Skip to content
2000
image of Discovery of MMP1 Inhibitors from Dandelion using Molecular Simulation and Bioactivity Test

Abstract

Background

MMP1 (matrix metallopeptidase 1) plays a significant role in the degradation of collagen fibres within the extracellular matrix, and has been linked to a multitude of biological processes, including rheumatoid arthritis, osteoarthritis, periodontal disease, and tumor invasion.

Objective

In order to discover inhibitors of MMP1 that originate from the phytochemicals of the dandelion (.-Mazz.).

Methods

The herbal constituents of the dandelion were retrieved from the HERB database. A multifaceted approach including molecular docking, MMP1 enzyme assays, and molecular dynamics simulations was used to identify potential MMP1 inhibitors among the chemical compounds present in the dandelion.

Results

A total of 61 chemical constituents of the dandelion were collated from the HERB database. A potential MMP1 inhibitor was identified through a combination of molecular docking and an MMP1 enzyme bioactivity assay. Cichoric acid demonstrated pronounced inhibitory activity against MMP1, with an IC value of 7.81 ± 2.60 μM. Molecular dynamics simulations and binding free energy calculations indicated that the nonpolar interaction energies of LEU181, ARG214, VAL215, HIS218, GLU219, HIS228, PRO238, and SER239 played a primary role in the binding of cichoric acid to MMP1.

Conclusion

The integration of molecular modeling and bioactivity testing proved an effective method for the rapid discovery of targeted small molecule inhibitors. Cichoric acid demonstrated potent MMP1 inhibitory activity and thus represented a promising candidate for further development.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266387669250509094221
2025-05-12
2025-09-14
Loading full text...

Full text loading...

