Skip to content
2000
image of Therapeutic Potential of Genistein: Insights into Multifaceted Mechanisms and Perspectives for Human Wellness

Abstract

Background

Genistein, a natural isoflavonoid found predominantly in legumes and soy-based foods, has garnered significant attention due to its multifaceted mechanisms and potential therapeutic applications. Chemically, genistein is a 4',5,7-Trihydroxyisoflavone having a molecular formula of CHO, which enables its interactions with diverse biological targets.

Objective

The main objective of this review is to summarize the pharmacological effects of genistein, elucidating its potential mechanisms of action. Furthermore, the review emphasizes genistein's impact on human health when used as a dietary supplement.

Methods

The authors have gone through a vast number of article sources from various scientific databases like Google Scholar, PubMed and Web of Science.

Results

Genistein exhibits antioxidant properties by countering free radicals and reducing lipid peroxidation. Genistein's anti-inflammatory effects involve inhibiting proinflammatory pathways and cytokine production. Notably, it shows anticancer potential against various malignancies by promoting apoptosis, inhibiting angiogenesis, and hindering metastasis. Moreover, genistein has antidiabetic properties, enhancing insulin secretion, protecting β-cells, and improving glucose tolerance. Its antiviral and antibacterial actions contribute to inhibiting pathogen growth and viral replication. Genistein accelerates wound healing by minimizing oxidative stress, facilitating re-epithelialization, and suppressing inflammation. Its potential in peptic ulcer treatment is supported by anti-inflammatory and antioxidant effects. Hepatoprotective activities include inhibiting lipid peroxidation, bolstering antioxidant defences, and modulating metabolic enzymes. Furthermore, genistein positively impacts the immune response, influencing cytokine levels, lymphocyte proliferation, and interferon production.

Conclusion

Genistein's multifaceted pharmacological activities render it a promising dietary supplement with implications for diverse health conditions, warranting further comprehensive research to optimize its clinical utility.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266377646250527075042
2025-06-02
2025-09-14
Loading full text...

Full text loading...

