Skip to content
2000
image of Oroidins: Marine Pyrrole-Imidazole Alkaloids with Emerging Therapeutic Potential

Abstract

Objective

Oroidins are marine-derived alkaloids known for their structural complexity and a broad range of pharmacological activities. This review aims to explore their emerging role as promising scaffolds in medicinal chemistry, particularly focusing on their unique chemical structure, diverse biological effects, and recent synthetic advancements.

Methods

An extensive literature review was conducted to analyze peer-reviewed articles on the isolation, synthesis, structural characterization, and pharmacological evaluation of oroidins and their derivatives. The review highlights significant developments in synthetic strategies, including the incorporation of pyrrole carboxamide units, isotopic labeling approaches, and palladium-catalyzed reactions.

Results

Oroidins exhibit a wide spectrum of biological activities, including antibacterial, antiviral, antimalarial, antiprotozoal, anticancer, anti-inflammatory, neurotropic, and antimuscarinic properties. Their characteristic pyrrole-imidazole core, containing a glycocyamidine moiety and azepinone ring, has been instrumental in targeting key biological pathways such as kinases, NF-κB, and the Raf/MEK-1/MAPK cascade. Structural modifications have led to enhanced potency and specificity of oroidin-based compounds.

Discussion

The findings emphasize the potential of oroidins as lead compounds in drug development. Their structural diversity, bioactivity profile, and ability to inhibit critical cellular targets position them as attractive templates for therapeutic design. However, further research is needed to optimize their pharmacokinetic properties and evaluate their clinical relevance.

Conclusion

Oroidins represent a valuable class of marine alkaloids with significant therapeutic promise. Advances in synthetic methodologies have expanded their applicability in drug discovery, supporting continued exploration of these compounds for the development of novel therapeutic agents.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266391437250909024350
2025-09-17
2025-12-23
Loading full text...

Full text loading...

References

  1. Nielsen T.E. Schreiber S.L. Towards the optimal screening collection: A synthesis strategy. Angew. Chem. Int. Ed. 2008 47 1 48 56 10.1002/anie.200703073 18080276
    [Google Scholar]
  2. Cordier C. Morton D. Murrison S. Nelson A. O’Leary-Steele C. Natural products as an inspiration in the diversity-oriented synthesis of bioactive compound libraries. Nat. Prod. Rep. 2008 25 4 719 737 10.1039/b706296f 18663392
    [Google Scholar]
  3. Morris J.C. Phillips A.J. Marine natural products: Synthetic aspects. Nat. Prod. Rep. 2010 27 8 1186 1203 10.1039/b919366a 20593105
    [Google Scholar]
  4. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 2007 70 3 461 477 10.1021/np068054v 17309302
    [Google Scholar]
  5. Thompson R.J. Bobay B.G. Stowe S.D. Olson A.L. Peng L. Su Z. Actis L.A. Melander C. Cavanagh J. Identification of BfmR, a response regulator involved in biofilm development, as a target for a 2-Aminoimidazole-based antibiofilm agent. Biochemistry 2012 51 49 9776 9778 10.1021/bi3015289 23186243
    [Google Scholar]
  6. Auckloo B.N. Wu B. Studies in Natural Products Chemistry; Elsevier 2016 51 483 515
    [Google Scholar]
  7. Gerwick W.H. Moore B.S. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem. Biol. 2012 19 1 85 98 10.1016/j.chembiol.2011.12.014 22284357
    [Google Scholar]
  8. Al-Mourabit A. Zancanella M.A. Tilvi S. Romo D. Biosynthesis, asymmetric synthesis, and pharmacology, including cellular targets, of the pyrrole-2-aminoimidazole marine alkaloids. Nat. Prod. Rep. 2011 28 7 1229 1260 10.1039/c0np00013b 21556392
    [Google Scholar]
  9. Forte B. Malgesini B. Piutti C. Quartieri F. Scolaro A. Papeo G. A submarine journey: the pyrrole-imidazole alkaloids. Mar. Drugs 2009 7 4 705 753 10.3390/md7040705 20098608
    [Google Scholar]
  10. Buchanan M.S. Carroll A.R. Addepalli R. Avery V.M. Hooper J.N.A. Quinn R.J. Natural products, stylissadines A and B, specific antagonists of the P2X7 receptor, an important inflammatory target. J. Org. Chem. 2007 72 7 2309 2317 10.1021/jo062007q 17315930
    [Google Scholar]
  11. Nishimura S. Matsunaga S. Shibazaki M. Suzuki K. Furihata K. van Soest R.W.M. Fusetani N. Massadine, a novel geranylgeranyltransferase type I inhibitor from the marine sponge Stylissa aff. Massa. Org. Lett. 2003 5 13 2255 2257 10.1021/ol034564u 12816422