References

  1. Bian Y. Xiang Z. Wang Y. Ren Q. Chen G. Xiang B. Wang J. Zhang C. Pei S. Guo S. Xiao L. Immunomodulatory roles of metalloproteinases in rheumatoid arthritis. Front. Pharmacol. 2023 14 1285455 10.3389/fphar.2023.1285455 38035026
    [Google Scholar]
  2. Chang M. Matrix metalloproteinase profiling and their roles in disease. RSC Advances 2023 13 9 6304 6316 10.1039/D2RA07005G 36825288
    [Google Scholar]
  3. Kumar G.B. Nair B.G. Perry J.J.P. Martin D.B.C. Recent insights into natural product inhibitors of matrix metalloproteinases. MedChemComm 2019 10 12 2024 2037 10.1039/C9MD00165D 32904148
    [Google Scholar]
  4. Cabral-Pacheco G.A. Garza-Veloz I. Castruita-De la Rosa C. Ramirez-Acuña J.M. Perez-Romero B.A. Guerrero-Rodriguez J.F. Martinez-Avila N. Martinez-Fierro M.L. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci. 2020 21 24 9739 10.3390/ijms21249739 33419373
    [Google Scholar]
  5. Pulik Ł. Łęgosz P. Motyl G. Matrix metalloproteinases in rheumatoid arthritis and osteoarthritis: A state of the art review. Reumatologia 2023 61 3 191 201 10.5114/reum/168503 37522140
    [Google Scholar]
  6. Li W. Saji S. Sato F. Noda M. Toi M. Potential clinical applications of matrix metalloproteinase inhibitors and their future prospects. Int. J. Biol. Markers 2013 28 2 117 130 10.1016/j.bbamcr.2017.04.011 23787494
    [Google Scholar]
  7. Radu A.F. Bungau S.G. Management of rheumatoid arthritis: An overview. Cells 2021 10 11 2857 10.3390/cells10112857 34831081
    [Google Scholar]
  8. Alivernini S. Firestein G.S. McInnes I.B. The pathogenesis of rheumatoid arthritis. Immunity 2022 55 12 2255 2270 10.1016/j.immuni.2022.11.009 36516818
    [Google Scholar]
  9. Ding Q. Hu W. Wang R. Yang Q. Zhu M. Li M. Cai J. Rose P. Mao J. Zhu Y.Z. Signaling pathways in rheumatoid arthritis: Implications for targeted therapy. Signal Transduct. Target. Ther. 2023 8 1 68 10.1038/s41392‑023‑01331‑9 36797236
    [Google Scholar]
  10. Fraenkel L. Bathon J.M. England B.R. St Clair E.W. Arayssi T. Carandang K. Deane K.D. Genovese M. Huston K.K. Kerr G. Kremer J. Nakamura M.C. Russell L.A. Singh J.A. Smith B.J. Sparks J.A. Venkatachalam S. Weinblatt M.E. Al-Gibbawi M. Baker J.F. Barbour K.E. Barton J.L. Cappelli L. Chamseddine F. George M. Johnson S.R. Kahale L. Karam B.S. Khamis A.M. Navarro-Millán I. Mirza R. Schwab P. Singh N. Turgunbaev M. Turner A.S. Yaacoub S. Akl E.A. 2021 American College of rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res. (Hoboken) 2021 73 7 924 939 10.1002/acr.24596 34101387
    [Google Scholar]
  11. Padyukov L. Genetics of rheumatoid arthritis. Semin. Immunopathol. 2022 44 1 47 62 10.1007/s00281‑022‑00912‑0 35088123
    [Google Scholar]
  12. Dai Q. Zhou D. Xu L. Song X. Curcumin alleviates rheumatoid arthritis-induced inflammation and synovial hyperplasia by targeting mTOR pathway in rats. Drug Des. Devel. Ther. 2018 12 4095 4105 10.2147/DDDT.S175763 30584274
    [Google Scholar]
  13. Yu Z. Wang Y. Li Y. Liao C. Dai J. Luo Y. Hu Y. Tao S. Tang J. Chen G. Wu P. Effect of Moxibustion on the serum levels of MMP‐1, MMP‐3, and VEGF in patients with rheumatoid arthritis. Evid. Based Complement. Alternat. Med. 2020 2020 1 7150605 10.1155/2020/7150605 33014110
    [Google Scholar]
  14. Cai M. Ni W.J. Han L. Chen W.D. Peng D.Y. Research progress of therapeutic enzymes and their derivatives: Based on herbal medicinal products in rheumatoid arthritis. Front. Pharmacol. 2021 12 626342 10.3389/fphar.2021.626342 33796022
    [Google Scholar]
  15. Lei Z. Jian M. Li X. Wei J. Meng X. Wang Z. Biosensors and bioassays for determination of matrix metalloproteinases: State of the art and recent advances. J. Mater. Chem. B Mater. Biol. Med. 2020 8 16 3261 3291 10.1039/C9TB02189B 31750853
