Skip to content
2000
image of Thiazolidine Derivatives: An Up-to-Date Review of Synthesis and 
Biological Activity

Abstract

Abstract:

Over the past decade, thiazolidine derivatives have become promising heterocyclic compounds in medicinal chemistry, and much research work has been devoted to this ring due to their diverse biological activities, therapeutic potential, and heterocyclic ring-like structure. Several studies have shown that certain thiazolidine derivatives exhibit superior activity compared to standard drugs and hold potential for future pharmaceutical applications. This review comprehensively summarizes the key synthetic strategies for thiazolidine derivatives and highlights their biological activities.

Methods

The present study is based on the most recent and extensive research on the Thiazolidine structure in the fields of organic synthesis and biological activities from 2015 to 2024, as well as the most widely used methodologies in recent years.

Results

The three methods described in this review for the synthesis of thioazolidine derivatives are the most commonly used in recent decades and have given rise to interesting biological activities and the promotion of compounds with chemical and biological significance.

Discussions

The synthesis of compounds with a thiazolidine skeleton plays a vital and interesting role in organic chemistry, with methods that are becoming increasingly sophisticated and easy to use, making it possible to obtain derivatives of biological and pharmacological importance, and a basis for future research.

Conclusion

The thiazolidine scaffold provides an efficient synthetic route for constructing complex molecular structures with significant biological activities. Their versatile reactivity makes them particularly interesting in organic chemistry, as well as biochemistry and pharmacology.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266386939250917053818
2025-09-19
2025-12-25
Loading full text...

Full text loading...

References

  1. Calado Gonçalves S.M. Vieira Galdino L. Costa Lima M. da Silva Moura J.A. Francisco Viana D.C. da Rosa M.M. Rebello Ferreira L.F.G. Zaldini Hernandes M. Cristiny Pereira M. de Melo Rêgo M.J.B. da Rocha Pitta I. de Oliveira França R. da Rocha Pitta M.G. da Rocha Pitta M.G. Evaluation of thiazolidine derivatives with potential anti-zikv activity. Curr. Top. Med. Chem. 2024 24 25 2224 2237 10.2174/0115680266315388240801053401 39136505
    [Google Scholar]
  2. Talbi S. Dib M. Bouissane L. Abderrafia H. Rabi S. Khouili M. Recent progress in the synthesis of heterocycles based on 1,3-diketones. Curr. Org. Synth. 2022 19 2 220 245 10.2174/1570179418666211011141428 34635043
    [Google Scholar]
  3. da Silva S.E.B. da Silva Moura J.A. Branco Júnior J.F. de Moraes Gomes P.A.T. de Paula S.K.S. Francisco Viana D.C. de Freitas Ramalho E.A.V. de Melo Gomes J.V. Pereira M.C. da Rocha Pitta M.G. da Rocha Pitta I. da Rocha Pitta M.G. Synthesis and in vitro and in silico anti-inflammatory activity of new thiazolidinedione-quinoline derivatives. Curr. Top. Med. Chem. 2024 24 14 1264 1277 10.2174/0115680266295582240318060802 38523516
    [Google Scholar]
  4. Ou-Ichen Z. Boussetta A. Ouchetto K. Hafid A. Khouili M. Ouchetto H. Insights into synthesis, reactivity, and biological activity of N-isoindoline-1, 3-diones heterocycles: A systematic literature review. J. Indian Chem. Soc. 2024 21 6 1453 1493 10.1007/s13738‑024‑03012‑y
    [Google Scholar]
  5. Ray P.K. Shabana K. Salahuddin; Kumar, R. Synthetic strategies of thiazolidine-2,4-dione derivatives for the development of new anti-diabetic agents: Compressive review. Curr. Top. Med. Chem. 2024 24 10 885 928 10.2174/0115680266284283240304071648 38500288
    [Google Scholar]
  6. dos Santos G.C. Martins L.M. Bregadiolli B.A. Moreno V.F. da Silva-Filho L.C. da Silva B.H.S.T. Heterocyclic compounds as antiviral drugs: Synthesis, structure-activity relationship and traditional applications. J. Heterocycl. Chem. 2021 58 12 2226 2260 10.1002/jhet.4349
    [Google Scholar]
  7. Akhramez S. Achour Y. Dib M. Bahsis L. Ouchetto H. Hafid A. Khouili M. El Haddad M. DFT study and synthesis of novel bioactive bispyrazole using mg/al-ldh as a solid base catalyst. Curr. Chem. Biol. 2021 14 4 240 249 10.2174/2212796814999200918175018
    [Google Scholar]
  8. Bakuleva N.A. Lichitskii B.V. Komogortsev A.N. Tretyakov E.V. The study of the photochemical behavior of 5-aryl-2,3-dihydropyrazine 1,4-dioxides. Org. Biomol. Chem. 2025 23 2 369 376 10.1039/D4OB01570C 39560212
    [Google Scholar]
  9. Sahiba N. Sethiya A. Soni J. Agarwal D.K. Agarwal S. Saturated five-membered thiazolidines and their derivatives: From synthesis to biological applications. Top. Curr. Chem. (Cham) 2020 378 2 34 10.1007/s41061‑020‑0298‑4 32206929
    [Google Scholar]
  10. Chang A.Y. Wyse B.M. Gilchrist B.J. Peterson T. Diani A.R. Ciglitazone, a new hypoglycemic agent. I. Studies in ob/ob and db/db mice, diabetic Chinese hamsters, and normal and streptozotocin-diabetic rats. Diabetes 1983 32 9 830 838 10.2337/diab.32.9.830 6354790
    [Google Scholar]
  11. Spencer C.M. Markham A. Troglitazone. Drugs 1997 54 1 89 101 10.2165/00003495‑199754010‑00010 9211083
    [Google Scholar]
  12. Lalloyer F. Staels B. Fibrates, glitazones, and peroxisome proliferator-activated receptors. Arterioscler. Thromb. Vasc. Biol. 2010 30 5 894 899 10.1161/ATVBAHA.108.179689 20393155
