S. Food and Drug Administration databases about the noteworthiness of heterocycle moieties possessing a nitrogen heteroatom in therapeutic development. Among the numerous heterocycles containing nitrogen, indole chemistry was placed ninth in 2015 among the top 25 FDA-approved

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266393974250912071544
2025-09-19
2025-12-22
Loading full text...

Full text loading...

References

  1. Dhiman A. Sharma R. Singh R.K. Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018–2021). Acta Pharm. Sin. B 2022 12 7 3006 3027 10.1016/j.apsb.2022.03.021 35865090
    [Google Scholar]
  2. Ali I. Lone M. Al-Othman Z. Al-Warthan A. Sanagi M. Heterocyclic scaffolds: Centrality in anticancer drug development. Curr. Drug Targets 2015 16 7 711 734 10.2174/1389450116666150309115922 25751009
    [Google Scholar]
  3. Gholap S.S. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur. J. Med. Chem. 2016 110 13 31 10.1016/j.ejmech.2015.12.017 26807541
    [Google Scholar]
  4. Ahmad S. Alam O. Naim M.J. Shaquiquzzaman M. Alam M.M. Iqbal M. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur. J. Med. Chem. 2018 157 527 561 10.1016/j.ejmech.2018.08.002 30119011
    [Google Scholar]
  5. Tantawy M.A. Nafie M.S. Elmegeed G.A. Ali I.A.I. Auspicious role of the steroidal heterocyclic derivatives as a platform for anti-cancer drugs. Bioorg. Chem. 2017 73 128 146 10.1016/j.bioorg.2017.06.006 28668650
    [Google Scholar]
  6. Sharma V. Kumar P. Pathak D. Biological importance of the indole nucleus in recent years: A comprehensive review. J. Heterocycl. Chem. 2010 47 3 491 502 10.1002/jhet.349
    [Google Scholar]
  7. Vitaku E. Smith D.T. Njardarson J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 2014 57 24 10257 10274 10.1021/jm501100b 25255204
    [Google Scholar]
  8. Patil S.A. Patil S.A. Patil R. Medicinal applications of (benz)imidazole‐ and indole‐based macrocycles. Chem. Biol. Drug Des. 2017 89 4 639 649 10.1111/cbdd.12802 28371443
    [Google Scholar]
  9. Dadashpour S. Emami S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur. J. Med. Chem. 2018 150 9 29 10.1016/j.ejmech.2018.02.065 29505935
    [Google Scholar]
  10. Kumar D. Maruthi Kumar N. Tantak M.P. Ogura M. Kusaka E. Ito T. Synthesis and identification of α-cyano bis(indolyl)chalcones as novel anticancer agents. Bioorg. Med. Chem. Lett. 2014 24 22 5170 5174 10.1016/j.bmcl.2014.09.085 25442306
    [Google Scholar]
  11. Thanikachalam P.V. Maurya R.K. Garg V. Monga V. Corrigendum to An insight into the medicinal perspective of synthetic analogs of indole: A review. Eur J. Med. Chem. 2019 183 562 612 111680 10.1016/j.ejmech.2019.111680 31520927
    [Google Scholar]
  12. Zhong L. Li Y. Xiong L. Wang W. Wu M. Yuan T. Yang W. Tian C. Miao Z. Wang T. Yang S. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther. 2021 6 1 201 10.1038/s41392‑021‑00572‑w 34054126
    [Google Scholar]
  13. Shady N. El-Hossary E. Fouad M. Gulder T. Kamel M. Abdelmohsen U. Bioactive natural products of marine sponges from the genus Hyrtios. Molecules 2017 22 5 781 10.3390/molecules22050781 28492499
    [Google Scholar]
  14. Burres N.S. Barber D.A. Gunasekera S.P. Shen L.L. Clement J.J. Antitumor activity and biochemical effects of topsentin. Biochem. Pharmacol. 1991 42 4 745 751 10.1016/0006‑2952(91)90031‑Y 1867631