    [Google Scholar]
  16. Ben Mrid R. Bouchmaa N. Ainani H. El Fatimy R. Malka G. Mazini L. Anti-rheumatoid drugs advancements: New insights into the molecular treatment of rheumatoid arthritis. Biomed. Pharmacother. 2022 151 113126 10.1016/j.biopha.2022.113126 35643074
    [Google Scholar]
  17. Li R.L. Duan H.X. Liang Q. Huang Y.L. Wang L.Y. Zhang Q. Wu C.J. Liu S.Q. Peng W. Targeting matrix metalloproteases: A promising strategy for herbal medicines to treat rheumatoid arthritis. Front. Immunol. 2022 13 1046810 10.3389/fimmu.2022.1046810 36439173
    [Google Scholar]
  18. Pujimulyani D. Suryani C.L. Setyowati A. Handayani R.A.S. Arumwardana S. Widowati W. Maruf A. Cosmeceutical potentials of Curcuma mangga Val. extract in human BJ fibroblasts against MMP1, MMP3, and MMP13. Heliyon 2020 6 9 e04921 10.1016/j.heliyon.2020.e04921. 32995615
    [Google Scholar]
  19. Lee M.S. Oh Y.J. Kim J.W. Han K.M. Kim D.S. Park J.W. Kim H.M. Kim D.W. Kim Y.S. Antioxidant, Whitening, Antiwrinkle, and Anti-Inflammatory Effect of Ajuga spectabilis Nakai Extract. Plants 2022 12 1 79 10.3389/fimmu.2022.1046810 36616208
    [Google Scholar]
  20. Suzuki T. Ohishi T. Tanabe H. Miyoshi N. Nakamura Y. Anti-inflammatory effects of dietary polyphenols through inhibitory activity against metalloproteinases. Molecules 2023 28 14 5426 10.3390/molecules28145426 37513300
    [Google Scholar]
  21. Noh E.M. Kim J.S. Hur H. Park B.H. Song E.K. Han M.K. Kwon K.B. Yoo W.H. Shim I.K. Lee S.J. Youn H.J. Lee Y.R. Cordycepin inhibits IL-1 -induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts. Rheumatology (Oxford) 2008 48 1 45 48 10.1093/rheumatology/ken417 19056796
    [Google Scholar]
  22. Bruce C. Thomas P.S. The effect of marimastat, a metalloprotease inhibitor, on allergen-induced asthmatic hyper-reactivity. Toxicol. Appl. Pharmacol. 2005 205 2 126 132 10.1093/rheumatology/ken417 15893540
    [Google Scholar]
  23. Steward W.P. Thomas A.L. Marimastat: The clinical development of a matrix metalloproteinase inhibitor. Expert Opin. Investig. Drugs 2000 9 12 2913 2922 11093361
    [Google Scholar]
  24. Yurtal Z. Ozkan H. Kutlu T. Deveci M. Urfali B. Urfali S. The matrix metalloproteinase Ýnhibitor batimastat reduces epidural fibrosis after laminectomy in rats. Turk Neurosurg. 2023 33 1 162 170 10.5137/1019‑5149.JTN.41841‑22.2 36482856
    [Google Scholar]
  25. Kumar A. Bhatnagar S. Kumar A. Matrix metalloproteinase inhibitor batimastat alleviates pathology and improves skeletal muscle function in dystrophin-deficient mdx mice. Am. J. Pathol. 2010 177 1 248 260 10.2353/ajpath.2010.091176 20472898
    [Google Scholar]
  26. Di Sebastiano P. di Mola F.F. Artese L. Rossi C. Mascetta G. Pernthaler H. Innocenti P. Beneficial effects of Batimastat (BB-94), a matrix metalloproteinase inhibitor, in rat experimental colitis. Digestion 2001 63 4 234 239 10.1159/000051895. 11435723
    [Google Scholar]
  27. Yang J-S. Lin C-W. Su S-C. Yang S-F. Pharmacodynamic considerations in the use of matrix metalloproteinase inhibitors in cancer treatment. Expert Opin. Drug Metab. Toxicol. 2016 12 2 191 200 10.1517/17425255.2016.1131820. 26852787
    [Google Scholar]
  28. Purcell W.T. Rudek M.A. Hidalgo M. Development of matrix metalloproteinase inhibitors in cancer therapy. Hematol. Oncol. Clin. North Am. 2002 16 5 1189 1227 10.1016/s0889‑8588(02)00044‑8. 12512389
    [Google Scholar]
  29. Ferrante K. Winograd B. Canetta R. Promising new developments in cancer chemotherapy. Cancer Chemother. Pharmacol. 1999 43 7 Suppl. S61 S68 10.1007/s002800051100 10357561