    [Google Scholar]
  13. Barman Balfour J.A. Plosker G.L. Rosiglitazone. Drugs 1999 57 6 921 930 10.2165/00003495‑199957060‑00007 10400405
    [Google Scholar]
  14. Gillies P.S. Dunn C.J. Pioglitazone. Drugs 2000 60 2 333 343 10.2165/00003495‑200060020‑00009 10983737
    [Google Scholar]
  15. Kalra S. Shukla R. Pioglitazone: Indian perspective. Indian J. Endocrinol. Metab. 2011 15 4 294 297 10.4103/2230‑8210.85581 22029000
    [Google Scholar]
  16. Henriksen K. Byrjalsen I. Nielsen R.H. Madsen A.N. Larsen L.K. Christiansen C. Beck-Nielsen H. Karsdal M.A. A comparison of glycemic control, water retention, and musculoskeletal effects of balaglitazone and pioglitazone in diet-induced obese rats. Eur. J. Pharmacol. 2009 616 1-3 340 345 10.1016/j.ejphar.2009.06.051 19595686
    [Google Scholar]
  17. Stevenson R.W. McPherson R.K. Genereux P.E. Danbury B.H. Kreutter D.K. Antidiabetic agent englitazone enhances insulin action in nondiabetic rats without producing hypoglycemia. Metabolism 1991 40 12 1268 1274 10.1016/0026‑0495(91)90027‑T 1961119
    [Google Scholar]
  18. Hu C. Liang B. Sun J. Li J. Xiong Z. Wang S.H. Xuetao X. Synthesis and biological evaluation of indole derivatives containing thiazolidine-2,4-dione as α-glucosidase inhibitors with antidiabetic activity. Eur. J. Med. Chem. 2024 264 115957 10.1016/j.ejmech.2023.115957 38029465
    [Google Scholar]
  19. Asati V. Mahapatra D.K. Bharti S.K. Thiazolidine-2,4-diones as multi-targeted scaffold in medicinal chemistry: Potential anticancer agents. Eur. J. Med. Chem. 2014 87 814 833 10.1016/j.ejmech.2014.10.025 25440883
    [Google Scholar]
  20. Zhang Q. Zhou H. Zhai S. Yan B. Natural product-inspired synthesis of thiazolidine and thiazolidinone compounds and their anticancer activities. Curr. Pharm. Des. 2010 16 16 1826 1842 10.2174/138161210791208983 20337578
    [Google Scholar]
  21. Osmaniye D. Levent S. Ardıç C.M. Atlı Ö. Özkay Y. Kaplancıklı Z.A. Synthesis and anticancer activity of some novel benzothiazole-thiazolidine derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2018 193 4 249 256 10.1080/10426507.2017.1395878
    [Google Scholar]
  22. Nishida S. Maruoka H. Yoshimura Y. Goto T. Tomita R. Masumoto E. Okabe F. Yamagata K. Fujioka T. Synthesis and biological activities of some new thiazolidine derivatives containing pyrazole ring system. J. Heterocycl. Chem. 2012 49 2 303 309 10.1002/jhet.834
    [Google Scholar]
  23. Gouda M.A. Abu-Hashem A.A. Synthesis, characterization, antioxidant and antitumor evaluation of some new thiazolidine and thiazolidinone derivatives. Arch. Pharm. (Weinheim) 2011 344 3 170 177 10.1002/ardp.201000165 21384416
    [Google Scholar]
  24. Havrylyuk D. Zimenkovsky B. Vasylenko O. Lesyk R. Synthesis and anticancer and antiviral activities of new 2‐pyrazoline‐substituted 4‐thiazolidinones. J. Heterocycl. Chem. 2013 50 S1 E55 E62 10.1002/jhet.1056
    [Google Scholar]
  25. Ravichandran V. Jain A. Kumar K.S. Rajak H. Agrawal R.K. Design, synthesis, and evaluation of thiazolidinone derivatives as antimicrobial and anti-viral agents. Chem. Biol. Drug Des. 2011 78 3 464 470 10.1111/j.1747‑0285.2011.01149.x 21615706
    [Google Scholar]
  26. Weber H.U. Fleming J.F. Miquel J. Thiazolidine-4-carboxylic acid, a physiologic sulfhydryl antioxidant with potential value in geriatric medicine. Arch. Gerontol. Geriatr. 1982 1 4 299 310 10.1016/0167‑4943(82)90030‑9 6764606
    [Google Scholar]
  27. Aneja D.K. Lohan P. Arora S. Sharma C. Aneja K.R. Prakash O. Synthesis of new pyrazolyl-2, 4-thiazolidinediones as antibacterial and antifungal agents. Org. Med. Chem. Lett. 2011 1 1 15 10.1186/2191‑2858‑1‑15 22373217
    [Google Scholar]
  28. Siddiqui I.R. Singh P.K. Singh J. Singh J. Synthesis and fungicidal activity of novel 4,4‘-Bis(2‘ ‘-aryl-5‘ ‘-methyl/unsubstituted-4‘ ‘-oxo-thiazolidin-3‘ ‘-yl) bibenzyl. J. Agric. Food Chem. 2003 51 24 7062 7065 10.1021/jf0342324 14611172
    [Google Scholar]
  29. Jubie S. Gowramma B. Nitin K.M. Jawahar N. Kalirajan R. Gomathy S. Sankar S. Elango K. Synthesis and biological evaluation of some 3 -(methoxy phenyl) - 2-aryl thiazolidin-4-one derivatives. Int. J. Pharma Sci. 2009 1 1 32 38
    [Google Scholar]
  30. Barreca M.L. Chimirri A. De Clercq E. De Luca L. Monforte A.M. Monforte P. Rao A. Zappalà M. Anti-HIV agents: Design and discovery of new potent RT inhibitors. Farmaco 2003 58 3 259 263 10.1016/S0014‑827X(03)00024‑7 12620421
    [Google Scholar]
  31. Jiang S. Tala S.R. Lu H. Abo-Dya N.E. Avan I. Gyanda K. Lu L. Katritzky A.R. Debnath A.K. Design, synthesis, and biological activity of novel 5-((arylfuran/1 h -pyrrol-2-yl)methylene)-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-4-ones as hiv-1 fusion inhibitors targeting gp41. J. Med. Chem. 2011 54 2 572 579 10.1021/jm101014v 21190369
    [Google Scholar]
  32. Rawal R.K. Tripathi R. Katti S.B. Pannecouque C. De Clercq E. Design, synthesis, and evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Bioorg. Med. Chem. 2007 15 4 1725 1731 10.1016/j.bmc.2006.12.003 17178227
    [Google Scholar]
  33. Dadasaheb K. Jain N. Thiazolidinediones as antidiabetic agents-A Review. Innov. J. Chem. 2016 1 1 50 62
    [Google Scholar]
  34. Datar P.A. Aher S.B. Design and synthesis of novel thiazolidine-2,4-diones as hypoglycemic agents. J. Saudi Chem. Soc. 2016 20 S196 S201 10.1016/j.jscs.2012.10.010
