Skip to content
2000
Volume 25, Issue 16
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Despite advances in therapeutic regimens, Pancreatic Cancer (PC) still remains an aggressive malignancy characterized by high treatment resistance, mortality, and poor clinical outcome. Hence, there is an urgent need for more effective therapeutic methods to improve the survival of PC patients. Currently, organoid culture systems have emerged as a preclinical research model for studying cancer progression, biology, and treatment responses, bridging the translational gap between and models. This review summarized the common culture systems of PC organoids, paving the way for precision medicine in PC.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266392238250423115420
2025-05-29
2025-12-15
Loading full text...

Full text loading...

References

  1. WangF. MaJ. Racial disparities in clinical features and survival outcomes among patients with pancreatic neuroendocrine tumor: A contemporary SEER database analysis.Oncologie202224486589510.32604/oncologie.2022.025447
    [Google Scholar]
  2. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.21820 38230766
    [Google Scholar]
  3. AbbruzzeseJ.L. HessK.R. New option for the initial management of metastatic pancreatic cancer?J. Clin. Oncol.201432232405240710.1200/JCO.2013.54.4155 24982449
    [Google Scholar]
  4. KhoranaA.A. ManguP.B. BerlinJ. EngebretsonA. HongT.S. MaitraA. MohileS.G. MumberM. SchulickR. ShapiroM. UrbaS. ZehH.J. KatzM.H.G. Potentially curable pancreatic cancer: American society of clinical oncology clinical practice guideline.J. Clin. Oncol.201634212541255610.1200/JCO.2016.67.5553 27247221
    [Google Scholar]
  5. KleeffJ. KorcM. ApteM. La VecchiaC. JohnsonC.D. BiankinA.V. NealeR.E. TemperoM. TuvesonD.A. HrubanR.H. NeoptolemosJ.P. Pancreatic cancer.Nat. Rev. Dis. Primers2016211602210.1038/nrdp.2016.22 27158978
    [Google Scholar]
  6. BinnewiesM. RobertsE.W. KerstenK. ChanV. FearonD.F. MeradM. CoussensL.M. GabrilovichD.I. Ostrand-RosenbergS. HedrickC.C. VonderheideR.H. PittetM.J. JainR.K. ZouW. HowcroftT.K. WoodhouseE.C. WeinbergR.A. KrummelM.F. Understanding the tumor immune microenvironment (TIME) for effective therapy.Nat. Med.201824554155010.1038/s41591‑018‑0014‑x 29686425
    [Google Scholar]
  7. GerlingerM. RowanA.J. HorswellS. LarkinJ. EndesfelderD. GronroosE. MartinezP. MatthewsN. StewartA. TarpeyP. VarelaI. PhillimoreB. BegumS. McDonaldN.Q. ButlerA. JonesD. RaineK. LatimerC. SantosC.R. NohadaniM. EklundA.C. Spencer-DeneB. ClarkG. PickeringL. StampG. GoreM. SzallasiZ. DownwardJ. FutrealP.A. SwantonC. SwantonC. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing.N. Engl. J. Med.20123661088389210.1056/NEJMoa1113205 22397650
    [Google Scholar]