    [Google Scholar]
  12. Dyson L. Wright A.D. Young K.A. Sakoff J.A. McCluskey A. Synthesis and anticancer activity of focused compound libraries from the natural product lead, oroidin. Bioorg. Med. Chem. 2014 22 5 1690 1699 10.1016/j.bmc.2014.01.021 24508308
    [Google Scholar]
  13. Lillsunde K.E. Tomašič T. Kikelj D. Tammela P. Marine alkaloid oroidin analogues with antiviral potential: A novel class of synthetic compounds targeting the cellular chaperone Hsp90. Chem. Biol. Drug Des. 2017 90 6 1147 1154 10.1111/cbdd.13034 28580714
    [Google Scholar]
  14. Zidar N. Montalvão S. Hodnik Ž. Nawrot D. Žula A. Ilaš J. Kikelj D. Tammela P. Mašič L. Antimicrobial activity of the marine alkaloids, clathrodin and oroidin, and their synthetic analogues. Mar. Drugs 2014 12 2 940 963 10.3390/md12020940 24534840
    [Google Scholar]
  15. Akunuri R. Vadakattu M. Bujji S. Veerareddy V. Madhavi Y.V. Nanduri S. Fused-azepinones: Emerging scaffolds of medicinal importance. Eur. J. Med. Chem. 2021 220 113445 10.1016/j.ejmech.2021.113445 33901899
    [Google Scholar]
  16. Tabakmakher K.M. Makarieva T.N. Sabutski Y.E. Kokoulin M.S. Menshov A.S. Popov R.S. Guzii A.G. Shubina L.K. Chingizova E.A. Chingizov A.R. Yurchenko E.A. Fedorov S.N. Grebnev B.B. von Amsberg G. Dyshlovoy S.A. Ivanchina N.V. Dmitrenok P.S. Stonikacidin A. Stonikacidin A, an Antimicrobial 4-Bromopyrrole Alkaloid Containing L-Idonic Acid Core from the Northwestern Pacific Marine Sponge Lissodendoryx papillosa. Mar. Drugs 2024 22 9 396 10.3390/md22090396 39330277
    [Google Scholar]
  17. Genta-Jouve G. Cachet N. Holderith S. Oberhänsli F. Teyssié J.L. Jeffree R. Al Mourabit A. Thomas O.P. New insight into marine alkaloid metabolic pathways: Revisiting oroidin biosynthesis. ChemBioChem 2011 12 15 2298 2301 10.1002/cbic.201100449 21882331
    [Google Scholar]
  18. Lejeune C. Tian H. Appenzeller J. Ermolenko L. Martin M.T. Al-Mourabit A. Unprecedented biomimetic homodimerization of oroidin and clathrodin marine metabolites in the presence of HMPA or phosphonate salt tweezers. J. Nat. Prod. 2013 76 5 903 908 10.1021/np400048r 23654209
    [Google Scholar]
  19. Pöverlein C. Breckle G. Lindel T. Diels-Alder reactions of oroidin and model compounds. Org. Lett. 2006 8 5 819 821 10.1021/ol0526219 16494449
    [Google Scholar]
  20. Schroif-Gregoire C. Travert N. Zaparucha A. Al-Mourabit A. Direct access to marine pyrrole-2-aminoimidazoles, oroidin, and derivatives, via new acyl-1,2-dihydropyridin intermediates. Org. Lett. 2006 8 14 2961 2964 10.1021/ol0608451 16805527
    [Google Scholar]
  21. Rasapalli S. Kumbam V. Dhawane A.N. Golen J.A. Lovely C.J. Rheingold A.L. Total syntheses of oroidin, hymenidin and clathrodin. Org. Biomol. Chem. 2013 11 25 4133 4137 10.1039/c3ob40668g 23695419
    [Google Scholar]
  22. Herath A.K. Lovely C.J. Pyrrole carboxamide introduction in the total synthesis of pyrrole–imidazole alkaloids. Org. Biomol. Chem. 2021 19 12 2603 2621 10.1039/D0OB02052D 33683231
    [Google Scholar]
  23. Ding H. Roberts A.G. Harran P.G. Total synthesis of ageliferin via acyl N-amidinyliminium ion rearrangement. Chem. Sci. (Camb.) 2013 4 1 303 306 10.1039/C2SC21651E 23687567
    [Google Scholar]
  24. Bhandari M.R. Herath A.K. Rasapalli S. Yousufuddin M. Lovely C.J. Total Synthesis of the Nagelamides – Synthetic Studies toward the Reported Structure of Nagelamide D and Nagelamide E Framework. J. Org. Chem. 2020 85 20 12971 12987 10.1021/acs.joc.0c01617 32880173
    [Google Scholar]
  25. Singh R.P. Bhandari M.R. Torres F.M. Doundoulakis T. Gout D. Lovely C.J. Total Synthesis of (±)-2-Debromohymenin via Gold-Catalyzed Intramolecular Alkyne Hydroarylation. Org. Lett. 2020 22 9 3412 3417 10.1021/acs.orglett.0c00883 32286836
    [Google Scholar]
  26. Mukherjee S. Sivappa R. Yousufuddin M. Lovely C.J. Asymmetric total synthesis of ent-cyclooroidin. Org. Lett. 2010 12 21 4940 4943 10.1021/ol1020916 20929213
    [Google Scholar]
  27. Sivappa R. Mukherjee S. Dias H.V.R. Lovely C.J. Studies toward the total synthesis of the oroidin dimers. Org. Biomol. Chem. 2009 7 16 3215 3218 10.1039/b909482b 19641776
    [Google Scholar]
  28. Tuson H.H. Weibel D.B. Bacteria–surface interactions. Soft Matter 2013 9 17 4368 4380 10.1039/c3sm27705d 23930134
    [Google Scholar]