    [Google Scholar]
  35. Nanjan M.J. Mohammed M. Prashantha Kumar B.R. Chandrasekar M.J.N. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg. Chem. 2018 77 548 567 10.1016/j.bioorg.2018.02.009 29475164
    [Google Scholar]
  36. Ceriello A. Thiazolidinediones as anti‐inflammatory and anti‐atherogenic agents. Diabetes Metab. Res. Rev. 2008 24 1 14 26 10.1002/dmrr.790 17990280
    [Google Scholar]
  37. Ma L. Xie C. Ma Y. Liu J. Xiang M. Ye X. Zheng H. Chen Z. Xu Q. Chen T. Chen J. Yang J. Qiu N. Wang G. Liang X. Peng A. Yang S. Wei Y. Chen L. Synthesis and biological evaluation of novel 5-benzylidenethiazolidine-2,4-dione derivatives for the treatment of inflammatory diseases. J. Med. Chem. 2011 54 7 2060 2068 10.1021/jm1011534 21381754
    [Google Scholar]
  38. Elgohary M.K. Abd El Hadi S.R. Abo-Ashour M.F. Abo-El Fetoh M.E. Afify H. Abdel-Aziz H.A. Abou-Seri S.M. Fragment merging approach for the design of thiazole/thiazolidine clubbed pyrazoline derivatives as anti-inflammatory agents: Synthesis, biopharmacological evaluation and molecular modeling studies. Bioorg. Chem. 2023 139 106724 10.1016/j.bioorg.2023.106724 37451146
    [Google Scholar]
  39. Sankar P.S. Divya K. Padmaja A. Padmavathi V. Synthesis and antimicrobial activity of azetidinone and thiazolidinone derivatives from azolylindolyl schiff’s bases. Med. Chem. 2017 7 11 340 347 10.4172/2161‑0444.1000478
    [Google Scholar]
  40. Nasr T. Bondock S. Eid S. Design, synthesis, antimicrobial evaluation and molecular docking studies of some new 2,3-dihydrothiazoles and 4-thiazolidinones containing sulfisoxazole. J. Enzyme Inhib. Med. Chem. 2016 31 2 236 246 10.3109/14756366.2015.1016514 25815670
    [Google Scholar]
  41. Vicini P. Geronikaki A. Incerti M. Zani F. Dearden J. Hewitt M. 2-Heteroarylimino-5-benzylidene-4-thiazolidinones analogues of 2-thiazolylimino-5-benzylidene-4-thiazolidinones with antimicrobial activity: Synthesis and structure-activity relationship. Bioorg. Med. Chem. 2008 16 7 3714 3724 10.1016/j.bmc.2008.02.001 18299196
    [Google Scholar]
  42. Tiwari V. Meshram J. Ali P. Microwave assisted synthesis of quinolinyl thiazolidinones using Zeolite as an efficient and recyclable activation surface: SAR and Biological activity. Pharma Chem. 2010 2 3 187 195
    [Google Scholar]
  43. Sayyed M. Mokle S. Bokhare M. Mankar A. Surwase S. Bhusare S. Vibhute Y. Synthesis of some new 2, 3-diaryl-1, 3-thiazolidin-4-ones as antibacterial agents. ARKIVOC 2006 2006 2 187 192 10.3998/ark.5550190.0007.221
    [Google Scholar]
  44. Veale E.B. O’Brien J.E. McCabe T. Gunnlaugsson T. The synthesis, N-alkylation and epimerisation study of a phthaloyl derived thiazolidine. Tetrahedron 2008 64 28 6794 6800 10.1016/j.tet.2008.04.097
    [Google Scholar]
  45. Mohanty S. Roy A.K. Sandeep Reddy G. Vinay Kumar K.P. RamaDevi, B.; Bhargavi, G.; Karmakar, A.C. Knoevenagel condensation of aromatic bisulfite adducts with 2,4-thiazolidinedione in the presence of Lewis acid catalysts. Tetrahedron Lett. 2015 56 20 2564 2567 10.1016/j.tetlet.2015.03.117
    [Google Scholar]
  46. Hidalgo-Figueroa S. Ramírez-Espinosa J.J. Estrada-Soto S. Almanza-Pérez J.C. Román-Ramos R. Alarcón-Aguilar F.J. Hernández-Rosado J.V. Moreno-Díaz H. Díaz-Coutiño D. Navarrete-Vázquez G. Discovery of thiazolidine-2,4-dione/biphenylcarbonitrile hybrid as dual PPAR α/γ modulator with antidiabetic effect: in vitro, in silico and in vivo approaches. Chem. Biol. Drug Des. 2013 81 4 474 483 10.1111/cbdd.12102 23289972
    [Google Scholar]
  47. Trotsko N. Kosikowska U. Paneth A. Wujec M. Malm A. Synthesis and antibacterial activity of new (2,4-dioxothiazolidin-5-yl/ylidene)acetic acid derivatives with thiazolidine-2,4-dione, rhodanine and 2-thiohydantoin moieties. Saudi Pharm. J. 2018 26 4 568 577 10.1016/j.jsps.2018.01.016 29844729
    [Google Scholar]
  48. Mirza S. Asma Naqvi S. Mohammed Khan K. Salar U. Choudhary M.I. Facile synthesis of novel substituted aryl-thiazole (SAT) analogs via one-pot multi-component reaction as potent cytotoxic agents against cancer cell lines. Bioorg. Chem. 2017 70 133 143 10.1016/j.bioorg.2016.12.003 28038777
    [Google Scholar]
  49. Karam N.H. Karam N.H. Design of new v shaped thermotropic liquid crystals containing heterocyclic. J. Pure Appl. Sci. 2023 36 2 251 258 10.30526/36.2.3046
    [Google Scholar]
  50. Ayyash A.N. Jaffer H.J. Tomma J.H. Synthesis and characterization of some novel 4-thiazolidinones and isoxazolines derived from thiosemicarbazones. Am J. Org Chem. 2014 4 2 52 62 10.5923/j.ajoc.20140402.03
    [Google Scholar]
  51. Chalkidis S.G. Hong S. Tsiadi A.M. Fika E. Tsoureas N. Mpourmpakis G. Vougioukalakis G.C. DABCO-catalyzed synthesis of thiazolidine-2-thiones: System development and mechanistic insights. J. Org. Chem. 2025 90 12 4302 4312 10.1021/acs.joc.5c00020 40105690
    [Google Scholar]
  52. Lo C-P. Shropshire E. Notes - alkylation of 2,4-thiazolidinedione. J. Org. Chem. 1957 22 8 999 1001 10.1021/jo01359a618
    [Google Scholar]
  53. Novo Fernández O. Oliveros D. Canela Garayoa R. Balcells Fluvià M. Méndez Arteaga J.J. Eras Joli J. Introducing lipophilicity to (polyhydroxyalkyl)thiazolidine carboxylic acids via acylation. ACS Omega 2022 7 13 11075 11081 10.1021/acsomega.1c07078 35415335
    [Google Scholar]