References

  1. Mazur W.M. Duke J.A. Wähälä K. Rasku S. Adlercreutz H. Isoflavonoids and lignans in legumes: Nutritional and health aspects in humans. J. Nutr. Biochem. 1998 9 4 193 200 10.1016/S0955‑2863(97)00184‑8
    [Google Scholar]
  2. Liggins J. Bluck L.J.C. Runswick S. Atkinson C. Coward W.A. Bingham S.A. Daidzein and genistein content of fruits and nuts. J. Nutr. Biochem. 2000 11 6 326 331 10.1016/S0955‑2863(00)00085‑1 11002128
    [Google Scholar]
  3. Chanu N.R. Gogoi P. Barbhuiya P.A. Dutta P.P. Pathak M.P. Sen S. Natural flavonoids as potential therapeutics in the management of diabetic wound: A review. Curr. Top. Med. Chem. 2023 23 8 690 710 10.2174/1568026623666230419102140 37114791
    [Google Scholar]
  4. Jaiswal N. Akhtar J. Singh S.P. Ahsan F. An overview on genistein and its various formulations. Drug Res. 2019 69 6 305 313 10.1055/a‑0797‑3657 30517965
    [Google Scholar]
  5. Sharifi-Rad J. Quispe C. Imran M. Rauf A. Nadeem M. Gondal T.A. Ahmad B. Atif M. Mubarak M.S. Sytar O. Zhilina O.M. Garsiya E.R. Smeriglio A. Trombetta D. Pons D.G. Martorell M. Cardoso S.M. Razis A.F.A. Sunusi U. Kamal R.M. Rotariu L.S. Butnariu M. Docea A.O. Calina D. Genistein: An integrative overview of its mode of action, pharmacological properties, and health benefits. Oxid. Med. Cell. Longev. 2021 2021 1 3268136 10.1155/2021/3268136 34336089
    [Google Scholar]
  6. Sohel M. Biswas P. Al Amin M. Hossain M.A. Sultana H. Dey D. Aktar S. Setu A. Khan M.S. Paul P. Islam M.N. Rahman M.A. Kim B. Al Mamun A. Genistein, a potential phytochemical against breast cancer treatment-insight into the molecular mechanisms. Processes 2022 10 2 415 10.3390/pr10020415
    [Google Scholar]
  7. Mathew S. Vazhappilly C.G. Recent pharmacological advances on genistein in clinical trials. EXCLI J. 2020 19 1120 1123 10.17179/excli2020‑2675 33088249
    [Google Scholar]
  8. Polkowski K. Mazurek A.P. Biological properties of genistein. A review of in vitro and in vivo data. Acta Pol. Pharm. 2000 57 2 135 155 10934794
    [Google Scholar]
  9. Klinge C.M. Estrogen receptor interaction with co-activators and co-repressors. Steroids 2000 65 5 227 251 10.1016/S0039‑128X(99)00107‑5 10751636
    [Google Scholar]
  10. Chang Y.C. Nair M.G. Santell R.C. Helferich W.G. Microwave-mediated synthesis of anticarcinogenic isoflavones from soybeans. J. Agric. Food Chem. 1994 42 9 1869 1871 10.1021/jf00045a007
    [Google Scholar]
  11. Kochs G. Grisebach H. Enzymic synthesis of isoflavones. Eur. J. Biochem. 1986 155 2 311 318 10.1111/j.1432‑1033.1986.tb09492.x 3956488
    [Google Scholar]
  12. Meng Q.H. Wähälä K. Adlercreutz H. Tikkanen M.J. Antiproliferative efficacy of lipophilic soy isoflavone phytoestrogens delivered by low density lipoprotein particles into cultured U937 cells. Life Sci. 1999 65 16 1695 1705 10.1016/S0024‑3205(99)00418‑X 10573187
    [Google Scholar]
  13. Somjen D. Amir-Zaltsman Y. Gayer B. Kulik T. Knoll E. Stern N. Lu L.J. Toldo L. Kohen F. 6-Carboxymethyl genistein: A novel selective oestrogen receptor modulator (SERM) with unique, differential effects on the vasculature, bone and uterus. J. Endocrinol. 2002 173 3 415 427 10.1677/joe.0.1730415 12065231
    [Google Scholar]
  14. Matsumoto T. Kobayashi T. Kikuchi T. Honda T. Kamata K. Effects of dual-action genistein derivatives on relaxation in rat aorta. J. Smooth Muscle Res. 2005 41 1 23 33 10.1540/jsmr.41.23 15855737
    [Google Scholar]
  15. Zhang L.N. Xiao Z.P. Ding H. Ge H.M. Xu C. Zhu H.L. Tan R.X. Synthesis and cytotoxic evaluation of novel 7-O-modified genistein derivatives. Chem. Biodivers. 2007 4 2 248 255 10.1002/cbdv.200790030 17311236
    [Google Scholar]
  16. Shimoda K. Kobayashi T. Akagi M. Hamada H. Hamada H. Synthesis of oligosaccharides of genistein and quercetin as potential anti-inflammatory agents. Chem. Lett. 2008 37 8 876 877 10.1246/cl.2008.876
    [Google Scholar]
  17. Kgomotso T. Chiu F. Ng K. Genistein‐ and daidzein 7‐O‐β‐ D ‐glucuronic acid retain the ability to inhibit copper‐mediated lipid oxidation of low density lipoprotein. Mol. Nutr. Food Res. 2008 52 12 1457 1466 10.1002/mnfr.200800010 18683820