  29. Hall-Stoodley L. Costerton J.W. Stoodley P. Bacterial biofilms: from the Natural environment to infectious diseases. Nat. Rev. Microbiol. 2004 2 2 95 108 10.1038/nrmicro821 15040259
    [Google Scholar]
  30. Høiby N. Bjarnsholt T. Givskov M. Molin S. Ciofu O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 2010 35 4 322 332 10.1016/j.ijantimicag.2009.12.011 20149602
    [Google Scholar]
  31. Stowe S.D. Richards J.J. Tucker A.T. Thompson R. Melander C. Cavanagh J. Anti-biofilm compounds derived from marine sponges. Mar. Drugs 2011 9 10 2010 2035 10.3390/md9102010 22073007
    [Google Scholar]
  32. Taraszkiewicz A. Fila G. Grinholc M. Nakonieczna J. Innovative strategies to overcome biofilm resistance. BioMed Res. Int. 2013 2013 1 13 10.1155/2013/150653 23509680
    [Google Scholar]
  33. Matz C. McDougald D. Moreno A.M. Yung P.Y. Yildiz F.H. Kjelleberg S. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc. Natl. Acad. Sci. USA 2005 102 46 16819 16824 10.1073/pnas.0505350102 16267135
    [Google Scholar]
  34. Høiby N. Ciofu O. Bjarnsholt T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol. 2010 5 11 1663 1674 10.2217/fmb.10.125 21133688
    [Google Scholar]
  35. Mishra A. Aggarwal A. Khan F. Medical Device-Associated Infections Caused by Biofilm-Forming Microbial Pathogens and Controlling Strategies. Antibiotics (Basel) 2024 13 7 623 10.3390/antibiotics13070623 39061305
    [Google Scholar]
  36. Davies D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003 2 2 114 122 10.1038/nrd1008 12563302
    [Google Scholar]
  37. Richards J.J. Reyes S. Stowe S.D. Tucker A.T. Ballard T.E. Mathies L.D. Cavanagh J. Melander C. Amide isosteres of oroidin: assessment of antibiofilm activity and C. Elegans toxicity. J. Med. Chem. 2009 52 15 4582 4585 10.1021/jm900378s 19719234
    [Google Scholar]
  38. Richards J.J. Ballard T.E. Melander C. Inhibition and dispersion of Pseudomonas aeruginosa biofilms with reverse amide 2-aminoimidazole oroidin analogues. Org. Biomol. Chem. 2008 6 8 1356 1363 10.1039/b719082d 18385842
    [Google Scholar]
  39. O’Toole G.A. Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 1998 28 3 449 461 10.1046/j.1365‑2958.1998.00797.x 9632250
    [Google Scholar]
  40. Richards J.J. Ballard T.E. Huigens R.W. Melander C. Synthesis and screening of an oroidin library against Pseudomonas aeruginosa biofilms. ChemBioChem 2008 9 8 1267 1279 10.1002/cbic.200700774 18431726
    [Google Scholar]
  41. Richards J.J. Huigens R.W. Ballard T.E. Basso A. Cavanagh J. Melander C. Inhibition and dispersion of proteobacterial biofilms. Chem. Commun. (Camb.) 2008 14 1698 1700 10.1039/b719802g 18368169
    [Google Scholar]
  42. Ballard T.E. Richards J.J. Aquino A. Reed C.S. Melander C. Antibiofilm activity of a diverse oroidin library generated through reductive acylation. J. Org. Chem. 2009 74 4 1755 1758 10.1021/jo802260t 19132935
    [Google Scholar]
  43. Wright C.J. Wu H. Melander R.J. Melander C. Lamont R.J. Disruption of heterotypic community development byP orphyromonas gingivalis with small molecule inhibitors. Mol. Oral Microbiol. 2014 29 5 185 193 10.1111/omi.12060 24899524
    [Google Scholar]
  44. Mah T.F.C. O’Toole G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001 9 1 34 39 10.1016/S0966‑842X(00)01913‑2 11166241
    [Google Scholar]
  45. Tasdemir D. Mallon R. Greenstein M. Feldberg L.R. Kim S.C. Collins K. Wojciechowicz D. Mangalindan G.C. Concepción G.P. Harper M.K. Ireland C.M. Aldisine alkaloids from the Philippine sponge Stylissa massa are potent inhibitors of mitogen-activated protein kinase kinase-1 (MEK-1). J. Med. Chem. 2002 45 2 529 532 10.1021/jm0102856 11784156
    [Google Scholar]
  46. Martinez J.P. Sasse F. Brönstrup M. Diez J. Meyerhans A. Antiviral drug discovery: broad-spectrum drugs from nature. Nat. Prod. Rep. 2015 32 1 29 48 10.1039/C4NP00085D 25315648
    [Google Scholar]
  47. Zhang H. Dong M. Chen J. Wang H. Tenney K. Crews P. Bioactive Secondary Metabolites from the Marine Sponge Genus Agelas. Mar. Drugs 2017 15 11 351 10.3390/md15110351 29117128
    [Google Scholar]
  48. Breton J.J. Chabot-Fletcher M.C. The natural product hymenialdisine inhibits interleukin-8 production in U937 cells by inhibition of nuclear factor-kappaB. J. Pharmacol. Exp. Ther. 1997 282 1 459 466 10.1016/S0022‑3565(24)36795‑3 9223588
    [Google Scholar]
  49. Meijer L. Thunnissen A-M.W.H. White A.W. Garnier M. Nikolic M. Tsai L-H. Walter J. Cleverley K.E. Salinas P.C. Wu Y-Z. Biernat J. Mandelkow E-M. Kim S-H. Pettit G.R. Inhibition of cyclin-dependent kinases, GSK-3β and CK1 by hymenialdisine, a marine sponge constituent. Chem. Biol. 2000 7 1 51 63 10.1016/S1074‑5521(00)00063‑6 10662688