    [Google Scholar]
  15. Yang G. Xie M. Wang C. Zhang C.Yu. A comprehensive overview of β-carbolines and its derivatives as anticancer agents. Eur. J. Med. Chem. 2023 250 115193 10.1016/j.ejmech.2023.115193 36774698
    [Google Scholar]
  16. Luo B. Song X. New Molecular targets of anticancer therapy – Current status and perspectives. Eur. J. Med. Chem. 2021 224 113688 10.1016/j.ejmech.2021.113688 34332400
    [Google Scholar]
  17. Zajac M. Muszalska I. Jelinska A. New molecular targets of anticancer therapy – Current status and perspectives. Curr. Med. Chem. 2016 23 37 4176 4220 10.2174/0929867323666160814002150 27528054
    [Google Scholar]
  18. Drevs J. Medinger M. Schmidt-Gersbach C. Weber R. Unger C. Receptor tyrosine kinases: The main targets for new anticancer therapy. Curr. Drug Targets 2003 4 2 113 121 10.2174/1389450033346885 12558064
    [Google Scholar]
  19. Morris S.W. Kirstein M.N. Valentine M.B. Dittmer K. Shapiro D.N. Look A.T. Saltman D.L. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 1995 267 5196 316 317 10.1126/science.267.5196.316.c 7824924
    [Google Scholar]
  20. Iwahara T. Fujimoto J. Wen D. Cupples R. Bucay N. Arakawa T. Mori S. Ratzkin B. Yamamoto T. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 1997 14 4 439 449 10.1038/sj.onc.1200849 9053841
    [Google Scholar]
  21. McManus D.T. Catherwood M.A. Carey P.D. Cuthbert R.J.G. Alexander H.D. ALK-positive diffuse large B-cell lymphoma of the stomach associated with a clathrin-ALK rearrangement. Hum. Pathol. 2004 35 10 1285 1288 10.1016/j.humpath.2004.06.001 15492998
    [Google Scholar]
  22. Soda M. Choi Y.L. Enomoto M. Takada S. Yamashita Y. Ishikawa S. Fujiwara S. Watanabe H. Kurashina K. Hatanaka H. Bando M. Ohno S. Ishikawa Y. Aburatani H. Niki T. Sohara Y. Sugiyama Y. Mano H. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature 2007 448 7153 561 566 10.1038/nature05945 17625570
    [Google Scholar]
  23. Cui J.J. Tran-Dubé M. Shen H. Nambu M. Kung P.P. Pairish M. Jia L. Meng J. Funk L. Botrous I. McTigue M. Grodsky N. Ryan K. Padrique E. Alton G. Timofeevski S. Yamazaki S. Li Q. Zou H. Christensen J. Mroczkowski B. Bender S. Kania R.S. Edwards M.P. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem. 2011 54 18 6342 6363 10.1021/jm2007613 21812414
    [Google Scholar]
  24. Shaw A.T. Kim D.W. Nakagawa K. Seto T. Crinó L. Ahn M.J. De Pas T. Besse B. Solomon B.J. Blackhall F. Wu Y.L. Thomas M. O’Byrne K.J. Moro-Sibilot D. Camidge D.R. Mok T. Hirsh V. Riely G.J. Iyer S. Tassell V. Polli A. Wilner K.D. Jänne P.A. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 2013 368 25 2385 2394 10.1056/NEJMoa1214886 23724913
    [Google Scholar]
  25. Solomon B.J. Mok T. Kim D.W. Wu Y.L. Nakagawa K. Mekhail T. Felip E. Cappuzzo F. Paolini J. Usari T. Iyer S. Reisman A. Wilner K.D. Tursi J. Blackhall F. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med. 2014 371 23 2167 2177 10.1056/NEJMoa1408440 25470694
    [Google Scholar]
  26. Feng L. Chen X. Sheng G. Li Y. Li Y. Zhang Y. Yao K. Wu Z. Zhang R. Kiboku T. Kawasaki A. Horimoto K. Tang Y. Sun M. Han F. Chen D. Synthesis and bioevaluation of 3-(Arylmethylene)indole derivatives: Discovery of a novel ALK modulator with antiglioblastoma activities. J. Med. Chem. 2023 66 21 14609 14622 10.1021/acs.jmedchem.3c01090 37861443