  54. Zimenkovskii B.S. Kutsyk R.V. Lesyk R.B. Matyichuk V.S. Obushak N.D. Klyufinska T.I. Synthesis and antimicrobial activity of 2,4-dioxothiazolidine-5-acetic acid amides. Pharm. Chem. J. 2006 40 6 303 306 10.1007/s11094‑006‑0115‑6
    [Google Scholar]
  55. Li M. Sun J. Liang B. Min X. Hu J. Wu R. Xu X. Thiazolidine-2,4-dione derivatives as potential α-glucosidase inhibitors: Synthesis, inhibitory activity, binding interaction and hypoglycemic activity. Bioorg. Chem. 2024 144 107177 10.1016/j.bioorg.2024.107177 38335756
    [Google Scholar]
  56. Singh R. Sindhu J. Devi M. Kumar P. Lal S. Kumar A. Singh D. Kumar H. Synthesis of thiazolidine-2,4-dione tethered 1,2,3-triazoles as α-amylase inhibitors: In vitro approach coupled with QSAR, molecular docking, molecular dynamics and ADMET studies. Eur. J. Med. Chem. 2024 275 116623 10.1016/j.ejmech.2024.116623 38943875
    [Google Scholar]
  57. Metre T.V. Kodasi B. Bayannavar P.K. Bheemayya L. Nadoni V.B. Hoolageri S.R. Shettar A.K. Joshi S.D. Kumbar V.M. Kamble R.R. Coumarin-4-yl‐1,2,3‐triazol‐4-yl-methyl-thiazolidine-2,4-diones: Synthesis, glucose uptake activity and cytotoxic evaluation. Bioorg. Chem. 2023 130 106235 10.1016/j.bioorg.2022.106235 36375354
    [Google Scholar]
  58. Ahmed S. Bhat A.R. Rahiman A.K. Dongre R.S. Hasan A.H. Niranjan V.C.L. Sheikh S.A. Jamalis J. Berredjem M. Kawsar S.M.A. Green synthesis, antibacterial and antifungal evaluation of new thiazolidine-2,4-dione derivatives: Molecular dynamic simulation, POM study and identification of antitumor pharmacophore sites. J. Biomol. Struct. Dyn. 2024 42 20 10635 10651 10.1080/07391102.2023.2258404 37768136
    [Google Scholar]
  59. Paterson A.J. Heron C.J. McMullin C.L. Mahon M.F. Press N.J. Frost C.G. α-Halo carbonyls enable meta selective primary, secondary and tertiary C-H alkylations by ruthenium catalysis. Org. Biomol. Chem. 2017 15 28 5993 6000 10.1039/C7OB01192J 28678298
    [Google Scholar]
  60. Singh G. Singh R. Monga V. Mehan S. 3,5-Disubstituted-thiazolidine-2,4-dione hybrids as antidiabetic agents: Design, synthesis, in vitro and in vivo evaluation. Eur. J. Med. Chem. 2024 266 116139 10.1016/j.ejmech.2024.116139 38252989
    [Google Scholar]
  61. S N C S.; Bhurta, D.; Kantiwal, D.; George, G.; Monga, V.; Paul, A.T. Design, synthesis, biological evaluation and molecular modelling studies of novel diaryl substituted pyrazolyl thiazolidinediones as potent pancreatic lipase inhibitors. Bioorg. Med. Chem. Lett. 2017 27 16 3749 3754 10.1016/j.bmcl.2017.06.069 28705641
    [Google Scholar]
  62. George G. Auti P.S. Paul A.T. Design, synthesis and biological evaluation of N ‐substituted indole‐thiazolidinedione analogues as potential pancreatic lipase inhibitors. Chem. Biol. Drug Des. 2021 98 1 49 59 10.1111/cbdd.13846 33864339
    [Google Scholar]
  63. Elkady H. Mahdy H.A. Taghour M.S. Dahab M.A. Elwan A. Hagras M. Hussein M.H. Ibrahim I.M. Husein D.Z. Elkaeed E.B. Alsfouk A.A. Metwaly A.M. Eissa I.H. New thiazolidine-2,4-diones as potential anticancer agents and apoptotic inducers targeting VEGFR-2 kinase: Design, synthesis, in silico and in vitro studies. Biochim. Biophys. Acta, Gen. Subj. 2024 1868 6 130599 10.1016/j.bbagen.2024.130599 38521471
    [Google Scholar]
  64. Elkaeed E.B. Taghour M.S. Mahdy H.A. Eldehna W.M. El-Deeb N.M. Kenawy A.M.A. Alsfouk B. Dahab M.A. Metwaly A.M. Eissa I.H. El-Zahabi M.A. New quinoline and isatin derivatives as apoptotic VEGFR-2 inhibitors: Design, synthesis, anti-proliferative activity, docking, ADMET, toxicity, and MD simulation studies. J. Enzyme Inhib. Med. Chem. 2022 37 1 2191 2205 10.1080/14756366.2022.2110869 35975321
    [Google Scholar]
  65. Elkady H. El-Dardir O.A. Elwan A. Taghour M.S. Mahdy H.A. Dahab M.A. Elkaeed E.B. Alsfouk B.A. Ibrahim I.M. Husein D.Z. Hafez E.E. Darwish A.M.G. Metwaly A.M. Eissa I.H. Synthesis, biological evaluation and computer-aided discovery of new thiazolidine-2,4-dione derivatives as potential antitumor VEGFR-2 inhibitors. RSC Advances 2023 13 40 27801 27827 10.1039/D3RA05689A 37731835
    [Google Scholar]
  66. Alanazi M.M. Eissa I.H. Alsaif N.A. Obaidullah A.J. Alanazi W.A. Alasmari A.F. Albassam H. Elkady H. Elwan A. Design, synthesis, docking, ADMET studies, and anticancer evaluation of new 3-methylquinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers. J. Enzyme Inhib. Med. Chem. 2021 36 1 1760 1782 10.1080/14756366.2021.1956488 34340610
    [Google Scholar]
  67. Eissa I.H. Elkady H. Rashed M. Elwan A. Hagras M. Dahab M.A. Taghour M.S. Ibrahim I.M. Husein D.Z. Elkaeed E.B. Al-ghulikah H.A. Metwaly A.M. Mahdy H.A. Discovery of new thiazolidine-2,4-dione derivatives as potential VEGFR-2 inhibitors: In vitro and in silico studies. Heliyon 2024 10 2 24005 10.1016/j.heliyon.2024.e24005 38298627
    [Google Scholar]
  68. Hamdi A. Yaseen M. Ewes W.A. Bhat M.A. Ziedan N.I. El-Shafey H.W. Mohamed A.A.B. Elnagar M.R. Haikal A. Othman D.I.A. Elgazar A.A. Abusabaa A.H.A. Abdelrahman K.S. Soltan O.M. Elbadawi M.M. Development of new thiazolidine-2,4-dione hybrids as aldose reductase inhibitors endowed with antihyperglycaemic activity: Design, synthesis, biological investigations, and in silico insights. J. Enzyme Inhib. Med. Chem. 2023 38 1 2231170 10.1080/14756366.2023.2231170 37470409
    [Google Scholar]