  8. BiankinA.V. WaddellN. KassahnK.S. GingrasM.C. MuthuswamyL.B. JohnsA.L. MillerD.K. WilsonP.J. PatchA.M. WuJ. ChangD.K. CowleyM.J. GardinerB.B. SongS. HarliwongI. IdrisogluS. NourseC. NourbakhshE. ManningS. WaniS. GongoraM. PajicM. ScarlettC.J. GillA.J. PinhoA.V. RoomanI. AndersonM. HolmesO. LeonardC. TaylorD. WoodS. XuQ. NonesK. Lynn FinkJ. ChristA. BruxnerT. CloonanN. KolleG. NewellF. PineseM. Scott MeadR. HumphrisJ.L. KaplanW. JonesM.D. ColvinE.K. NagrialA.M. HumphreyE.S. ChouA. ChinV.T. ChantrillL.A. MawsonA. SamraJ.S. KenchJ.G. LovellJ.A. DalyR.J. MerrettN.D. ToonC. EpariK. NguyenN.Q. BarbourA. ZepsN. KakkarN. ZhaoF. Qing WuY. ; Wang, M.; Muzny, D.M.; Fisher, W.E.; Charles Brunicardi, F.; Hodges, S.E.; Reid, J.G.; Drummond, J.; Chang, K.; Han, Y.; Lewis, L.R.; Dinh, H.; Buhay, C.J.; Beck, T.; Timms, L.; Sam, M.; Begley, K.; Brown, A.; Pai, D.; Panchal, A.; Buchner, N.; De Borja, R.; Denroche, R.E.; Yung, C.K.; Serra, S.; Onetto, N.; Mukhopadhyay, D.; Tsao, M.S.; Shaw, P.A.; Petersen, G.M.; Gallinger, S.; Hruban, R.H.; Maitra, A.; Iacobuzio-Donahue, C.A.; Schulick, R.D.; Wolfgang, C.L.; Morgan, R.A.; Lawlor, R.T.; Capelli, P.; Corbo, V.; Scardoni, M.; Tortora, G.; Tempero, M.A.; Mann, K.M.; Jenkins, N.A.; Perez-Mancera, P.A.; Adams, D.J.; Largaespada, D.A.; Wessels, L.F.A.; Rust, A.G.; Stein, L.D.; Tuveson, D.A.; Copeland, N.G.; Musgrove, E.A.; Scarpa, A.; Eshleman, J.R.; Hudson, T.J.; Sutherland, R.L.; Wheeler, D.A.; Pearson, J.V.; McPherson, J.D.; Gibbs, R.A.; Grimmond, S.M. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.Nature2012491742439940510.1038/nature11547 23103869
    [Google Scholar]
  9. KlemmF. JoyceJ.A. Microenvironmental regulation of therapeutic response in cancer.Trends Cell Biol.201525419821310.1016/j.tcb.2014.11.006 25540894
    [Google Scholar]
  10. ElyadaE. BolisettyM. LaiseP. FlynnW.F. CourtoisE.T. BurkhartR.A. TeinorJ.A. BelleauP. BiffiG. LucitoM.S. SivajothiS. ArmstrongT.D. EngleD.D. YuK.H. HaoY. WolfgangC.L. ParkY. PreallJ. JaffeeE.M. CalifanoA. RobsonP. TuvesonD.A. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts.Cancer Discov.2019981102112310.1158/2159‑8290.CD‑19‑0094 31197017
    [Google Scholar]
  11. HuangH. WangZ. ZhangY. PradhanR.N. GangulyD. ChandraR. MurimwaG. WrightS. GuX. MaddipatiR. MüllerS. TurleyS.J. BrekkenR.A. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer.Cancer Cell2022406656673.e7 35523176
    [Google Scholar]
  12. KrishnamurtyA.T. ShyerJ.A. ThaiM. GandhamV. BuechlerM.B. YangY.A. PradhanR.N. WangA.W. SanchezP.L. QuY. BreartB. ChalouniC. DunlapD. ZiaiJ. ElstrottJ. ZachariasN. MaoW. RowntreeR.K. SadowskyJ. LewisG.D. PillowT.H. NabetB.Y. BanchereauR. TamL. CaothienR. BacarroN. Roose-GirmaM. ModrusanZ. MariathasanS. MüllerS. TurleyS.J. LRRC15+ myofibroblasts dictate the stromal setpoint to suppress tumour immunity.Nature20226117934148154 36171287
    [Google Scholar]
  13. McAndrewsK.M. ChenY. DarpolorJ.K. ZhengX. YangS. CarstensJ.L. LiB. WangH. MiyakeT. Correa de SampaioP. KirtleyM.L. NataleM. WuC.C. SugimotoH. LeBleuV.S. KalluriR. Identification of functional heterogeneity of carcinoma-associated fibroblasts with distinct IL6-mediated therapy resistance in pancreatic cancer.Cancer Discov.202212615801597 35348629
    [Google Scholar]