    [Google Scholar]
  50. Debebe Z. Ammosova T. Breuer D. Lovejoy D.B. Kalinowski D.S. Karla P.K. Kumar K. Jerebtsova M. Ray P. Kashanchi F. Gordeuk V.R. Richardson D.R. Nekhai S. Iron chelators of the di-2-pyridylketone thiosemicarbazone and 2-benzoylpyridine thiosemicarbazone series inhibit HIV-1 transcription: identification of novel cellular targets--iron, cyclin-dependent kinase (CDK) 2, and CDK9. Mol. Pharmacol. 2011 79 1 185 196 10.1124/mol.110.069062 20956357
    [Google Scholar]
  51. Curman D. Cinel B. Williams D.E. Rundle N. Block W.D. Goodarzi A.A. Hutchins J.R. Clarke P.R. Zhou B.B. Lees-Miller S.P. Andersen R.J. Roberge M. Inhibition of the G2 DNA damage checkpoint and of protein kinases Chk1 and Chk2 by the marine sponge alkaloid debromohymenialdisine. J. Biol. Chem. 2001 276 21 17914 17919 10.1074/jbc.M100728200 11279124
    [Google Scholar]
  52. Goh W.C. Rogel M.E. Kinsey C.M. Michael S.F. Fultz P.N. Nowak M.A. Hahn B.H. Emerman M. HIV-1 Vpr increases viral expression by manipulation of the cell cycle: A mechanism for selection of Vpr in vivo. Nat. Med. 1998 4 1 65 71 10.1038/nm0198‑065 9427608
    [Google Scholar]
  53. Keifer P.A. Schwartz R.E. Koker M.E.S. Hughes R.G. Rittschof D. Rinehart K.L. Bioactive bromopyrrole metabolites from the Caribbean sponge Agelas conifera. J. Org. Chem. 1991 56 9 2965 2975 10.1021/jo00009a008
    [Google Scholar]
  54. Yarnold J.E. Hamilton B.R. Welsh D.T. Pool G.F. Venter D.J. Carroll A.R. High resolution spatial mapping of brominated pyrrole-2-aminoimidazole alkaloids distributions in the marine sponge Stylissa flabellata via MALDI-mass spectrometry imaging. Mol. Biosyst. 2012 8 9 2249 2259 10.1039/c2mb25152c 22777271
    [Google Scholar]
  55. Kovalerchik D. Singh R.P. Schlesinger P. Mahajni A. Shefer S. Fridman M. Ilan M. Carmeli S. Bromopyrrole Alkaloids of the Sponge Agelas oroides Collected Near the Israeli Mediterranean Coastline. J. Nat. Prod. 2020 83 2 374 384 10.1021/acs.jnatprod.9b00863 32072810
    [Google Scholar]
  56. Liu C. Worthington R.J. Melander C. Wu H. A new small molecule specifically inhibits the cariogenic bacterium Streptococcus mutans in multispecies biofilms. Antimicrob. Agents Chemother. 2011 55 6 2679 2687 10.1128/AAC.01496‑10 21402858
    [Google Scholar]
  57. Worthington R.J. Richards J.J. Melander C. Small molecule control of bacterial biofilms. Org. Biomol. Chem. 2012 10 37 7457 7474 10.1039/c2ob25835h 22733439
    [Google Scholar]
  58. Driscoll J.A. Brody S.L. Kollef M.H. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 2007 67 3 351 368 10.2165/00003495‑200767030‑00003 17335295
    [Google Scholar]
  59. Hodnik Ž. Łoś J.M. Žula A. Zidar N. Jakopin Ž. Łoś M. Sollner Dolenc M. Ilaš J. Węgrzyn G. Peterlin Mašič L. Kikelj D. Inhibition of biofilm formation by conformationally constrained indole-based analogues of the marine alkaloid oroidin. Bioorg. Med. Chem. Lett. 2014 24 11 2530 2534 10.1016/j.bmcl.2014.03.094 24755428
    [Google Scholar]
  60. Silver L.L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 2011 24 1 71 109 10.1128/CMR.00030‑10 21233508
    [Google Scholar]
  61. Payne D.J. Gwynn M.N. Holmes D.J. Pompliano D.L. Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 2007 6 1 29 40 10.1038/nrd2201 17159923
    [Google Scholar]
  62. Chopra I. Schofield C. Everett M. O’Neill A. Miller K. Wilcox M. Frère J.M. Dawson M. Czaplewski L. Urleb U. Courvalin P. Treatment of health-care-associated infections caused by Gram-negative bacteria: A consensus statement. Lancet Infect. Dis. 2008 8 2 133 139 10.1016/S1473‑3099(08)70018‑5 18222164
    [Google Scholar]
  63. Theuretzbacher U. Accelerating resistance, inadequate antibacterial drug pipelines and international responses. Int. J. Antimicrob. Agents 2012 39 4 295 299 10.1016/j.ijantimicag.2011.12.006 22341298
    [Google Scholar]
  64. Steenackers H.P.L. Ermolat’ev D.S. Savaliya B. Weerdt A.D. Coster D.D. Shah A. Van der Eycken E.V. De Vos D.E. Vanderleyden J. De Keersmaecker S.C.J. Structure–activity relationship of 2-hydroxy-2-aryl-2,3-dihydro-imidazo[1,2-a]pyrimidinium salts and 2N-substituted 4(5)-aryl-2-amino-1H-imidazoles as inhibitors of biofilm formation by Salmonella Typhimurium and Pseudomonas aeruginosa. Bioorg. Med. Chem. 2011 19 11 3462 3473 10.1016/j.bmc.2011.04.026 21550812