  69. Tilekar K. Upadhyay N. Hess J.D. Macias L.H. Mrowka P. Aguilera R.J. Meyer-Almes F.J. Iancu C.V. Choe J. Ramaa C.S. Structure guided design and synthesis of furyl thiazolidinedione derivatives as inhibitors of GLUT 1 and GLUT 4, and evaluation of their anti-leukemic potential. Eur. J. Med. Chem. 2020 202 112603 10.1016/j.ejmech.2020.112603 32634629
    [Google Scholar]
  70. Peprah K. Zhu X.Y. Eyunni S.V.K. Etukala J.R. Setola V. Roth B.L. Ablordeppey S.Y. Structure-activity relationship studies of SYA 013, a homopiperazine analog of haloperidol. Bioorg. Med. Chem. 2012 20 5 1671 1678 10.1016/j.bmc.2012.01.022 22336245
    [Google Scholar]
  71. Amin S. Sheikh K.A. Iqubal A. Ahmed Khan M. Shaquiquzzaman M. Tasneem S. Khanna S. Najmi A.K. Akhter M. Haque A. Anwer T. Mumtaz Alam M. Synthesis, in silico studies and biological evaluation of pyrimidine based thiazolidinedione derivatives as potential anti-diabetic agent. Bioorg. Chem. 2023 134 106449 10.1016/j.bioorg.2023.106449 36889200
    [Google Scholar]
  72. Meng G. Gao Y. Zheng M.L. Improved preparation of 2,4-thiazolidinedione. Org. Prep. Proced. Int. 2011 43 3 312 313 10.1080/00304948.2011.582008
    [Google Scholar]
  73. da Silva I.M. da Silva Filho J. Santiago P.B.G.S. do Egito M.S. de Souza C.A. Gouveia F.L. Ximenes R.M. de Sena K.X.F.R. de Faria A.R. Brondani D.J. de Albuquerque J.F.C. Synthesis and antimicrobial activities of 5-Arylidene-thiazolidine-2,4-dione derivatives. BioMed Res. Int. 2014 2014 1 8 10.1155/2014/316082 24895565
    [Google Scholar]
  74. Braga Y.R. Mori M.S.S. Piau T.B. Moura D.S. Albernaz L.C. Espindola L.S. Grisolia C.K. Salvador C.E.M. Andrade C.K.Z. Larvicidal activity of thiazolidinedione derivatives against Aedes aegypti larvae and toxicological studies with zebrafish embryos. ChemRxiv 2023 10.26434/chemrxiv‑2023‑b36z3‑v2
    [Google Scholar]
  75. Sharma P. Reddy T.S. Kumar N.P. Senwar K.R. Bhargava S.K. Shankaraiah N. Conventional and microwave-assisted synthesis of new 1 H -benzimidazole-thiazolidinedione derivatives: A potential anticancer scaffold. Eur. J. Med. Chem. 2017 138 234 245 10.1016/j.ejmech.2017.06.035 28668476
    [Google Scholar]
  76. Kumar B.R.P. Nanjan M.J. Suresh B. Karvekar M.D. Adhikary L. Microwave induced synthesis of the thiazolidine‐2,4‐dione motif and the efficient solvent free‐solid phase parallel syntheses of 5‐benzylidene‐thiazolidine‐2,4‐dione and 5‐benzylidene‐2‐thioxo‐thiazolidine‐4‐one compounds. J. Heterocycl. Chem. 2006 43 4 897 903 10.1002/jhet.5570430413
    [Google Scholar]
  77. Ali A. Ali A. Asati V. Kaya S. Ahsan M.J. Design, synthesis and anti-hyperglycemic assessments of novel 5-benzylidenethiazolidine-2,4-dione derivatives as PPAR-γ agonist. J. Indian Chem. Soc. 2023 100 11 101100 10.1016/j.jics.2023.101100
    [Google Scholar]
  78. Pardeshi D.R. Kulkarni V.M. Pathare S.S. Synthesis, antidiabetic evaluation and molecular docking studies of thiazolidine-2,4-dione analogues. Indian J. Pharma Educat Res. 2023 57 1s s98 s104 10.5530/ijper.57.1s.11
    [Google Scholar]
  79. Thareja S. Verma S.K. Jain A.K. Kumar M. Bhardwaj T.R. Rational design and synthesis of novel biphenyl thiazolidinedione conjugates as inhibitors of protein tyrosine phosphatase 1B for the management of type 2 diabetes. J. Mol. Struct. 2023 1274 134546 10.1016/j.molstruc.2022.134546
    [Google Scholar]
  80. Abdelgawad M.A. El-Adl K. El-Hddad S.S.A. Elhady M.M. Saleh N.M. Khalifa M.M. Khedr F. Alswah M. Nayl A.A. Ghoneim M.M. Abd El-Sattar N.E.A. Design, molecular docking, synthesis, anticancer and anti-hyperglycemic assessments of thiazolidine-2,4-diones bearing sulfonylthiourea moieties as potent VEGFR-2 inhibitors and PPARγ agonists. Pharmaceuticals 2022 15 2 226 10.3390/ph15020226 35215339
    [Google Scholar]
  81. El-Adl K. Sakr H. El-Hddad S.S.A. El-Helby A.G.A. Nasser M. Abulkhair H.S. Design, synthesis, docking, ADMET profile, and anticancer evaluations of novel thiazolidine‐2,4‐dione derivatives as VEGFR‐2 inhibitors. Arch. Pharm. 2021 354 7 2000491 10.1002/ardp.202000491 33788290
    [Google Scholar]
  82. El-Adl K. El-Helby A.A. Sakr H. Eissa I.H. El-Hddad S.S.A. Shoman M.I.A. Design F. synthesis, molecular docking and anticancer evaluations of 5-benzylidenethiazolidine-2,4-dione derivatives targeting VEGFR-2 enzyme. Bioorg. Chem. 2020 102 104059 10.1016/j.bioorg.2020.104059 32653608
    [Google Scholar]
  83. Jacobs W.A. Heidelberger M. Methods for the acylation of aromatic amino compounds and ureas, with especial reference to chloroacetylation. J. Am. Chem. Soc. 1917 39 7 1439 1447 10.1021/ja02252a018
    [Google Scholar]
  84. Long N. Le Gresley A. Wren S.P. Thiazolidinediones: An in-depth study of their synthesis and application to medicinal chemistry in the treatment of diabetes mellitus. ChemMedChem 2021 16 11 1717 1736 10.1002/cmdc.202100177 33844475
    [Google Scholar]
  85. El-Kashef H. Badr G. Abo El-Maali N. Sayed D. Melnyk P. Lebegue N. El-Khalek R.A. Synthesis of a novel series of (Z)-3,5-disubstituted thiazolidine-2,4-diones as promising anti-breast cancer agents. Bioorg. Chem. 2020 96 103569 10.1016/j.bioorg.2020.103569
    [Google Scholar]
  86. Asati V. Bharti S.K. Design, synthesis and molecular modeling studies of novel thiazolidine-2,4-dione derivatives as potential anti-cancer agents. J. Mol. Struct. 2018 1154 406 417 10.1016/j.molstruc.2017.10.077
    [Google Scholar]