  14. IrelandL. SantosA. AhmedM.S. RainerC. NielsenS.R. QuarantaV. Weyer-CzernilofskyU. EngleD.D. Perez-ManceraP.A. CouplandS.E. TaktakA. BogenriederT. TuvesonD.A. CampbellF. SchmidM.C. MielgoA. Chemoresistance in pancreatic cancer is driven by stroma-derived insulin-like growth factors.Cancer Res.2016762368516863 27742686
    [Google Scholar]
  15. HeslerR.A. HuangJ.J. StarrM.D. TreboschiV.M. BernankeA.G. NixonA.B. McCallS.J. WhiteR.R. BlobeG.C. TGF-β-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3.Carcinogenesis201637111041105110.1093/carcin/bgw093 27604902
    [Google Scholar]
  16. RichardsK.E. ZeleniakA.E. FishelM.L. WuJ. LittlepageL.E. HillR. Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells.Oncogene201736131770177810.1038/onc.2016.353 27669441
    [Google Scholar]
  17. VillarroelM.C. RajeshkumarN.V. Garrido-LagunaI. De Jesus-AcostaA. JonesS. MaitraA. HrubanR.H. EshlemanJ.R. KleinA. LaheruD. DonehowerR. HidalgoM. Personalizing cancer treatment in the age of global genomic analyses: PALB2 gene mutations and the response to DNA damaging agents in pancreatic cancer.Mol. Cancer Ther.201110138 21135251
    [Google Scholar]
  18. AlmeqdadiM. ManaM.D. RoperJ. YilmazÖ.H. Gut organoids: Mini-tissues in culture to study intestinal physiology and disease.Am. J. Physiol. Cell Physiol.20193173C405C419 31216420
    [Google Scholar]
  19. RossiG. ManfrinA. LutolfM.P. Progress and potential in organoid research.Nat. Rev. Genet.20181911671687 30228295
    [Google Scholar]
  20. FriedlP. LockerJ. SahaiE. SegallJ.E. Classifying collective cancer cell invasion.Nat. Cell Biol.201214877778310.1038/ncb2548 22854810
    [Google Scholar]
  21. HuangW. Navarro-SererB. JeongY.J. ChianchianoP. XiaL. LuchiniC. VeroneseN. DowiakC. NgT. TrujilloM.A. HuangB. PflügerM.J. Macgregor-DasA.M. LionheartG. JonesD. FujikuraK. Nguyen-NgocK.V. NeumannN.M. GrootV.P. HasanainA. van OostenA.F. FischerS.E. GallingerS. SinghiA.D. ZureikatA.H. BrandR.E. GaidaM.M. HeinrichS. BurkhartR.A. HeJ. WolfgangC.L. GogginsM.G. ThompsonE.D. RobertsN.J. EwaldA.J. WoodL.D. Pattern of invasion in human pancreatic cancer organoids is associated with loss of smad4 and clinical outcome.Cancer Res.202080132804281710.1158/0008‑5472.CAN‑19‑1523 32376602
    [Google Scholar]
  22. BojS.F. HwangC.I. BakerL.A. ChioI.I.C. EngleD.D. CorboV. JagerM. Ponz-SarviseM. TiriacH. SpectorM.S. GracaninA. OniT. YuK.H. van BoxtelR. HuchM. RiveraK.D. WilsonJ.P. FeiginM.E. ÖhlundD. Handly-SantanaA. Ardito-AbrahamC.M. LudwigM. ElyadaE. AlagesanB. BiffiG. YordanovG.N. DelcuzeB. CreightonB. WrightK. ParkY. MorsinkF.H.M. MolenaarI.Q. Borel RinkesI.H. CuppenE. HaoY. JinY. NijmanI.J. Iacobuzio-DonahueC. LeachS.D. PappinD.J. HammellM. KlimstraD.S. BasturkO. HrubanR.H. OfferhausG.J. VriesR.G.J. CleversH. TuvesonD.A. Organoid models of human and mouse ductal pancreatic cancer.Cell20151601-232433810.1016/j.cell.2014.12.021 25557080
    [Google Scholar]
  23. WoodL.D. EwaldA.J. Organoids in cancer research: A review for pathologist‐scientists.J. Pathol.2021254439540410.1002/path.5684 33886125
    [Google Scholar]