    [Google Scholar]
  65. Steenackers H.P.L. Ermolat’ev D.S. Savaliya B. De Weerdt A. De Coster D. Shah A. Van der Eycken E.V. De Vos D.E. Vanderleyden J. De Keersmaecker S.C.J. Structure-activity relationship of 4(5)-aryl-2-amino-1H-imidazoles, N1-substituted 2-aminoimidazoles and imidazo[1,2-a]pyrimidinium salts as inhibitors of biofilm formation by Salmonella typhimurium and Pseudomonas aeruginosa. J. Med. Chem. 2011 54 2 472 484 10.1021/jm1011148 21174477
    [Google Scholar]
  66. Rogers S.A. Huigens R.W. Cavanagh J. Melander C. Synergistic effects between conventional antibiotics and 2-aminoimidazole-derived antibiofilm agents. Antimicrob. Agents Chemother. 2010 54 5 2112 2118 10.1128/AAC.01418‑09 20211901
    [Google Scholar]
  67. Rogers S.A. Huigens R.W. Melander C. A 2-aminobenzimidazole that inhibits and disperses gram-positive biofilms through a zinc-dependent mechanism. J. Am. Chem. Soc. 2009 131 29 9868 9869 10.1021/ja9024676 19621946
    [Google Scholar]
  68. Richards J.J. Reed C.S. Melander C. Effects of N-pyrrole substitution on the anti-biofilm activities of oroidin derivatives against Acinetobacter baumannii. Bioorg. Med. Chem. Lett. 2008 18 15 4325 4327 10.1016/j.bmcl.2008.06.089 18625555
    [Google Scholar]
  69. Bunders C.A. Richards J.J. Melander C. Identification of aryl 2-aminoimidazoles as biofilm inhibitors in Gram-negative bacteria. Bioorg. Med. Chem. Lett. 2010 20 12 3797 3800 10.1016/j.bmcl.2010.04.042 20466544
    [Google Scholar]
  70. Huigens R.W. Reyes S. Reed C.S. Bunders C. Rogers S.A. Steinhauer A.T. Melander C. The chemical synthesis and antibiotic activity of a diverse library of 2-aminobenzimidazole small molecules against MRSA and multidrug-resistant A. Baumannii. Bioorg Med. Chem. 2010 18 2 663 674 10.1016/j.bmc.2009.12.003 20044260
    [Google Scholar]
  71. Harris T.L. Worthington R.J. Melander C. A facile synthesis of 1,5-disubstituted-2-aminoimidazoles: Antibiotic activity of a first generation library. Bioorg. Med. Chem. Lett. 2011 21 15 4516 4519 10.1016/j.bmcl.2011.05.123 21737267
    [Google Scholar]
  72. Rogers S.A. Lindsey E.A. Whitehead D.C. Mullikin T. Melander C. Synthesis and biological evaluation of 2-aminoimidazole/carbamate hybrid anti-biofilm and anti-microbial agents. Bioorg. Med. Chem. Lett. 2011 21 4 1257 1260 10.1016/j.bmcl.2010.12.057 21251823
    [Google Scholar]
  73. Hammami S. Bergaoui A. Boughalleb N. Romdhane A. Khoja I. Ben Halima Kamel M. Mighri Z. Antifungal effects of secondary metabolites isolated from marine organisms collected from the Tunisian coast. C. R. Chim. 2010 13 11 1397 1400 10.1016/j.crci.2010.04.022
    [Google Scholar]
  74. Scala F. Fattorusso E. Menna M. Taglialatela-Scafati O. Tierney M. Kaiser M. Tasdemir D. Bromopyrrole alkaloids as lead compounds against protozoan parasites. Mar. Drugs 2010 8 7 2162 2174 10.3390/md8072162 20714430
    [Google Scholar]
  75. Tasdemir D. Topaloglu B. Perozzo R. Brun R. O’Neill R. Carballeira N.M. Zhang X. Tonge P.J. Linden A. Rüedi P. Marine natural products from the Turkish sponge Agelas oroides that inhibit the enoyl reductases from Plasmodium falciparum, Mycobacterium tuberculosis and Escherichia coli. Bioorg. Med. Chem. 2007 15 21 6834 6845 10.1016/j.bmc.2007.07.032 17765547
    [Google Scholar]
  76. Bernan V.S. Roll D.M. Ireland C.M. Greenstein M. Maiese W.M. Steinberg D.A. A study on the mechanism of action of sceptrin, an antimicrobial agent isolated from the South Pacific sponge Agelas mauritiana. J. Antimicrob. Chemother. 1993 32 4 539 550 10.1093/jac/32.4.539 8288495
    [Google Scholar]
  77. D’Ambrosio M. Guerriero A. Debitus C. Ribes O. Pusset J. Leroy S. Pietra F. Agelastatin a, a new skeleton cytotoxic alkaloid of the oroidin family. Isolation from the axinellid sponge Agelas dendromorpha of the coral sea. J. Chem. Soc. Chem. Commun. 1993 16 1305 1306 10.1039/c39930001305
    [Google Scholar]
  78. Kusama T. Tanaka N. Sakai K. Gonoi T. Fromont J. Kashiwada Y. Kobayashi J. Agelamadins A and B, dimeric bromopyrrole alkaloids from a marine sponge Agelas sp. Org. Lett. 2014 16 15 3916 3918 10.1021/ol501664b 25020256
    [Google Scholar]
  79. Kusama T. Tanaka N. Sakai K. Gonoi T. Fromont J. Kashiwada Y. Kobayashi J. Agelamadins C-E. Agelamadins C-E, bromopyrrole alkaloids comprising oroidin and 3-hydroxykynurenine from a marine sponge Agelas sp. Org. Lett. 2014 16 19 5176 5179 10.1021/ol502528m 25247626
    [Google Scholar]