    [Google Scholar]
  27. Gummadi V.R. Rajagopalan S. Looi C.Y. Paydar M. Renukappa G.A. Ainan B.R. Krishnamurthy N.R. Panigrahi S.K. Mahasweta K. Raghuramachandran S. Rajappa M. Ramanathan A. Lakshminarasimhan A. Ramachandra M. Wong P.F. Mustafa M.R. Nanduri S. Hosahalli S. Discovery of 7-azaindole based anaplastic lymphoma kinase (ALK) inhibitors: Wild type and mutant (L1196M) active compounds with unique binding mode. Bioorg. Med. Chem. Lett. 2013 23 17 4911 4918 10.1016/j.bmcl.2013.06.071 23880539
    [Google Scholar]
  28. Threadgill D.W. Dlugosz A.A. Hansen L.A. Tennenbaum T. Lichti U. Yee D. LaMantia C. Mourton T. Herrup K. Harris R.C. Barnard J.A. Yuspa S.H. Coffey R.J. Magnuson T. Targeted disruption of mouse EGF receptor: Effect of genetic background on mutant phenotype. Science 1995 269 5221 230 234 10.1126/science.7618084 7618084
    [Google Scholar]
  29. Blobel C.P. ADAMs: Key components in EGFR signalling and development. Nat. Rev. Mol. Cell Biol. 2005 6 1 32 43 10.1038/nrm1548 15688065
    [Google Scholar]
  30. Mohamed F.A.M. Alakilli S.Y.M. El Azab E.F. Baawad F.A.M. Shaaban E.I.A. Alrub H.A. Hendawy O. Gomaa H.A.M. Bakr A.G. Abdelrahman M.H. Trembleau L. Mohammed A.F. Youssif B.G.M. Discovery of new 5-substituted-indole-2-carboxamides as dual epidermal growth factor receptor (EGFR)/cyclin dependent kinase-2 (CDK2) inhibitors with potent antiproliferative action. RSC Med. Chem. 2023 14 4 734 744 10.1039/D3MD00038A 37122549
    [Google Scholar]
  31. Al-Wahaibi L.H. Gouda A.M. Abou-Ghadir O.F. Salem O.I.A. Ali A.T. Farghaly H.S. Abdelrahman M.H. Trembleau L. Abdu-Allah H.H.M. Youssif B.G.M. Design and synthesis of novel 2,3-dihydropyrazino[1,2-a]indole-1,4-dione derivatives as antiproliferative EGFR and BRAFV600E dual inhibitors. Bioorg. Chem. 2020 104 104260 10.1016/j.bioorg.2020.104260 32920363
    [Google Scholar]
  32. Park I. Angiogenesis and microsatellite alterations in oral cavity and oropharynx cancer. Otolaryngol. Head Neck Surg. 2003 129 2 161 10.1016/S0194‑5998(03)00974‑4
    [Google Scholar]
  33. Risau W. Mechanisms of angiogenesis. Nature 1997 386 6626 671 674 10.1038/386671a0 9109485
    [Google Scholar]
  34. Klagsbrun M. Moses M.A. Molecular angiogenesis. Chem. Biol. 1999 6 8 R217 R224 10.1016/S1074‑5521(99)80081‑7 10421764
    [Google Scholar]
  35. Yadav L. Puri N. Rastogi V. Satpute P. Sharma V. Tumour angiogenesis and angiogenic inhibitors: A review. J. Clin. Diagn. Res. 2015 9 6 XE01 XE05 10.7860/JCDR/2015/12016.6135 26266204
    [Google Scholar]
  36. Yang W.H. Xu J. Mu J.B. Xie J. Revision of the concept of anti-angiogenesis and its applications in tumor treatment. Chronic Dis. Transl. Med. 2017 3 1 33 40 29063054
    [Google Scholar]
  37. Wang L. Liu W.Q. Broussy S. Han B. Fang H. Recent advances of anti-angiogenic inhibitors targeting VEGF/VEGFR axis. Front. Pharmacol. 2024 14 1307860 10.3389/fphar.2023.1307860 38239196
    [Google Scholar]
  38. Gilliland D.G. Griffin J.D. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002 100 5 1532 1542 10.1182/blood‑2002‑02‑0492 12176867
    [Google Scholar]
  39. Al-Wahaibi L.H. Mohammed A.F. Abdelrahman M.H. Trembleau L. Youssif B.G.M. Design, synthesis, and biological evaluation of indole-2-carboxamides as potential multi-target antiproliferative agents. Pharmaceuticals 2023 16 7 1039 10.3390/ph16071039 37513950