  87. Abd Alhameed R. Almarhoon Z. Bukhari S.I. El-Faham A. de la Torre B.G. Albericio F. Synthesis and antimicrobial activity of a new series of thiazolidine-2,4-diones carboxamide and amino acid derivatives. Molecules 2019 25 1 105 10.3390/molecules25010105
    [Google Scholar]
  88. Srikanth Kumar K. Lakshmana Rao A. Basaveswara Rao M.V. Design, synthesis, biological evaluation and molecular docking studies of novel 3-substituted-5-[(indol-3-yl)methylene]-thiazolidine-2,4-dione derivatives. Heliyon 2018 4 9 00807 10.1016/j.heliyon.2018.e00807 30258996
    [Google Scholar]
  89. Pattan S.R. Suresh Ch. Pujar V.D. Reddy V.V.K. Rasal V.P. Koti B.C. Synthesis and antidiabetic activity of 2-amino [5′(4- sulphonylbenzylidine)-2,4-thiazolidinedione]-7-chloro-6-fluorobenzothiazole. Indian J. Chem. 2005 44 11 2404 2408
    [Google Scholar]
  90. Brackman G. Al Quntar A.A.A. Enk C.D. Karalic I. Nelis H.J. Van Calenbergh S. Srebnik M. Coenye T. Synthesis and evaluation of thiazolidinedione and dioxazaborocane analogues as inhibitors of AI-2 quorum sensing in Vibrio harveyi. Bioorg. Med. Chem. 2013 21 3 660 667 10.1016/j.bmc.2012.11.055 23286963
    [Google Scholar]
  91. Senthilkumar N. Vijayakumar V. Sarveswari S. Gayathri G.A. Gayathri M. Synthesis of new thiazolidine-2,-4-dione-azole derivatives and evaluation of their α-amylase and α-glucosidase inhibitory activity. Iran. J. Sci. Technol. Trans. A Sci. 2019 43 3 735 745 10.1007/s40995‑018‑0593‑x
    [Google Scholar]
  92. Kumar B.R.P. Soni M. Kumar S.S. Singh K. Patil M. Baig R.B.N. Adhikary L. Synthesis, glucose uptake activity and structure-activity relationships of some novel glitazones incorporated with glycine, aromatic and alicyclic amine moieties via two carbon acyl linker. Eur. J. Med. Chem. 2011 46 3 835 844 10.1016/j.ejmech.2010.12.019 21277051
    [Google Scholar]
  93. Zorba L.P. Stylianakis I. Tsoureas N. Kolocouris A. Vougioukalakis G.C. Copper-catalyzed one-pot synthesis of thiazolidin-2-imines. J. Org. Chem. 2024 89 11 7727 7740 10.1021/acs.joc.4c00394 38725347
    [Google Scholar]
  94. Mekhlef Y.O. AboulMagd, A.M.; Gouda, A.M. Design, synthesis, molecular docking, and biological evaluation of novel 2,3-diaryl-1,3-thiazolidine-4-one derivatives as potential anti-inflammatory and cytotoxic agents. Bioorg. Chem. 2023 133 106411 10.1016/j.bioorg.2023.106411 36801792
    [Google Scholar]
  95. Chaudhari M.A. Gujar J.B. Kawade D.S. Shinde P.V. Shingare M.S. β-Cyclodextrin-SO3H-catalyzed facile and highly efficient synthesis of 4-thiazolidinones under solvent free conditions. Res. Chem. Intermed. 2015 41 12 10027 10035 10.1007/s11164‑015‑2010‑9
    [Google Scholar]
  96. Suthar S.K. Jaiswal V. Lohan S. Bansal S. Chaudhary A. Tiwari A. Alex A.T. Joesph A. Novel quinolone substituted thiazolidin-4-ones as anti-inflammatory, anticancer agents: Design, synthesis and biological screening. Eur. J. Med. Chem. 2013 63 589 602 10.1016/j.ejmech.2013.03.011 23548704
    [Google Scholar]
  97. Aydin D. Karakilic E. Karakurt S. Baran A. Thiazolidine based fluorescent chemosensors for aluminum ions and their applications in biological imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020 238 118431 10.1016/j.saa.2020.118431 32413718
    [Google Scholar]
  98. Ukirde R. Dighe S. Laware R. Synthesis and molecular docking studies of 1, 3- thiazolidine 4 ones as anticancer agents. BioGecko 2023 12 1 366 380
    [Google Scholar]
  99. Gummidi L. Kerru N. Ebenezer O. Awolade P. Sanni O. Islam M.S. Singh P. Multicomponent reaction for the synthesis of new 1,3,4-thiadiazole-thiazolidine-4-one molecular hybrids as promising antidiabetic agents through α-glucosidase and α-amylase inhibition. Bioorg. Chem. 2021 115 105210 10.1016/j.bioorg.2021.105210 34332231
    [Google Scholar]
  100. Fekri L.Z. Hamidian H. Chekosarani M.A. Urazolium diacetate as a new, efficient and reusable Brønsted acid ionic liquid for the synthesis of novel derivatives of thiazolidine-4-ones. RSC Advances 2020 10 1 556 564 10.1039/C9RA08649H 35492548
    [Google Scholar]
  101. Daghlavi A. Kowsari E. Abdouss M. Ghasemi M.H. Asadi E. Catalytic synthesis of thiazolidines by the reaction of Nef-isocyanide reaction. Res. Chem. Intermed. 2020 46 7 3593 3605 10.1007/s11164‑020‑04163‑2
    [Google Scholar]
  102. Thari F.Z. Tachallait H. El Alaoui N.E. Talha A. Arshad S. Álvarez E. Karrouchi K. Bougrin K. Ultrasound-assisted one-pot green synthesis of new N- substituted-5-arylidene-thiazolidine-2,4-dione-isoxazoline derivatives using NaCl/Oxone/Na3PO4 in aqueous media. Ultrason. Sonochem. 2020 68 105222 10.1016/j.ultsonch.2020.105222 32585575
    [Google Scholar]
  103. Habibi A. Ghanbari E. Yavari I. Synthesis of thiazolidine derivatives via multicomponent reaction in the presence of Fe3O4@SiO2-SO3H nanoparticles as a heterogeneous catalyst. ARKIVOC 2019 2019 6 128 140 10.24820/ark.5550190.p010.921
    [Google Scholar]
  104. Zumbrägel N. Gröger H. One-pot synthesis of a 3-thiazolidine through combination of an Asinger-type multi-component-condensation reaction with an enzymatic imine reduction. J. Biotechnol. 2019 291 35 40 10.1016/j.jbiotec.2018.12.009 30579889
    [Google Scholar]
  105. Zumbrägel N. Gröger H. Merging heterocyclic chemistry and biocatalysis in one-pot processes through compartmentalization of the reaction steps. Bioengineering (Basel) 2018 5 3 60 10.3390/bioengineering5030060 30071637
    [Google Scholar]