  24. XuH. LyuX. YiM. ZhaoW. SongY. WuK. Organoid technology and applications in cancer research.J. Hematol. Oncol.201811111610.1186/s13045‑018‑0662‑9 30219074
    [Google Scholar]
  25. RenX. ChenW. YangQ. LiX. XuL. Patient‐derived cancer organoids for drug screening: Basic technology and clinical application.J. Gastroenterol. Hepatol.20223781446145410.1111/jgh.15930 35771719
    [Google Scholar]
  26. BallardD.H. BoyerC.J. AlexanderJ.S. Organoids — preclinical models of human disease.N. Engl. J. Med.2019380201981198210.1056/NEJMc1903253 31091396
    [Google Scholar]
  27. NakanoT. AndoS. TakataN. KawadaM. MugurumaK. SekiguchiK. SaitoK. YonemuraS. EirakuM. SasaiY. Self-formation of optic cups and storable stratified neural retina from human ESCs.Cell Stem Cell201210677178510.1016/j.stem.2012.05.009 22704518
    [Google Scholar]
  28. CrespoM. VilarE. TsaiS.Y. ChangK. AminS. SrinivasanT. ZhangT. PipaliaN.H. ChenH.J. WitherspoonM. GordilloM. XiangJ.Z. MaxfieldF.R. LipkinS. EvansT. ChenS. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing.Nat. Med.201723787888410.1038/nm.4355 28628110
    [Google Scholar]
  29. TiriacH. BelleauP. EngleD.D. PlenkerD. DeschênesA. SomervilleT.D.D. FroelingF.E.M. BurkhartR.A. DenrocheR.E. JangG.H. MiyabayashiK. YoungC.M. PatelH. MaM. LaCombJ.F. PalmairaR.L.D. JavedA.A. HuynhJ.C. JohnsonM. AroraK. RobineN. ShahM. SanghviR. GoetzA.B. LowderC.Y. MartelloL. DriehuisE. LeComteN. AskanG. Iacobuzio-DonahueC.A. CleversH. WoodL.D. HrubanR.H. ThompsonE. AguirreA.J. WolpinB.M. SassonA. KimJ. WuM. BucoboJ.C. AllenP. SejpalD.V. NealonW. SullivanJ.D. WinterJ.M. GimottyP.A. GremJ.L. DiMaioD.J. BuscagliaJ.M. GrandgenettP.M. BrodyJ.R. HollingsworthM.A. O’KaneG.M. NottaF. KimE. CrawfordJ.M. DevoeC. OceanA. WolfgangC.L. YuK.H. LiE. VakocC.R. HubertB. FischerS.E. WilsonJ.M. MoffittR. KnoxJ. KrasnitzA. GallingerS. TuvesonD.A. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer.Cancer Discov.2018891112112910.1158/2159‑8290.CD‑18‑0349 29853643
    [Google Scholar]
  30. ScarpaA. ChangD.K. NonesK. CorboV. PatchA.M. BaileyP. LawlorR.T. JohnsA.L. MillerD.K. MafficiniA. RusevB. ScardoniM. AntonelloD. BarbiS. SikoraK.O. CingarliniS. VicentiniC. McKayS. QuinnM.C.J. BruxnerT.J.C. ChristA.N. HarliwongI. IdrisogluS. McLeanS. NourseC. NourbakhshE. WilsonP.J. AndersonM.J. FinkJ.L. NewellF. WaddellN. HolmesO. KazakoffS.H. LeonardC. WoodS. XuQ. NagarajS.H. AmatoE. DalaiI. BersaniS. CataldoI. Dei TosA.P. CapelliP. DavìM.V. LandoniL. MalpagaA. MiottoM. WhitehallV.L.J. LeggettB.A. HarrisJ.L. HarrisJ. JonesM.D. HumphrisJ. ChantrillL.A. ChinV. NagrialA.M. PajicM. ScarlettC.J. PinhoA. RoomanI. ToonC. WuJ. PineseM. CowleyM. BarbourA. MawsonA. HumphreyE.S. ColvinE.K. ChouA. LovellJ.A. JamiesonN.B. DuthieF. GingrasM.C. FisherW.E. DaggR.A. LauL.M.S. LeeM. PickettH.A. ReddelR.R. SamraJ.S. KenchJ.G. MerrettN.D. EpariK. NguyenN.Q. ZepsN. FalconiM. SimboloM. ButturiniG. Van BurenG. PartelliS. FassanM. KhannaK.K. GillA.J. WheelerD.A. GibbsR.A. MusgroveE.A. BassiC. TortoraG. PederzoliP. PearsonJ.V. WaddellN. BiankinA.V. GrimmondS.M. Whole-genome landscape of pancreatic neuroendocrine tumours.Nature20175437643657110.1038/nature21063 28199314