    [Google Scholar]
  40. Gao G.R. Li M.Y. Tong L.J. Wei L.X. Ding J. Xie H. Duan W.H. Design, synthesis and biological evaluation of O-linked indoles as VEGFR-2 kinase inhibitors (I). Chin. Chem. Lett. 2015 26 9 1165 1168 10.1016/j.cclet.2015.07.016
    [Google Scholar]
  41. Aboshouk D.R. Youssef M.A. Bekheit M.S. Hamed A.R. Girgis A.S. Antineoplastic indole-containing compounds with potential VEGFR inhibitory properties. RSC Advances 2024 14 9 5690 5728 10.1039/D3RA08962B 38362086
    [Google Scholar]
  42. Quentmeier H. Reinhardt J. Zaborski M. Drexler H.G. FLT3 mutations in acute myeloid leukemia cell lines. Leukemia 2003 17 1 120 124 10.1038/sj.leu.2402740 12529668
    [Google Scholar]
  43. Kiyoi H. Ohno R. Ueda R. Saito H. Naoe T. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 2002 21 16 2555 2563 10.1038/sj.onc.1205332 11971190
    [Google Scholar]
  44. Jin J. Cui Z. Lv C. Peng X. Yan Z. Song Y. Cao Y. Zhou W. Wang E. Chen X. Kang D. Hu L. Wang J. Design, synthesis, and biological evaluation of a series of indolone derivatives as novel FLT3 inhibitors for the treatment of acute myeloid leukemia. Bioorg. Chem. 2023 138 106645 10.1016/j.bioorg.2023.106645 37327602
    [Google Scholar]
  45. Cocco E. Scaltriti M. Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 2018 15 12 731 747 10.1038/s41571‑018‑0113‑0 30333516
    [Google Scholar]
  46. Scott-Solomon E. Kuruvilla R. Mechanisms of neurotrophin trafficking via Trk receptors. Mol. Cell. Neurosci. 2018 91 25 33 10.1016/j.mcn.2018.03.013 29596897
    [Google Scholar]
  47. Nakagawara A. Trk receptor tyrosine kinases: A bridge between cancer and neural development. Cancer Lett. 2001 169 2 107 114 10.1016/S0304‑3835(01)00530‑4 11431098
    [Google Scholar]
  48. Bertrand T. Kothe M. Liu J. Dupuy A. Rak A. Berne P.F. Davis S. Gladysheva T. Valtre C. Crenne J.Y. Mathieu M. The crystal structures of TrkA and TrkB suggest key regions for achieving selective inhibition. J. Mol. Biol. 2012 423 3 439 453 10.1016/j.jmb.2012.08.002 22902478
    [Google Scholar]
  49. Hong S. Kim J. Seo J.H. Jung K.H. Hong S.S. Hong S. Design, synthesis, and evaluation of 3,5-disubstituted 7-azaindoles as Trk inhibitors with anticancer and antiangiogenic activities. J. Med. Chem. 2012 55 11 5337 5349 10.1021/jm3002982 22575050
    [Google Scholar]
  50. Tammiku-Taul J. Park R. Jaanson K. Luberg K. Dobchev D.A. Kananovich D. Noole A. Mandel M. Kaasik A. Lopp M. Timmusk T. Karelson M. Indole-like Trk receptor antagonists. Eur. J. Med. Chem. 2016 121 541 552 10.1016/j.ejmech.2016.06.003 27318978
    [Google Scholar]
  51. Santarpia L. Lippman S.M. El-Naggar A.K. Targeting the MAPK–RAS–RAF signaling pathway in cancer therapy. Expert Opin. Ther. Targets 2012 16 1 103 119 10.1517/14728222.2011.645805 22239440
    [Google Scholar]
  52. Degirmenci U. Wang M. Hu J. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells 2020 9 1 198 10.3390/cells9010198 31941155
    [Google Scholar]
  53. Flaherty K.T. McArthur G. BRAF, a target in melanoma. Cancer 2010 116 21 4902 4913 10.1002/cncr.25261 20629085
    [Google Scholar]
  54. Kudchadkar R.R. Smalley K.S.M. Glass L.F. Trimble J.S. Sondak V.K. Targeted therapy in melanoma. Clin. Dermatol. 2013 31 2 200 208 10.1016/j.clindermatol.2012.08.013 23438383