  106. Khalaj M. Sadeghpour M. Mousavi Safavi S.M. Lalegani A. Khatami S.M. Copper-catalyzed synthesis of thiazolidine derivatives via multicomponent reaction of terminal alkynes, elemental sulfur, and aziridines. Monatsh. Chem. 2019 150 6 1085 1091 10.1007/s00706‑019‑2363‑7
    [Google Scholar]
  107. Rainoldi G. Begnini F. de Munnik M. Lo Presti L. Vande Velde C.M.L. Orru R. Lesma G. Ruijter E. Silvani A. Sequential multicomponent strategy for the diastereoselective synthesis of densely functionalized spirooxindole-fused thiazolidines. ACS Comb. Sci. 2018 20 2 98 105 10.1021/acscombsci.7b00179 29323868
    [Google Scholar]
  108. Kaboudin B. Abbasi Shiran J. Novel one-pot four-component condensation cyclization reactions for the synthesis of thiazolidine-4-one and 3 H -thiazoles. J. Sulfur Chem. 2018 39 6 633 645 10.1080/17415993.2018.1497168
    [Google Scholar]
  109. Martens J. Schlüter T. Frerichs N. Schmidtmann M. Consecutive multicomponent reactions: Synthesis of 3-acyl-4-alkynyl-substituted 1,3-thiazolidines. Synthesis 2018 50 5 1123 1132 10.1055/s‑0036‑1591873
    [Google Scholar]
  110. Weber M. Jakobxht J. Martens J. Synthese und reaktivität von 3‐oxazolinen. Liebigs Ann. Chem. 1992 1992 1 1 6 10.1002/jlac.199219920102
    [Google Scholar]
  111. Bansal G. Thanikachalam P.V. Maurya R.K. Chawla P. Ramamurthy S. An overview on medicinal perspective of thiazolidine-2,4-dione: A remarkable scaffold in the treatment of type 2 diabetes. J. Adv. Res. 2020 23 163 205 10.1016/j.jare.2020.01.008 32154036
    [Google Scholar]
  112. Bansal G. Singh S. Monga V. Thanikachalam P.V. Chawla P. Synthesis and biological evaluation of thiazolidine-2,4-dione-pyrazole conjugates as antidiabetic, anti-inflammatory and antioxidant agents. Bioorg. Chem. 2019 92 103271 10.1016/j.bioorg.2019.103271 31536952
    [Google Scholar]
  113. Ranjan Srivastava A. Bhatia R. Chawla P. Synthesis, biological evaluation and molecular docking studies of novel 3,5-disubstituted 2,4-thiazolidinediones derivatives. Bioorg. Chem. 2019 89 102993 10.1016/j.bioorg.2019.102993 31129500
    [Google Scholar]
  114. Perike N. Edigi P.K. Nirmala G. Thumma V. Bujji S. Naikal P.S. Synthesis, anticancer activity and molecular docking studies of hybrid molecules containing indole‐thiazolidinedione‐triazole moieties. ChemistrySelect 2022 7 47 202203778 10.1002/slct.202203778
    [Google Scholar]
  115. Darroudi M. Hamzehloueian M. Sarrafi Y. An experimental and mechanism study on the regioselective click reaction toward the synthesis of thiazolidinone-triazole. Heliyon 2021 7 2 06113 10.1016/j.heliyon.2021.e06113 33644441
    [Google Scholar]
  116. Behbehani H. Ibrahim H.M. Makhseed S. Elnagdi M.H. Mahmoud H. 2-Aminothiophenes as building blocks in heterocyclic synthesis: Synthesis and antimicrobial evaluation of a new class of pyrido[1,2-a]thieno[3,2-e]pyrimidine, quinoline and pyridin-2-one derivatives. Eur. J. Med. Chem. 2012 52 51 65 10.1016/j.ejmech.2012.03.004 22464424
    [Google Scholar]
  117. Pałasz A. Synthesis of fused uracils: Pyrano[2,3-d]pyrimidines and 1,4-bis(pyrano[2,3-d]pyrimidinyl)benzenes by domino Knoevenagel/Diels-Alder reactions. Monatsh. Chem. 2012 143 8 1175 1185 10.1007/s00706‑012‑0781‑x 26166870
    [Google Scholar]
  118. Kulkarni P.S. Karale S.N. Khandebharad A.U. Agrawal B.R. Sarda S.R. Synthesis of novel 1,2,3-triazoles bearing 2,4 thiazolidinediones conjugates and their biological evaluation. J. Indian Chem. Soc. 2021 18 8 2035 2046 10.1007/s13738‑021‑02160‑9
    [Google Scholar]
  119. Kotha S. Sreevani G. Dzhemileva L.U. Yunusbaeva M.M. Dzhemilev U.M. D’yakonov V.A. Diversity-oriented synthesis of spirothiazolidinediones and their biological evaluation. Beilstein J. Org. Chem. 2019 15 2774 2781 10.3762/bjoc.15.269 31807211
    [Google Scholar]
  120. Qiu J. Yuan C.M. Wen M. Li Y.N. Chen J. Jian J.Y. Huang L.J. Gu W. Li Y.M. Hao X.J. Design, synthesis, and cytotoxic activities of novel hybrids of parthenolide and thiazolidinedione via click chemistry. J. Asian Nat. Prod. Res. 2020 22 5 425 433 10.1080/10286020.2019.1597055 31012734
    [Google Scholar]
  121. Sindhu J. Singh H. Khurana J.M. Sharma C. Aneja K.R. Multicomponent domino process for the synthesis of some novel 5-(arylidene)-3-((1-aryl-1H-1,2,3-triazol-4-yl)methyl)-thiazolidine-2,4-diones using PEG-400 as an efficient reaction medium and their antimicrobial evaluation. Chin. Chem. Lett. 2015 26 1 50 54 10.1016/j.cclet.2014.09.006
    [Google Scholar]
  122. Doddagaddavalli M.A. Kalalbandi V.K.A. Seetharamappa J. Joshi S.D. New thiophene-1,3,4-oxadiazole-thiazolidine-2,4-dione hybrids: Synthesis, MCF-7 inhibition and binding studies. Bioorg. Chem. 2024 143 107003 10.1016/j.bioorg.2023.107003 38029570
    [Google Scholar]
  123. Ramakrishna B. Karthik B. Kumar B.A. Kumar T.K. Synthesis of some new coumarin-thiazolidine-2,4-dione-1,2,3-triazole hybrids as tubulin targeting anti-lung cancer agents. Russ. J. Bioorganic Chem. 2024 50 2 282 292 10.1134/S1068162024020109
    [Google Scholar]
  124. Singh D. Patel R. Aggarwal A. Das A. Sharma S. Behera B. Panigrahy R. Kirane A.R. Kharkwal H. Kumar P. Prakash Bokolia N. Sankaranarayanan M. Chander S. Phenylthiazolidin-4-one piperazine Conjugates: Design, Synthesis, anticancer and antimicrobial studies. Results Chem. 2024 7 101237 10.1016/j.rechem.2023.101237
    [Google Scholar]