    [Google Scholar]
  31. FanH. DemirciU. ChenP. Emerging organoid models: Leaping forward in cancer research.J. Hematol. Oncol.2019121142 31884964
    [Google Scholar]
  32. BalachandranV.P. BeattyG.L. DouganS.K. Broadening the impact of immunotherapy to pancreatic cancer: Challenges and opportunities.Gastroenterology201915672056207210.1053/j.gastro.2018.12.038 30660727
    [Google Scholar]
  33. SimianM. BissellM.J. Organoids: A historical perspective of thinking in three dimensions.J. Cell Biol.201721613140 28031422
    [Google Scholar]
  34. GuntiS. HokeA.T.K. VuK.P. LondonN.R. Organoid and Spheroid Tumor Models: Techniques and Applications.Cancers202113487410.3390/cancers13040874 33669619
    [Google Scholar]
  35. SatoT. StangeD.E. FerranteM. VriesR.G. Van EsJ.H. Van den BrinkS. Van HoudtW.J. PronkA. Van GorpJ. SiersemaP.D. CleversH. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium.Gastroenterology201114151762177210.1053/j.gastro.2011.07.050 21889923
    [Google Scholar]
  36. MarseeA. RoosF.J.M. VerstegenM.M.A. GehartH. de KoningE. LemaigreF. ForbesS.J. PengW.C. HuchM. TakebeT. VallierL. CleversH. van der LaanL.J.W. SpeeB. MarseeA. RoosF. VerstegenM. CleversH. VallierL. TakebeT. HuchM. PengW.C. ForbesS. LemaigreF. de KoningE. GehartH. van der LaanL. SpeeB. BojS. BaptistaP. SchneebergerK. SorokaC. HeimM. NuciforoS. ZaretK. SaitoY. LutolfM. CardinaleV. SimonsB. van IJzendoornS. KamiyaA. ChikadaH. WangS. MunS.J. SonM.J. OnderT.T. BoyerJ. SatoT. GeorgakopoulosN. MenesesA. BroutierL. BoulterL. GrünD. IJzermansJ. ArtegianiB. van BoxtelR. KuijkE. CarpinoG. PeltzG. BanalesJ. ManN. AloiaL. LaRussoN. GeorgeG. RimlandC. YeohG. Grappin-BottonA. StangeD. PriorN. Tirnitz-ParkerJ.E.E. AnderssonE. BraconiC. HannanN. LuW-Y. StromS. Sancho-BruP. OgawaS. CorboV. LancasterM. HuH. FuchsS. HendriksD. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids.Cell Stem Cell202128581683210.1016/j.stem.2021.04.005 33961769
    [Google Scholar]
  37. ZhouQ. MeltonD.A. Pancreas regeneration.Nature2018557770535135810.1038/s41586‑018‑0088‑0 29769672
    [Google Scholar]
  38. HuchM. BonfantiP. BojS.F. SatoT. LoomansC.J.M. van de WeteringM. SojoodiM. LiV.S.W. SchuijersJ. GracaninA. RingnaldaF. BegthelH. HamerK. MulderJ. van EsJ.H. de KoningE. VriesR.G.J. HeimbergH. CleversH. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis.EMBO J.201332202708272110.1038/emboj.2013.204 24045232
    [Google Scholar]
  39. CasamitjanaJ. EspinetE. RoviraM. Pancreatic organoids for regenerative medicine and cancer research.Front. Cell Dev. Biol.20221088615310.3389/fcell.2022.886153 35592251
    [Google Scholar]
  40. RezakhaniS. GjorevskiN. LutolfM.P. Extracellular matrix requirements for gastrointestinal organoid cultures.Biomaterials202127612102010.1016/j.biomaterials.2021.121020 34280822
    [Google Scholar]