    [Google Scholar]
  55. Kuske M. Westphal D. Wehner R. Schmitz M. Beissert S. Praetorius C. Meier F. Immunomodulatory effects of BRAF and MEK inhibitors: Implications for Melanoma therapy. Pharmacol. Res. 2018 136 151 159 10.1016/j.phrs.2018.08.019 30145328
    [Google Scholar]
  56. Croce L. Coperchini F. Magri F. Chiovato L. Rotondi M. The multifaceted anti-cancer effects of BRAF-inhibitors. Oncotarget 2019 10 61 6623 6640 10.18632/oncotarget.27304 31762942
    [Google Scholar]
  57. Pelster M.S. Amaria R.N. Combined targeted therapy and immunotherapy in melanoma: A review of the impact on the tumor microenvironment and outcomes of early clinical trials. Ther. Adv. Med. Oncol. 2019 11 1758835919830826 10.1177/1758835919830826 30815041
    [Google Scholar]
  58. Kelley M.C. Immune responses to brief-targeted therapy in melanoma: Is targeted therapy immunotherapy? Crit. Rev. Oncog. 2016 21 1-2 83 91 10.1615/CritRevOncog.2016017150 27481005
    [Google Scholar]
  59. Ho P.C. Meeth K.M. Tsui Y.C. Srivastava B. Bosenberg M.W. Kaech S.M. Immune-based antitumor effects of BRAF inhibitors rely on signaling by CD40L and IFNγ. Cancer Res. 2014 74 12 3205 3217 10.1158/0008‑5472.CAN‑13‑3461 24736544
    [Google Scholar]
  60. Ott P.A. Henry T. Baranda S.J. Frleta D. Manches O. Bogunovic D. Bhardwaj N. Inhibition of both BRAF and MEK in BRAFV600E mutant melanoma restores compromised dendritic cell (DC) function while having differential direct effects on DC properties. Cancer Immunol. Immunother. 2013 62 4 811 822 10.1007/s00262‑012‑1389‑z 23306863
    [Google Scholar]
  61. Liu L. Mayes P.A. Eastman S. Shi H. Yadavilli S. Zhang T. Yang J. Seestaller-Wehr L. Zhang S.Y. Hopson C. Tsvetkov L. Jing J. Zhang S. Smothers J. Hoos A. The BRAF and MEK inhibitors daBRAFenib and trametinib: effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clin. Cancer Res. 2015 21 7 1639 1651 10.1158/1078‑0432.CCR‑14‑2339 25589619
    [Google Scholar]
  62. Whipple C.A. The mitogen-activated protein kinase pathway plays a critical role in regulating immunological properties of BRAF mutant cutaneous melanoma cells. Melanoma Res. 2016 26 3 223 235 10.1097/CMR.0000000000000244 26974965
    [Google Scholar]
  63. Frederick D.T. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 2013 19 5 1225 1231 10.1158/1078‑0432.CCR‑12‑1630 23307859
    [Google Scholar]
  64. Kim A. Cohen M.S. The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma. Expert Opin. Drug Discov. 2016 11 9 907 916 10.1080/17460441.2016.1201057 27327499
    [Google Scholar]
  65. Larkin J. Ascierto P.A. Dréno B. Atkinson V. Liszkay G. Maio M. Mandalà M. Demidov L. Stroyakovskiy D. Thomas L. de la Cruz-Merino L. Dutriaux C. Garbe C. Sovak M.A. Chang I. Choong N. Hack S.P. McArthur G.A. Ribas A. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med. 2014 371 20 1867 1876 10.1056/NEJMoa1408868 25265494
    [Google Scholar]
  66. Proietti I. Skroza N. Michelini S. Mambrin A. Balduzzi V. Bernardini N. Marchesiello A. Tolino E. Volpe S. Maddalena P. Di Fraia M. Mangino G. Romeo G. Potenza C. BRAF inhibitors: Molecular targeting and immunomodulatory actions. Cancers (Basel) 2020 12 7 1823 10.3390/cancers12071823 32645969
    [Google Scholar]