  80. Endo T. Tsuda M. Okada T. Mitsuhashi S. Shima H. Kikuchi K. Mikami Y. Fromont J. Kobayashi J. Nagelamides A-H. Nagelamides A-H, new dimeric bromopyrrole alkaloids from marine sponge Agelas species. J. Nat. Prod. 2004 67 8 1262 1267 10.1021/np034077n 15332839
    [Google Scholar]
  81. Walker R.P. Faulkner D.J. Van Engen D. Clardy J. Sceptrin, an antimicrobial agent from the sponge Agelas sceptrum. J. Am. Chem. Soc. 1981 103 22 6772 6773 10.1021/ja00412a052
    [Google Scholar]
  82. Cafieri F. Carnuccio R. Fattorusso E. Taglialatela-Scafati O. Vallefuoco T. Anti-histaminic activity of bromopyrrole alkaloids isolated from Caribbean Agelas sponges. Bioorg. Med. Chem. Lett. 1997 7 17 2283 2288 10.1016/S0960‑894X(97)00415‑0
    [Google Scholar]
  83. Shen X. Perry T.L. Dunbar C.D. Kelly-Borges M. Hamann M.T. Debromosceptrin, an alkaloid from the Caribbean sponge Agelas conifera. J. Nat. Prod. 1998 61 10 1302 1303 10.1021/np980129a 9784176
    [Google Scholar]
  84. Rosa R. Silva W. de Motta G.E. Rodríguez A.D. Morales J.J. Ortiz M. Anti-muscarinic activity of a family of C11N5 compounds isolated fromAgelas sponges. Experientia 1992 48 9 885 887 10.1007/BF02118426 1397186
    [Google Scholar]
  85. Vassas A. Bourdy G. Paillard J. Lavayre J. Païs M. Quirion J. Debitus C. Naturally occurring somatostatin and vasoactive intestinal peptide inhibitors. Isolation of alkaloids from two marine sponges. Planta Med. 1996 62 1 28 30 10.1055/s‑2006‑957790 8720384
    [Google Scholar]
  86. Gitai Z. Dye N.A. Reisenauer A. Wachi M. Shapiro L. MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 2005 120 3 329 341 10.1016/j.cell.2005.01.007 15707892
    [Google Scholar]
  87. Rodríguez A.D. Lear M.J. La Clair J.J. Identification of the binding of sceptrin to MreB via a bidirectional affinity protocol. J. Am. Chem. Soc. 2008 130 23 7256 7258 10.1021/ja7114019 18479102
    [Google Scholar]
  88. Cipres A. O’Malley D.P. Li K. Finlay D. Baran P.S. Vuori K. Sceptrin, a marine natural compound, inhibits cell motility in a variety of cancer cell lines. ACS Chem. Biol. 2010 5 2 195 202 10.1021/cb900240k 20030414
    [Google Scholar]
  89. da Silva F.R. Tessis A.C. Ferreira P.F. Rangel L.P. Garcia-Gomes A.S. Pereira F.R. Berlinck R.G.S. Muricy G. Ferreira-Pereira A. Oroidin inhibits the activity of the multidrug resistance target Pdr5p from yeast plasma membranes. J. Nat. Prod. 2011 74 2 279 282 10.1021/np1006247 21207971
    [Google Scholar]
  90. Penet M.F. Kober F. Confort-Gouny S. Le Fur Y. Dalmasso C. Coltel N. Liprandi A. Gulian J.M. Grau G.E. Cozzone P.J. Viola A. Magnetic resonance spectroscopy reveals an impaired brain metabolic profile in mice resistant to cerebral malaria infected with Plasmodium berghei ANKA. J. Biol. Chem. 2007 282 19 14505 14514 10.1074/jbc.M608035200 17369263
    [Google Scholar]
  91. Snow R.W. Guerra C.A. Noor A.M. Myint H.Y. Hay S.I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 2005 434 7030 214 217 10.1038/nature03342 15759000
    [Google Scholar]
  92. Perozzo R. Kuo M. Sidhu A.S. Valiyaveettil J.T. Bittman R. Jacobs W.R. Fidock D.A. Sacchettini J.C. Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase. J. Biol. Chem. 2002 277 15 13106 13114 10.1074/jbc.M112000200 11792710
    [Google Scholar]
  93. Mohammed R. Peng J. Kelly M. Hamann M.T. Cyclic heptapeptides from the Jamaican sponge Stylissa caribica. J. Nat. Prod. 2006 69 12 1739 1744 10.1021/np060006n 17190452
    [Google Scholar]
  94. Waller R.F. Keeling P.J. Donald R.G.K. Striepen B. Handman E. Lang-Unnasch N. Cowman A.F. Besra G.S. Roos D.S. McFadden G.I. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 1998 95 21 12352 12357 10.1073/pnas.95.21.12352 9770490
    [Google Scholar]
  95. Ma Y. Nam S. Jove R. Yakushijin K. Horne D.A. Synthesis and anticancer activities of ageladine A and structural analogs. Bioorg. Med. Chem. Lett. 2010 20 1 83 86 10.1016/j.bmcl.2009.11.036 19948404
    [Google Scholar]
  96. El-Tanani M. Campbell F. Mason C. Total synthesis and mechanism of action studies on the antitumor alkaloid, (-)-agelastatin a. Strategies and Tactics in Organic Synthesis 2005 6 352 394
    [Google Scholar]
  97. D’Ambrosio M. Guerriero A. Pietra F. Ripamonti M. Debitus C. Waikedre J. The Active Centres of Agelastatin A, a Strongly Cytotoxic Alkaloid of the Coral Sea Axinellid Sponge Agelas dendromorpha, as Determined by Comparative Bioassays with Semisynthetic Derivatives. Helv. Chim. Acta 1996 79 3 727 735 10.1002/hlca.19960790315