  41. LiX. NadauldL. OotaniA. CorneyD.C. PaiR.K. GevaertO. CantrellM.A. RackP.G. NealJ.T. ChanC.W.M. YeungT. GongX. YuanJ. WilhelmyJ. RobineS. AttardiL.D. PlevritisS.K. HungK.E. ChenC.Z. JiH.P. KuoC.J. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture.Nat. Med.201420776977710.1038/nm.3585 24859528
    [Google Scholar]
  42. ItoF. KatoK. YanatoriI. MaedaY. MuroharaT. ToyokuniS. Matrigel-based organoid culture of malignant mesothelioma reproduces cisplatin sensitivity through CTR1.BMC Cancer202323148710.1186/s12885‑023‑10966‑4 37254056
    [Google Scholar]
  43. RigamontiG. VeronesiF. ChiaradiaE. Gosten-HeinrichP. MüllerA. BrustengaL. de AngelisS. TognoloniA. De SantoR. KlotzC. LalleM. Selective activity of Tabebuia avellanedae against Giardia duodenalis infecting organoid-derived human gastrointestinal epithelia.Int. J. Parasitol. Drugs Drug Resist.20252710058310.1016/j.ijpddr.2025.100583 39864282
    [Google Scholar]
  44. VlachogiannisG. HedayatS. VatsiouA. JaminY. Fernández-MateosJ. KhanK. LampisA. EasonK. HuntingfordI. BurkeR. RataM. KohD.M. TunariuN. CollinsD. Hulkki-WilsonS. RagulanC. SpiteriI. MoorcraftS.Y. ChauI. RaoS. WatkinsD. FotiadisN. BaliM. Darvish-DamavandiM. LoteH. EltahirZ. SmythE.C. BegumR. ClarkeP.A. HahneJ.C. DowsettM. de BonoJ. WorkmanP. SadanandamA. FassanM. SansomO.J. EcclesS. StarlingN. BraconiC. SottorivaA. RobinsonS.P. CunninghamD. ValeriN. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers.Science2018359637892092610.1126/science.aao2774 29472484
    [Google Scholar]
  45. HennigA. WolfL. JahnkeB. PolsterH. SeidlitzT. WernerK. AustD.E. HampeJ. DistlerM. WeitzJ. StangeD.E. WelschT. CFTR expression analysis for subtyping of human pancreatic cancer organoids.Stem Cells Int.201920191024614 31191661
    [Google Scholar]
  46. PagliucaF.W. MillmanJ.R. GürtlerM. SegelM. Van DervortA. RyuJ.H. PetersonQ.P. GreinerD. MeltonD.A. Generation of functional human pancreatic β cells in vitro.Cell2014159242843910.1016/j.cell.2014.09.040 25303535
    [Google Scholar]
  47. NostroM.C. SarangiF. OgawaS. HoltzingerA. CorneoB. LiX. MicallefS.J. ParkI.H. BasfordC. WheelerM.B. DaleyG.Q. ElefantyA.G. StanleyE.G. KellerG. Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells.Development2011138586187110.1242/dev.055236 21270052
    [Google Scholar]
  48. NostroM.C. SarangiF. YangC. HollandA. ElefantyA.G. StanleyE.G. GreinerD.L. KellerG. Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines.Stem Cell Reports20154459160410.1016/j.stemcr.2015.02.017 25843049
    [Google Scholar]
  49. HuangL. HoltzingerA. JaganI. BeGora, M.; Lohse, I.; Ngai, N.; Nostro, C.; Wang, R.; Muthuswamy, L.B.; Crawford, H.C.; Arrowsmith, C.; Kalloger, S.E.; Renouf, D.J.; Connor, A.A.; Cleary, S.; Schaeffer, D.F.; Roehrl, M.; Tsao, M.S.; Gallinger, S.; Keller, G.; Muthuswamy, S.K. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell– and patient-derived tumor organoids.Nat. Med.201521111364137110.1038/nm.3973 26501191
    [Google Scholar]