  67. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  68. Weinberg R.A. The retinoblastoma protein and cell cycle control. Cell 1995 81 3 323 330 10.1016/0092‑8674(95)90385‑2 7736585
    [Google Scholar]
  69. Hunter T. Pines J. Cyclins and cancer II: Cyclin D and CDK inhibitors come of age. Cell 1994 79 4 573 582 10.1016/0092‑8674(94)90543‑6 7954824
    [Google Scholar]
  70. O’Leary B. Finn R.S. Turner N.C. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol. 2016 13 7 417 430 10.1038/nrclinonc.2016.26 27030077
    [Google Scholar]
  71. Chen P. Lee N.V. Hu W. Xu M. Ferre R.A. Lam H. Bergqvist S. Solowiej J. Diehl W. He Y.A. Yu X. Nagata A. VanArsdale T. Murray B.W. Spectrum and degree of CDK drug interactions predicts clinical performance. Mol. Cancer Ther. 2016 15 10 2273 2281 10.1158/1535‑7163.MCT‑16‑0300 27496135
    [Google Scholar]
  72. Anders L. Ke N. Hydbring P. Choi Y.J. Widlund H.R. Chick J.M. Zhai H. Vidal M. Gygi S.P. Braun P. Sicinski P. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 2011 20 5 620 634 10.1016/j.ccr.2011.10.001 22094256
    [Google Scholar]
  73. Asghar U. Witkiewicz A.K. Turner N.C. Knudsen E.S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov. 2015 14 2 130 146 10.1038/nrd4504 25633797
    [Google Scholar]
  74. Al-Warhi T. El Kerdawy A.M. Aljaeed N. Ismael O.E. Ayyad R.R. Eldehna W.M. Abdel-Aziz H.A. Al-Ansary G.H. Synthesis, biological evaluation and in silico studies of certain oxindole–indole conjugates as anticancer CDK inhibitors. Molecules 2020 25 9 2031 10.3390/molecules25092031 32349307
    [Google Scholar]
  75. Vasan N. Cantley L.C. At a crossroads: How to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy. Nat. Rev. Clin. Oncol. 2022 19 7 471 485 10.1038/s41571‑022‑00633‑1 35484287
    [Google Scholar]
  76. Jiang N. Dai Q. Su X. Fu J. Feng X. Peng J. Role of PI3K/AKT pathway in cancer: The framework of malignant behavior. Mol. Biol. Rep. 2020 47 6 4587 4629 10.1007/s11033‑020‑05435‑1 32333246
    [Google Scholar]
  77. Oganesian A. Hendricks J.D. Williams D.E. Long term dietary indole-3-carbinol inhibits diethylnitrosamine-initiated hepatocarcinogenesis in the infant mouse model. Cancer Lett. 1997 118 1 87 94 10.1016/S0304‑3835(97)00235‑8 9310264
    [Google Scholar]
  78. Jin L. Qi M. Chen D.Z. Anderson A. Yang G.Y. Arbeit J.M. Auborn K.J. Indole-3-carbinol prevents cervical cancer in human papilloma virus type 16 (HPV16) transgenic mice. Cancer Res. 1999 59 16 3991 3997 10463597
    [Google Scholar]
  79. He Y.H. Friesen M.D. Ruch R.J. Schut H.A.J. Indole-3-carbinol as a chemopreventive agent in 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) carcinogenesis: Inhibition of PhIP–DNA adduct formation, acceleration of PhIP metabolism, and induction of cytochrome P450 in female F344 rats. Food Chem. Toxicol. 2000 38 1 15 23 10.1016/S0278‑6915(99)00117‑9 10685010
    [Google Scholar]
  80. Shertzer H.G. Senft A.P. The micronutrient indole-3-carbinol: Implications for disease and chemoprevention. Drug Metabol. Drug Interact. 2000 17 1-4 159 188 10.1515/DMDI.2000.17.1‑4.159 11201294
    [Google Scholar]
  81. Ahmad A. Biersack B. Li Y. Kong D. Bao B. Schobert R. Padhye S. Sarkar F. Targeted regulation of PI3K/Akt/mTOR/NF-κB signaling by indole compounds and their derivatives: Mechanistic details and biological implications for cancer therapy. Anticancer. Agents Med. Chem. 2013 13 7 1002 1013 10.2174/18715206113139990078 23272910