    [Google Scholar]
  98. Mason C.K. McFarlane S. Johnston P.G. Crowe P. Erwin P.J. Domostoj M.M. Campbell F.C. Mana S. Hale K.J. El-Tanani M. Agelastatin A. Agelastatin A. A novel inhibitor of osteopontin-mediated adhesion, invasion, and colony formation. Mol. Cancer Ther. 2008 7 3 548 558 10.1158/1535‑7163.MCT‑07‑2251 18347142
    [Google Scholar]
  99. Han S. Siegel D.S. Morrison K.C. Hergenrother P.J. Movassaghi M. Synthesis and anticancer activity of all known (-)-agelastatin alkaloids. J. Org. Chem. 2013 78 23 11970 11984 10.1021/jo4020112 24152243
    [Google Scholar]
  100. Manivasagan P. Venkatesan J. Sivakumar K. Kim S.K. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol. Res. 2014 169 4 262 278 10.1016/j.micres.2013.07.014 23958059
    [Google Scholar]
  101. He Q. Chen W. Qin Y. Synthesis of 2-substituted endo-hymenialdisine derivatives. Tetrahedron Lett. 2007 48 11 1899 1901 10.1016/j.tetlet.2007.01.114
    [Google Scholar]
  102. Chacun-Lefèvre L. Joseph B. Mérour J.Y. Synthesis and Reactivity of Azepino[3,4-b]indol-5-yl Trifluoromethanesulfonate. Tetrahedron 2000 56 26 4491 4499 10.1016/S0040‑4020(00)00374‑4
    [Google Scholar]
  103. Pettit G.R. Herald C.L. Leet J.E. Gupta R. Schaufelberger D.E. Bates R.B. Clewlow P.J. Doubek D.L. Manfredi K.P. Rützler K. Schmidt J.M. Tackett L.P. Ward F.B. Bruck M. Camou F. Antineoplastic agents. 168. Isolation and structure of axinohydantoin. Can. J. Chem. 1990 68 9 1621 1624 10.1139/v90‑250
    [Google Scholar]
  104. Fouad M.A. Debbab A. Wray V. Müller W.E.G. Proksch P. New bioactive alkaloids from the marine sponge Stylissa sp. Tetrahedron 2012 68 49 10176 10179 10.1016/j.tet.2012.09.097
    [Google Scholar]
  105. Zöllinger M. Kelter G. Fiebig H.H. Lindel T. Antitumor activity of the marine natural product dibromophakellstatin in vitro. Bioorg. Med. Chem. Lett. 2007 17 2 346 349 10.1016/j.bmcl.2006.10.046 17095216
    [Google Scholar]
  106. Libermann T.A. Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol. Cell. Biol. 1990 10 5 2327 2334 10.1128/MCB.10.5.2327 2183031
    [Google Scholar]
  107. Mukaida N. Mahe Y. Matsushima K. Cooperative interaction of nuclear factor-kappa B- and cis-regulatory enhancer binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. J. Biol. Chem. 1990 265 34 21128 21133 10.1016/S0021‑9258(17)45336‑1 2250017
    [Google Scholar]
  108. Müller S. Kamrnerbauer C. Simous U. Shibagaki N. Li L.J. Wright Caughman S. Degitz K. Transcriptional regulation of intercellular adhesion molecule-1: PMA-induction is mediated by NF kappa B. J. Invest. Dermatol. 1995 104 6 970 975 10.1111/1523‑1747.ep12606225 7769268
    [Google Scholar]
  109. Badger A.M. Cook M.N. Swift B.A. Newman-Tarr T.M. Gowen M. Lark M. Inhibition of interleukin-1-induced proteoglycan degradation and nitric oxide production in bovine articular cartilage/chondrocyte cultures by the natural product, hymenialdisine. J. Pharmacol. Exp. Ther. 1999 290 2 587 593 10.1016/S0022‑3565(24)34938‑9 10411566
    [Google Scholar]
  110. Sharma V. Lansdell T.A. Jin G. Tepe J.J. Inhibition of cytokine production by hymenialdisine derivatives. J. Med. Chem. 2004 47 14 3700 3703 10.1021/jm040013d 15214798
    [Google Scholar]
  111. Wang Q. Chen D. Jin H. Ye Z. Wang C. Chen K. Kuek V. Xu K. Qiu H. Chen P. Song D. Zhao J. Liu Q. Davis R.A. Song F. Xu J. Hymenialdisine: A Marine Natural Product That Acts on Both Osteoblasts and Osteoclasts and Prevents Estrogen-Dependent Bone Loss in Mice. J. Bone Miner. Res. 2020 35 8 1582 1596 10.1002/jbmr.4025 32286705
    [Google Scholar]
  112. Matus A. Microtubule-associated proteins: Their potential role in determining neuronal morphology. Annu. Rev. Neurosci. 1988 11 1 29 44 10.1146/annurev.ne.11.030188.000333 3284444
    [Google Scholar]
  113. Stelzmann R.A. Norman Schnitzlein H. Reed Murtagh F. Murtagh F.R. An english translation of alzheimer’s 1907 paper, “über eine eigenartige erkankung der hirnrinde”. Clin. Anat. 1995 8 6 429 431 10.1002/ca.980080612 8713166
    [Google Scholar]
  114. Dolan P.J. Johnson G.V. The role of tau kinases in Alzheimer’s disease. Curr. Opin. Drug Discov. Devel. 2010 13 5 595 603 20812151
    [Google Scholar]
  115. Takashima A. Murayama M. Murayama O. Kohno T. Honda T. Yasutake K. Nihonmatsu N. Mercken M. Yamaguchi H. Sugihara S. Wolozin B. Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau. Proc. Natl. Acad. Sci. USA 1998 95 16 9637 9641 10.1073/pnas.95.16.9637 9689133
    [Google Scholar]