    [Google Scholar]
  18. Fu X.H. Wang L. Zhao H. Xiang H.L. Cao J.G. Synthesis of genistein derivatives and determination of their protective effects against vascular endothelial cell damages caused by hydrogen peroxide. Bioorg. Med. Chem. Lett. 2008 18 2 513 517 10.1016/j.bmcl.2007.11.097 18068980
    [Google Scholar]
  19. Li H.Q. Ge H.M. Chen Y.X. Xu C. Shi L. Ding H. Zhu H.L. Tan R.X. Synthesis and cytotoxic evaluation of a series of genistein derivatives. Chem. Biodivers. 2006 3 4 463 472 10.1002/cbdv.200690049 17193282
    [Google Scholar]
  20. Maniewska J. Grynkiewicz G. Szeja W. Hendrich A.B. Interaction of genistein benzyl derivatives with lipid bilayers—fluorescence spectroscopic and calorimetric study. Bioorg. Med. Chem. 2009 17 6 2592 2597 10.1016/j.bmc.2008.12.049 19249214
    [Google Scholar]
  21. Choi J.N. Kim D. Choi H.K. Yoo K.M. Kim J. Lee C.H. 2′-hydroxylation of genistein enhanced antioxidant and antiproliferative activities in mcf-7 human breast cancer cells. J. Microbiol. Biotechnol. 2009 19 11 1348 1354 10.4014/jmb.0903.00114 19996686
    [Google Scholar]
  22. Chu C. Lu F.J. Yeh R.H. Li Z.L. Chen C.H. Synergistic antioxidant activity of resveratrol with genistein in high-glucose treated Madin-Darby canine kidney epithelial cells. Biomed. Rep. 2016 4 3 349 354 10.3892/br.2016.573 26998274
    [Google Scholar]
  23. Nijveldt R.J. van Nood E. van Hoorn D.E.C. Boelens P.G. van Norren K. van Leeuwen P.A.M. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001 74 4 418 425 10.1093/ajcn/74.4.418 11566638
    [Google Scholar]
  24. Menze E.T. Esmat A. Tadros M.G. Abdel-Naim A.B. Khalifa A.E. Genistein improves 3-NPA-induced memory impairment in ovariectomized rats: Impact of its antioxidant, anti-inflammatory and acetylcholinesterase modulatory properties. PLoS One 2015 10 2 e0117223 10.1371/journal.pone.0117223 25675218
    [Google Scholar]
  25. Javanbakht M.H. Sadria R. Djalali M. Derakhshanian H. Hosseinzadeh P. Zarei M. Azizi G. Sedaghat R. Mirshafiey A. Soy protein and genistein improves renal antioxidant status in experimental nephrotic syndrome. Nefrología 2014 34 4 483 490 25036062
    [Google Scholar]
  26. Park C.E. Yun H. Lee E.B. Min B.I. Bae H. Choe W. Kang I. Kim S.S. Ha J. The antioxidant effects of genistein are associated with AMP-activated protein kinase activation and PTEN induction in prostate cancer cells. J. Med. Food 2010 13 4 815 820 10.1089/jmf.2009.1359 20673057
    [Google Scholar]
  27. Goh Y.X. Jalil J. Lam K.W. Husain K. Premakumar C.M. Genistein: A review on its anti-inflammatory properties. Front. Pharmacol. 2022 13 820969 10.3389/fphar.2022.820969 35140617
    [Google Scholar]
  28. Ji G. Yang Q. Hao J. Guo L. Chen X. Hu J. Leng L. Jiang Z. Anti-inflammatory effect of genistein on non-alcoholic steatohepatitis rats induced by high fat diet and its potential mechanisms. Int. Immunopharmacol. 2011 11 6 762 768 10.1016/j.intimp.2011.01.036 21320636
    [Google Scholar]
  29. Li L. Fu W. Wu R. Song Y. Wu W. Yin S. Li W. Xie M. Protective effect of Ganoderma atrum polysaccharides in acute lung injury rats and its metabolomics. Int. J. Biol. Macromol. 2020 142 693 704 10.1016/j.ijbiomac.2019.10.010 31739063
    [Google Scholar]
  30. Bhattarai G. Poudel S.B. Kook S.H. Lee J.C. Anti‐inflammatory, anti‐osteoclastic, and antioxidant activities of genistein protect against alveolar bone loss and periodontal tissue degradation in a mouse model of periodontitis. J. Biomed. Mater. Res. A 2017 105 9 2510 2521 10.1002/jbm.a.36109 28509410
    [Google Scholar]
  31. Zhang Q. Bao J. Yang J. Genistein-triggered anticancer activity against liver cancer cell line HepG2 involves ROS generation, mitochondrial apoptosis, G2/M cell cycle arrest and inhibition of cell migration. Arch. Med. Sci. 2019 15 4 1001 1009 10.5114/aoms.2018.78742 31360194
    [Google Scholar]
  32. Pawlicka M.A. Zmorzyński S. Popek-Marciniec S. Filip A.A. The effects of genistein at different concentrations on MCF-7 breast cancer cells and BJ dermal fibroblasts. Int. J. Mol. Sci. 2022 23 20 12360 10.3390/ijms232012360 36293214