    [Google Scholar]
  30. Shi Y. Ma X. Fang G. Tian X. Ge C. Matrix metalloproteinase inhibitors (MMPIs) as attractive therapeutic targets: Recent progress and current challenges. NanoImpact 2021 21 100293 10.1016/j.impact.2021.100293 35559782
    [Google Scholar]
  31. Winer A. Adams S. Mignatti P. Matrix metalloproteinase inhibitors in cancer therapy: Turning past failures into future successes. Mol. Cancer Ther. 2018 17 6 1147 1155 10.1158/1535‑7163.MCT‑17‑0646 29735645
    [Google Scholar]
  32. Raeeszadeh-Sarmazdeh M. Do L. Hritz B. Metalloproteinases and their inhibitors: Potential for the development of new therapeutics. Cells 2020 9 5 1313 10.3390/cells9051313 32466129
    [Google Scholar]
  33. Jillian M. Jillian M. Cathcart Cao J. MMP Inhibitors:Past, present and future. Front. Biosci. 2015 20 7 1164 1178
    [Google Scholar]
  34. Vandenbroucke R.E. Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat. Rev. Drug Discov. 2014 13 12 904 927 10.1038/nrd4390. 25376097
    [Google Scholar]
  35. Miller M.C. Manning H.B. Jain A. Troeberg L. Dudhia J. Essex D. Sandison A. Seiki M. Nanchahal J. Nagase H. Itoh Y. Membrane type 1 matrix metalloproteinase is a crucial promoter of synovial invasion in human rheumatoid arthritis. Arthritis Rheum. 2009 60 3 686 697 10.1002/art.24331. 19248098
    [Google Scholar]
  36. Agere S.A. Akhtar N. Watson J.M. Ahmed S. RANTES/CCL5 induces collagen degradation by activating MMP-1 and MMP-13 expression in human rheumatoid arthritis synovial fibroblasts. Front. Immunol. 2017 8 1341 10.1002/cmdc.200900309 29093715
    [Google Scholar]
  37. Hao L. Wan Y. Xiao J. Tang Q. Deng H. Chen L. A study of Sirt1 regulation and the effect of resveratrol on synoviocyte invasion and associated joint destruction in rheumatoid arthritis. Mol. Med. Rep. 2017 16 4 5099 5106 10.3892/mmr.2017.7299. 28849139
    [Google Scholar]
  38. Wu J. Sun J. Liu M. Zhang X. Kong L. Ma L. Jiang S. Liu X. Ma W. Botany, traditional use, phytochemistry, pharmacology and quality control of Taraxaci herba: Comprehensive review. Pharmaceuticals 2024 17 9 1113 39338278
    [Google Scholar]
  39. Liu F.J. Yang J. Chen X.Y. Yu T. Ni H. Feng L. Li P. Li H.J. Chemometrics integrated with in silico pharmacology to reveal antioxidative and anti-inflammatory markers of dandelion for its quality control. Chin. Med. 2022 17 1 125 10.1186/s13020‑022‑00679‑4. 36333721
    [Google Scholar]
  40. Fan M. Zhang X. Song H. Zhang Y. Dandelion (Taraxacum Genus): A review of chemical constituents and pharmacological effects. Molecules 2023 28 13 5022 10.1002/cmdc.200900309 37446683
    [Google Scholar]
  41. Wang R. Li W. Fang C. Zheng X. Liu C. Huang Q. Extraction and identification of new flavonoid compounds in dandelion Taraxacum mongolicum Hand.-Mazz. with evaluation of antioxidant activities. Sci. Rep. 2023 13 1 2166 10.3390/molecules28135022. 36750602
    [Google Scholar]
  42. Zou H. Ben T. Wu P. Waterhouse G.I.N. Chen Y. Effective anti-inflammatory phenolic compounds from dandelion: identification and mechanistic insights using UHPLC-ESI-MS/MS, fluorescence quenching and anisotropy, molecular docking and dynamics simulation. Food Sci. Hum. Wellness 2023 12 6 2184 2194 10.1016/j.fshw.2023.03.031
    [Google Scholar]
  43. Yan Q. Xing Q. Liu Z. Zou Y. Liu X. Xia H. The phytochemical and pharmacological profile of dandelion. Biomed. Pharmacother. 2024 179 117334 39180794
    [Google Scholar]
  44. Fatima T. Bashir O. Naseer B. Hussain S.Z. Dandelion: Phytochemistry and clinical potential. J. Med. Plants Stud. 2018 6 198 202
    [Google Scholar]