  116. Selkoe D. The cell biology of β-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol. 1998 8 11 447 453 10.1016/S0962‑8924(98)01363‑4 9854312
    [Google Scholar]
  117. Gan L. Johnson J.A. Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2014 1842 8 1208 1218 10.1016/j.bbadis.2013.12.011 24382478
    [Google Scholar]
  118. Leirós M. Alonso E. Rateb M.E. Houssen W.E. Ebel R. Jaspars M. Alfonso A. Botana L.M. Bromoalkaloids protect primary cortical neurons from induced oxidative stress. ACS Chem. Neurosci. 2015 6 2 331 338 10.1021/cn500258c 25387680
    [Google Scholar]
  119. Bickmeyer U. Drechsler C. Köck M. Assmann M. Brominated pyrrole alkaloids from marine Agelas sponges reduce depolarization-induced cellular calcium elevation. Toxicon 2004 44 1 45 51 10.1016/j.toxicon.2004.04.001 15225561
    [Google Scholar]
  120. Yellen G. The voltage-gated potassium channels and their relatives. Nature 2002 419 6902 35 42 10.1038/nature00978 12214225
    [Google Scholar]
  121. Daly D. Al-Sabi A. Kinsella G.K. Nolan K. Dolly J.O. Porphyrin derivatives as potent and selective blockers of neuronal Kv1 channels. Chem. Commun. (Camb.) 2015 51 6 1066 1069 10.1039/C4CC05639F 25435252
    [Google Scholar]
  122. Wacker S.J. Jurkowski W. Simmons K.J. Fishwick C.W. Johnson A.P. Madge D. Lindahl E. Rolland J.F. de Groot B.L. Identification of selective inhibitors of the potassium channel Kv1.1-1.2((3)) by high-throughput virtual screening and automated patch clamp. ChemMedChem 2012 7 10 1775 1783 10.1002/cmdc.201100600 22473914
    [Google Scholar]
  123. Murray J.K. Qian Y.X. Liu B. Elliott R. Aral J. Park C. Zhang X. Stenkilsson M. Salyers K. Rose M. Li H. Yu S. Andrews K.L. Colombero A. Werner J. Gaida K. Sickmier E.A. Miu P. Itano A. McGivern J. Gegg C.V. Sullivan J.K. Miranda L.P. Pharmaceutical Optimization of Peptide Toxins for Ion Channel Targets: Potent, Selective, and Long-Lived Antagonists of Kv1.3. J. Med. Chem. 2015 58 17 6784 6802 10.1021/acs.jmedchem.5b00495 26288216
    [Google Scholar]
  124. Chang S.C. Huq R. Chhabra S. Beeton C. Pennington M.W. Smith B.J. Norton R.S. N‐terminally extended analogues of the K + channel toxin from Stichodactyla helianthus as potent and selective blockers of the voltage‐gated potassium channel Kv1.3. FEBS J. 2015 282 12 2247 2259 10.1111/febs.13294 25864722
    [Google Scholar]
  125. Pennington M. Chang S. Chauhan S. Huq R. Tajhya R. Chhabra S. Norton R. Beeton C. Development of highly selective Kv1.3-blocking peptides based on the sea anemone peptide ShK. Mar. Drugs 2015 13 1 529 542 10.3390/md13010529 25603346
    [Google Scholar]
  126. Vonderlin N. Fischer F. Zitron E. Seyler C. Scherer D. Thomas D. Katus H.A. Scholz E.P. Inhibition of cardiac Kv1.5 potassium current by the anesthetic midazolam: Mode of action. Drug Des. Devel. Ther. 2014 8 2263 2271 25422586
    [Google Scholar]
  127. Fischer F. Vonderlin N. Zitron E. Seyler C. Scherer D. Becker R. Katus H.A. Scholz E.P. Inhibition of cardiac Kv1.5 and Kv4.3 potassium channels by the class Ia anti-arrhythmic ajmaline: Mode of action. Naunyn Schmiedebergs Arch. Pharmacol. 2013 386 11 991 999 10.1007/s00210‑013‑0901‑0 23832378
    [Google Scholar]
  128. Tamargo J. Caballero R. Gómez R. Delpón E. I Kur/Kv1.5 channel blockers for the treatment of atrial fibrillation. Expert Opin. Investig. Drugs 2009 18 4 399 416 10.1517/13543780902762850 19335273
    [Google Scholar]
  129. Zidar N. Žula A. Tomašič T. Rogers M. Kirby R.W. Tytgat J. Peigneur S. Kikelj D. Ilaš J. Mašič L.P. Clathrodin, hymenidin and oroidin, and their synthetic analogues as inhibitors of the voltage-gated potassium channels. Eur. J. Med. Chem. 2017 139 232 241 10.1016/j.ejmech.2017.08.015 28802123
    [Google Scholar]
  130. Gautschi J.T. Whitman S. Holman T.R. Crews P. An analysis of phakellin and oroidin structures stimulated by further study of an Agelas sponge. J. Nat. Prod. 2004 67 8 1256 1261 10.1021/np0340495 15332838
    [Google Scholar]
  131. Fujita M. Nakao Y. Matsunaga S. Seiki M. Itoh Y. Yamashita J. van Soest R.W.M. Fusetani N. Ageladine A. Ageladine A. An antiangiogenic matrixmetalloproteinase inhibitor from the marine sponge Agelas nakamurai. J. Am. Chem. Soc. 2003 125 51 15700 15701 10.1021/ja038025w 14677933
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266391437250909024350
Loading
/content/journals/ctmc/10.2174/0115680266391437250909024350
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test