  125. Bandi S.R. Kapavarapu R. Palabindela R. Azam M. Min K. Narsimha S. Synthesis of novel pyrido[2,3-d]pyrimidine-thiazolidine-1,2,3-triazoles: Potent EGFR targeting anticancer agents. J. Mol. Struct. 2023 1294 136451 10.1016/j.molstruc.2023.136451
    [Google Scholar]
  126. Aziz N.A.A.M. George R.F. El-Adl K. Mahmoud W.R. Design, synthesis, in silico docking, ADMET and anticancer evaluations of thiazolidine-2,4-diones bearing heterocyclic rings as dual VEGFR-2/EGFR T790M tyrosine kinase inhibitors. RSC Advances 2022 12 20 12913 12931 10.1039/D2RA01119K 35496328
    [Google Scholar]
  127. Fettach S. Thari F.Z. Karrouchi K. Benbacer L. Lee L.H. Bouyahya A. Cherrah Y. Sefrioui H. Bougrin K. Faouzy M.E.A. El A. Assessment of anti-hyperglycemic and anti-hyperlipidemic effects of thiazolidine-2,4-dione derivatives in HFD-STZ diabetic animal model. Chem. Biol. Interact. 2024 391 110902 10.1016/j.cbi.2024.110902 38367680
    [Google Scholar]
  128. Gharge S. Alegaon S.G. Ranade S.D. Khatib N.A. Kavalapure R.S. Kumar B.R.P. D, V.; Bavage, N.B. Design, synthesis of new 2,4-thiazolidinediones: In silico, in vivo anti-diabetic and anti-inflammatory evaluation. Eur J. Med. Chem. Rep 2024 11 100151 10.1016/j.ejmcr.2024.100151
    [Google Scholar]
  129. Doddagaddavalli M.A. Kalalbandi V.K.A. Seetharamappa J. Synthesis, characterization, crystallographic, binding, in silico and antidiabetic studies of novel 2,4-thiazolidinedione-phenothiazine molecular hybrids. J. Mol. Struct. 2023 1276 134625 10.1016/j.molstruc.2022.134625
    [Google Scholar]
  130. Huneif M.A. Mahnashi M.H. Jan M.S. Shah M. Almedhesh S.A. Alqahtani S.M. Alzahrani M.J. Ayaz M. Ullah F. Rashid U. Sadiq A. New succinimide-thiazolidinedione hybrids as multitarget antidiabetic agents: Design, synthesis, bioevaluation, and molecular modelling studies. Molecules 2023 28 3 1207 10.3390/molecules28031207 36770873
    [Google Scholar]
  131. Zheng Y. Li M. Wu S. Li L. Xiong Z. Xu X. Zhang K. Wen Y. Synthesis and biological evaluation of chromone-thiazolidine-2,4-dione derivatives as potential α-glucosidase inhibitors. Arab. J. Chem. 2023 16 11 105279 10.1016/j.arabjc.2023.105279
    [Google Scholar]
  132. Desai N.C. Shah K.N. Monapara J. Dave B.P. Ahmad I. Patel H. Design, synthesis, biological profile and molecular modeling and MD simulation studies of heterocyclic benzimidazole and thiazolidine-4-one based 5-arylidene analogues as prospective antimicrobial agents. J. Mol. Struct. 2024 1299 137166 10.1016/j.molstruc.2023.137166
    [Google Scholar]
  133. Hassan S.A. Ziwar J.B. Aziz D. Abdullah M.N. Sonochemical synthesis of new thiazolidin-4-one derivatives as potent anticancer and antimicrobial agents with docking design, and energy gap estimation. J. Mol. Struct. 2024 1301 137282 10.1016/j.molstruc.2023.137282
    [Google Scholar]
  134. Aksić J.M. Genčić M.S. Radulović N.S. Dimitrijević M.V. Stojanović-Radić Z.Z. Ilic Tomic T. Rodić M.V. Bioisosteric ferrocenyl 1,3-thiazolidine-4-carboxylic acid derivatives: In vitro antiproliferative and antimicrobial evaluations. Bioorg. Chem. 2023 139 106708 10.1016/j.bioorg.2023.106708 37487425
    [Google Scholar]
  135. Ben Maamer C. Dridi R. Lahmar M. Tabarki M.A. Jobran M. Sahtel S. Zid M.F. Ouzari H.I. Vrancken E. Besbes R. Zinc tetrafluoroborate-mediated ring expansion of trans -aziridine-2-carboxylates to cis -2-iminothiazolidines and cis -thiazolidine-2-iminium tetrafluoroborates and evaluation of antimicrobial activity. ACS Omega 2023 8 33 30402 30409 10.1021/acsomega.3c03531 37636906
    [Google Scholar]
  136. Raghu M.S. Pradeep Kumar C.B. Yogesh Kumar K. Prashanth M.K. Alharethy F. Jeon B.H. Synthesis, biological evaluation and molecular docking study of pyrimidine linked thiazolidinedione derivatives as potential antimicrobial and antitubercular agents. Bioorg. Med. Chem. Lett. 2024 103 129707 10.1016/j.bmcl.2024.129707 38492608
    [Google Scholar]
  137. Srivastava K. Srivastava A. Tiwari R.P. Tripathi A. Peta S. Verma M. A facile synthesis, characterization and biological evaluation of novel spiro-thiazolidinone and quinazolinone-thiazolidine derivatives. Indian J. Chem. 2023 62 7 770 779 10.56042/ijc.v62i7.3830
    [Google Scholar]
  138. Pathak A. Gupta A. Gautam A. Kumar S. Naved T. Soni N. Synthesis, characterisation, in silico molecular docking studies and in vivo anti-inflammatory activity of substituted 4-thiazolidinone derivatives. Acta Biomed. 2023 94 1 1 6
    [Google Scholar]
  139. Shawky A.M. Almalki F.A. Abdalla A.N. Youssif B.G.M. Abdel-Fattah M.M. Hersi F. El-Sherief H.A.M. Ibrahim N.A. Gouda A.M. Discovery and optimization of 2,3-diaryl-1,3-thiazolidin-4-one-based derivatives as potent and selective cytotoxic agents with anti-inflammatory activity. Eur. J. Med. Chem. 2023 259 115712 10.1016/j.ejmech.2023.115712 37567059
    [Google Scholar]
  140. Haroun M. Petrou A. Tratrat C. Kolokotroni A. Fesatidou M. Zagaliotis P. Gavalas A. Venugopala K.N. Sreeharsha N. Nair A.B. Elsewedy H.S. Geronikaki A. Discovery of 5-methylthiazole-thiazolidinone conjugates as potential anti-inflammatory agents: Molecular target identification and in silico studies. Molecules 2022 27 23 8137 10.3390/molecules27238137 36500230
    [Google Scholar]
  141. Chopra N. Kaur K. Kaur S. 2018
/content/journals/ctmc/10.2174/0115680266386939250917053818
Loading
/content/journals/ctmc/10.2174/0115680266386939250917053818
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test