  45. Kania-Dobrowolska M. Baraniak J. Dandelion (Taraxacum officinale L.) as a source of biologically active compounds supporting the therapy of co-existing diseases in metabolic syndrome. Foods 2022 11 18 2858 10.3390/foods11182858. 36140985
    [Google Scholar]
  46. Xie J. Huang Y. Wang Q. Research progress of anti-tumor active ingredients in Dandelion. J. Oncol. Research 2020 2 2 24 30 10.30564/jor.v2i2.2472.
    [Google Scholar]
  47. Majewski M. Lis B. Juśkiewicz J. Ognik K. Borkowska-Sztachańska M. Jedrejek D. Stochmal A. Olas B. Phenolic fractions from dandelion leaves and petals as modulators of the antioxidant status and lipid profile in an in vivo study. Antioxidants 2020 9 2 131 10.3390/antiox9020131. 32028583
    [Google Scholar]
  48. Fang S. Dong L. Liu L. Guo J. Zhao L. Zhang J. Bu D. Liu X. Huo P. Cao W. Dong Q. Wu J. Zeng X. Wu Y. Zhao Y. HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res. 2021 49 D1 D1197 D1206 10.1093/nar/gkaa1063.. 33264402
    [Google Scholar]
  49. Wu J. Zhou W. Wang J.. Ru Li. Guo Z. Huang C. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 13 1 6 10.1186/1758‑2946‑6‑13.
    [Google Scholar]
  50. Huang L. Xie D. Yu Y. Liu H. Shi Y. Shi T. Wen C. TCMID 2.0: A comprehensive resource for TCM. Nucleic Acids Res. 2018 46 D1 D1117 D1120 10.1093/nar/gkx1028 29106634
    [Google Scholar]
  51. Wu Y. Zhang F. Yang K. Fang S. Bu D. Li H. Sun L. Hu H. Gao K. Wang W. Zhou X. Zhao Y. Chen J. SymMap: An integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Res. 2019 47 D1 D1110 D1117 30380087
    [Google Scholar]
  52. Ji Z.L. Zhou H. Wang J.F. Han L.Y. Zheng C.J. Chen Y.Z. Traditional Chinese medicine information database. J. Ethnopharmacol. 2006 103 3 501 10.1016/j.jep.2005.11.003 16376038
    [Google Scholar]
  53. LigPrep, version 2.3. New York, NY Schrödinger, LLC 2017
    [Google Scholar]
  54. Schrodinger ¨ Release 2017-3: LigPrep. New York, NY S., LLC 2020
    [Google Scholar]
  55. Kaminski G.A. Friesner R.A. Tirado-Rives J. Jorgensen W.L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 2001 105 28 6474 6487 10.1021/jp003919d
    [Google Scholar]
  56. Epik, version 2.0. New York, NY Schrödinger, LLC 2017
    [Google Scholar]
  57. Spurlino J.C. Smallwood A.M. Carlton D.D. Banks T.M. Vavra K.J. Johnson J.S. Cook E.R. Falvo J. Wahl R.C. Pulvino T.A. Wendoloski J.J. Smith D.L. 1.56 Å structure of mature truncated human fibroblast collagenase. Proteins 1994 19 2 98 109 10.1002/prot.340190203 8090713
    [Google Scholar]
  58. Friesner R.A. Banks J.L. Murphy R.B. Halgren T.A. Klicic J.J. Mainz D.T. Repasky M.P. Knoll E.H. Shelley M. Perry J.K. Shaw D.E. Francis P. Shenkin P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004 47 7 1739 1749 10.1021/jm0306430. 15027865
    [Google Scholar]
  59. Kato N. Kobayashi T. Honda H. Screening of stress enhancer based on analysis of gene expression profiles: Enhancement of hyperthermia‐induced tumor necrosis by an MMP‐3 inhibitor. Cancer Sci. 2003 94 7 644 649 10.1111/j.1349‑7006.2003.tb01497.x 12841876
    [Google Scholar]
  60. Lim H. Kim H.P. Inhibition of mammalian collagenase, matrix metalloproteinase-1, by naturally-occurring flavonoids. Planta Med. 2007 73 12 1267 1274 17886198
    [Google Scholar]
  61. Wang J. Wolf R.M. Caldwell J.W. Kollman P.A. Case D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004 25 9 1157 1174 10.1002/jcc.20035. 15116359
    [Google Scholar]
  62. Bayly C.I. Cieplak P. Cornell W. Kollman P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 1993 97 40 10269 10280
    [Google Scholar]
  63. Romelia S.F. David A. Walker R.C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013 3 2 198 210 10.1002/wcms.1121.
    [Google Scholar]