    [Google Scholar]
  82. Knight T. Luedtke D. Edwards H. Taub J.W. Ge Y. A delicate balance – The BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochem. Pharmacol. 2019 162 250 261 10.1016/j.bcp.2019.01.015 30668936
    [Google Scholar]
  83. Warren C.F.A. Wong-Brown M.W. Bowden N.A. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 2019 10 3 177 10.1038/s41419‑019‑1407‑6 30792387
    [Google Scholar]
  84. Xu G. Liu T. Zhou Y. Yang X. Fang H. 1-Phenyl-1H-indole derivatives as a new class of Bcl-2/Mcl-1 dual inhibitors: Design, synthesis, and preliminary biological evaluation. Bioorg. Med. Chem. 2017 25 20 5548 5556 10.1016/j.bmc.2017.08.024 28866374
    [Google Scholar]
  85. Caldecott K.W. Protein ADP-ribosylation and the cellular response to DNA strand breaks. DNA Repair (Amst.) 2014 19 108 113 10.1016/j.dnarep.2014.03.021 24755000
    [Google Scholar]
  86. Sachdev E. Tabatabai R. Roy V. Rimel B.J. Mita M.M. PARP inhibition in cancer: An update on clinical development. Target. Oncol. 2019 14 6 657 679 10.1007/s11523‑019‑00680‑2 31625002
    [Google Scholar]
  87. Mateo J. Lord C.J. Serra V. Tutt A. Balmaña J. Castroviejo-Bermejo M. Cruz C. Oaknin A. Kaye S.B. de Bono J.S. A decade of clinical development of PARP inhibitors in perspective. Ann. Oncol. 2019 30 9 1437 1447 10.1093/annonc/mdz192 31218365
    [Google Scholar]
  88. Vyas S. Chang P. New PARP targets for cancer therapy. Nat. Rev. Cancer 2014 14 7 502 509 10.1038/nrc3748 24898058
    [Google Scholar]
  89. Youssef M.F. Nafie M.S. Salama E.E. Boraei A.T.A. Gad E.M. Synthesis of new bioactive Indolyl-1,2,4-Triazole hybrids as dual inhibitors for EGFR/PARP-1 targeting breast and liver cancer cells. ACS Omega 2022 7 49 45665 45677 10.1021/acsomega.2c06531 36530255
    [Google Scholar]
  90. Russo E. Grondona C. Brullo C. Spallarossa A. Villa C. Tasso B. Indole antitumor agents in nanotechnology formulations: An overview. Pharmaceutics 2023 15 7 1815 10.3390/pharmaceutics15071815 37514002
    [Google Scholar]
  91. Kumari A. Singh R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem. 2019 89 103021 10.1016/j.bioorg.2019.103021 31176854
    [Google Scholar]
  92. Dhuguru J. Skouta R. Role of indole scaffolds as pharmacophores in the development of anti-lung cancer agents. Molecules 2020 25 7 1615 10.3390/molecules25071615 32244744
    [Google Scholar]
  93. Russo E. Spallarossa A. Tasso B. Villa C. Brullo C. Nanotechnology of tyrosine kinase inhibitors in cancer therapy: A perspective. Int. J. Mol. Sci. 2021 22 12 6538 10.3390/ijms22126538 34207175
    [Google Scholar]
  94. Russo E. Spallarossa A. Tasso B. Villa C. Brullo C. Nanotechnology for pediatric retinoblastoma therapy. Pharmaceuticals 2022 15 9 1087 10.3390/ph15091087 36145308
    [Google Scholar]
  95. Sundberg R.J. Electrophilic Substitution Reactions of Indoles. In:Heterocyclic Scaffolds II: Topics in Heterocyclic Chemistry;Springer: Berlin, Heidelberg 2010 26 47 115 10.1007/7081_2010_52
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266393974250912071544
Loading
/content/journals/ctmc/10.2174/0115680266393974250912071544
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test