  50. BreunigM. MerkleJ. WagnerM. MelzerM.K. BarthT.F.E. EngleitnerT. KrummJ. WiedenmannS. CohrsC.M. PerkhoferL. JainG. KrügerJ. HermannP.C. SchmidM. MadácsyT. VargaÁ. GrigerJ. AzoiteiN. MüllerM. WesselyO. RobeyP.G. HellerS. DantesZ. ReichertM. GünesC. BolenzC. KuhnF. MaléthJ. SpeierS. LiebauS. SiposB. KusterB. SeufferleinT. RadR. MeierM. HohwielerM. KlegerA. Modeling plasticity and dysplasia of pancreatic ductal organoids derived from human pluripotent stem cells.Cell Stem Cell202128611051124.e1910.1016/j.stem.2021.03.005 33915078
    [Google Scholar]
  51. RappaportS.M. SmithM.T. Epidemiology. Environment and disease risks.Science2010330600346046110.1126/science.1192603 20966241
    [Google Scholar]
  52. KomorA.C. BadranA.H. LiuD.R. CRISPR-based technologies for the manipulation of eukaryotic genomes.Cell2017169355910.1016/j.cell.2017.04.005 28431253
    [Google Scholar]
  53. CleversH. Modeling development and disease with organoids.Cell201616571586159710.1016/j.cell.2016.05.082 27315476
    [Google Scholar]
  54. LeeJ. SnyderE.R. LiuY. GuX. WangJ. FlowersB.M. KimY.J. ParkS. SzotG.L. HrubanR.H. LongacreT.A. KimS.K. Reconstituting development of pancreatic intraepithelial neoplasia from primary human pancreas duct cells.Nat. Commun.2017811468610.1038/ncomms14686 28272465
    [Google Scholar]
  55. SeinoT. KawasakiS. ShimokawaM. TamagawaH. ToshimitsuK. FujiiM. OhtaY. MatanoM. NankiK. KawasakiK. TakahashiS. SugimotoS. IwasakiE. TakagiJ. ItoiT. KitagoM. KitagawaY. KanaiT. SatoT. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression.Cell Stem Cell2018223454467.e610.1016/j.stem.2017.12.009 29337182
    [Google Scholar]
  56. GoY.H. ChoiW.H. BaeW.J. JungS.I. ChoC.H. LeeS.A. ParkJ.S. AhnJ.M. KimS.W. LeeK.J. LeeD. YooJ. Modeling pancreatic cancer with patient-derived organoids integrating cancer-associated fibroblasts.Cancers2022149207710.3390/cancers14092077 35565206
    [Google Scholar]
  57. BeelenN.A. AberleM.R. BrunoV. Olde DaminkS.W.M. BosG.M.J. RensenS.S. WietenL. Antibody-dependent cellular cytotoxicity-inducing antibodies enhance the natural killer cell anti-cancer response against patient-derived pancreatic cancer organoids.Front. Immunol.202314113379610.3389/fimmu.2023.1133796 37520563
    [Google Scholar]
  58. SchorkN. J. Personalized medicine: Time for one-person trials.Nature2015520754960961110.1038/520609a 25925459
    [Google Scholar]
  59. ZhangD. Fu, S Clinical significance of CA-199 and LINC01197 in pancreatic cancer.Oncologie20202229510510.32604/oncologie.2020.012439
    [Google Scholar]
  60. CollinsD.C. SundarR. LimJ.S.J. YapT.A. Towards precision medicine in the clinic: From biomarker discovery to novel therapeutics.Trends Pharmacol. Sci.2017381254010.1016/j.tips.2016.10.012 27871777
    [Google Scholar]
  61. KimS. MinS. ChoiY.S. JoS.H. JungJ.H. HanK. KimJ. AnS. JiY.W. KimY.G. ChoS.W. Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids.Nat. Commun.2022131169210.1038/s41467‑022‑29279‑4 35354790
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266392238250423115420
Loading
/content/journals/ctmc/10.2174/0115680266392238250423115420
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test