  64. Maier J.A. Martinez C. Kasavajhala K. Wickstrom L. Hauser K.E. Simmerling C. ff14SB: Improving the Accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015 11 8 3696 3713 10.1021/acs.jctc.5b0025 26574453
    [Google Scholar]
  65. Onufriev A.V. Izadi S. Water models for biomolecular simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018 8 2 e1347
    [Google Scholar]
  66. Pan D. Huang Y. Jiang D. Zhang Y. Wu M. Han M. Jin X. Discovery of an EP300 inhibitor using structure-based virtual screening and bioactivity evaluation. Curr. Pharm. Des. 2024 30 25 1985 1994 38835125
    [Google Scholar]
  67. Miller B.R. III McGee T.D. Jr Swails J.M. Homeyer N. Gohlke H. Roitberg A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012 8 9 3314 3321 10.1021/ct300418h. 26605738
    [Google Scholar]
  68. Jalili C. Taghadosi M. Pazhouhi M. Bahrehmand F. Miraghaee S. Pourmand D. Rashidi I. An overview of therapeutic potentials of Taraxacum officinale (dandelion): A traditionally valuable herb with a reach historical background. World Cancer Res. J. 2020 7 1 19
    [Google Scholar]
  69. Commission C.P. Chinese pharmacopeia. China Chemical Industry Press 2020 367
    [Google Scholar]
  70. Di Y. Song Y. Xu K. Wang Q. Zhang L. Liu Q. Zhang M. Liu X. Wang Y. Chicoric acid alleviates colitis via targeting the gut microbiota accompanied by maintaining intestinal barrier integrity and inhibiting inflammatory responses. J. Agric. Food Chem. 2024 72 12 6276 6288 10.1016/j.intimp.2022.109129 38485738
    [Google Scholar]
  71. Qu Y. Shen Y. Teng L. Huang Y. Yang Y. Jian X. Fan S. Wu P. Fu Q. Chicoric acid attenuates tumor necrosis factor-α-induced inflammation and apoptosis via the Nrf2/HO-1, PI3K/AKT and NF-κB signaling pathways in C28/I2 cells and ameliorates the progression of osteoarthritis in a rat model. Int. Immunopharmacol. 2022 111 109129 35961266
    [Google Scholar]
  72. Liu Q. Fang J. Chen P. Die Y. Wang J. Liu Z. Liu X. Chicoric acid improves neuron survival against inflammation by promoting mitochondrial function and energy metabolism. Food Funct. 2019 10 9 6157 6169 10.1039/C9FO01417A 31501849
    [Google Scholar]
  73. Abd El-Twab S.M. Hussein O.E. Hozayen W.G. Bin-Jumah M. Mahmoud A.M. Chicoric acid prevents methotrexate-induced kidney injury by suppressing NF-κB/NLRP3 inflammasome activation and up-regulating Nrf2/ARE/HO-1 signaling. Inflamm. Res. 2019 68 6 511 523 10.1007/s00011‑019‑01241‑z 31037316
    [Google Scholar]
  74. Tsai K.L. Kao C.L. Hung C.H. Cheng Y.H. Lin H.C. Chu P.M. Chicoric acid is a potent anti-atherosclerotic ingredient by anti-oxidant action and anti-inflammation capacity. Oncotarget 2017 8 18 29600 29612 10.18632/oncotarget.16768 28410194
    [Google Scholar]
  75. Lee N.Y. Chung K.S. Jin J.S. Bang K.S. Eom Y.J. Hong C.H. Nugroho A. Park H.J. An H.J. Effect of chicoric acid on mast cell-mediated allergic inflammation in vitro and in vivo. J. Nat. Prod. 2015 78 12 2956 2962 10.1021/acs.jnatprod.5b00668 26593037
    [Google Scholar]
  76. Xue C. A S. Wang M. Wu Q. Liu J. Zhang L. Wu Y. Wu H. Chai S. Echinacea purpurea extract (cichoric acid) exerts an anti-inflammatory effect on yak PBMCs and regulates the TLR4 signalling pathway. J. Vet. Res. (Pulawy) 2021 65 1 109 115 10.2478/jvetres‑2021‑0016 33817403
    [Google Scholar]
  77. Jia L. Chen Y. Tian Y.H. Zhang G. MAPK pathway mediates the anti-oxidative effect of chicoric acid against cerebral ischemia-reperfusion injury in vivo. Exp. Ther. Med. 2018 15 2 1640 1646 29434748
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266387669250509094221
Loading
/content/journals/ctmc/10.2174/0115680266387669250509094221
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test