    [Google Scholar]
  33. Shafiee G. Saidijam M. Tavilani H. Ghasemkhani N. Khodadadi I. Genistein induces apoptosis and inhibits proliferation of HT29 colon cancer cells. Int. J. Mol. Cell. Med. 2016 5 3 178 191 27942504
    [Google Scholar]
  34. Mense S.M. Hei T.K. Ganju R.K. Bhat H.K. Phytoestrogens and breast cancer prevention: Possible mechanisms of action. Environ. Health Perspect. 2008 116 4 426 433 10.1289/ehp.10538 18414622
    [Google Scholar]
  35. Lee J.Y. Kim H.S. Song Y.S. Genistein as a potential anticancer agent against ovarian cancer. J. Tradit. Complement. Med. 2012 2 2 96 104 10.1016/S2225‑4110(16)30082‑7 24716121
    [Google Scholar]
  36. Spagnuolo C. Russo G.L. Orhan I.E. Habtemariam S. Daglia M. Sureda A. Nabavi S.F. Devi K.P. Loizzo M.R. Tundis R. Nabavi S.M. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr. 2015 6 4 408 419 10.3945/an.114.008052 26178025
    [Google Scholar]
  37. Gilbert E.R. Liu D. Anti-diabetic functions of soy isoflavone genistein: Mechanisms underlying its effects on pancreatic β-cell function. Food Funct. 2013 4 2 200 212 10.1039/C2FO30199G 23160185
    [Google Scholar]
  38. Kim I.S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants 2021 10 7 1064 10.3390/antiox10071064 34209224
    [Google Scholar]
  39. Braxas H. Rafraf M. Karimi Hasanabad S. Asghari Jafarabadi M. Effectiveness of genistein supplementation on metabolic factors and antioxidant status in postmenopausal women with type 2 diabetes mellitus. Can. J. Diabetes 2019 43 7 490 497 10.1016/j.jcjd.2019.04.007 31307913
    [Google Scholar]
  40. Fu Z. Gilbert E.R. Pfeiffer L. Zhang Y. Fu Y. Liu D. Genistein ameliorates hyperglycemia in a mouse model of nongenetic type 2 diabetes. Appl. Physiol. Nutr. Metab. 2012 37 3 480 488 10.1139/h2012‑005 22509809
    [Google Scholar]
  41. Elmarakby A.A. Ibrahim A.S. Faulkner J. Mozaffari M.S. Liou G.I. Abdelsayed R. Tyrosine kinase inhibitor, genistein, reduces renal inflammation and injury in streptozotocin-induced diabetic mice. Vascul. Pharmacol. 2011 55 5-6 149 156 10.1016/j.vph.2011.07.007 21807121
    [Google Scholar]
  42. Choi M.S. Jung U.J. Yeo J. Kim M.J. Lee M.K. Genistein and daidzein prevent diabetes onset by elevating insulin level and altering hepatic gluconeogenic and lipogenic enzyme activities in non‐obese diabetic (NOD) mice. Diabetes Metab. Res. Rev. 2008 24 1 74 81 10.1002/dmrr.780 17932873
    [Google Scholar]
  43. Yang W. Wang S. Li L. Liang Z. Wang L. Genistein reduces hyperglycemia and islet cell loss in a high-dosage manner in rats with alloxan-induced pancreatic damage. Pancreas 2011 40 3 396 402 10.1097/MPA.0b013e318204e74d 21206328
    [Google Scholar]
  44. Neye H. Verspohl E. The specificity of tyrosine kinase inhibitors: Their effect on insulin release (short-term effect) and insulin mRNA (long-term effect) in an insulin-secreting cell line (INS-1). Exp. Clin. Endocrinol. Diabetes 1998 106 4 292 298 10.1055/s‑0029‑1211988 9792461
    [Google Scholar]
  45. Sorenson R.L. Brelje T.C. Roth C. Effect of tyrosine kinase inhibitors on islets of Langerhans: evidence for tyrosine kinases in the regulation of insulin secretion. Endocrinology 1994 134 4 1975 1978 10.1210/endo.134.4.8137766 8137766
    [Google Scholar]
  46. Kim E.K. Kwon K.B. Song M.Y. Seo S.W. Park S.J. Ka S.O. Na L. Kim K.A. Ryu D.G. So H.S. Park R. Park J.W. Park B.H. Genistein protects pancreatic β cells against cytokine-mediated toxicity. Mol. Cell. Endocrinol. 2007 278 1-2 18 28 10.1016/j.mce.2007.08.003 17881116
    [Google Scholar]
  47. Liu D. Zhen W. Yang Z. Carter J.D. Si H. Reynolds K.A. Genistein acutely stimulates insulin secretion in pancreatic β-cells through a cAMP-dependent protein kinase pathway. Diabetes 2006 55 4 1043 1050 10.2337/diabetes.55.04.06.db05‑1089 16567527
    [Google Scholar]
  48. Jonas J.C. Plant T.D. Gilon P. Detimary P. Nenquin M. Henquin J.C. Multiple effects and stimulation of insulin secretion by the tyrosine kinase inhibitor genistein in normal mouse islets. Br. J. Pharmacol. 1995 114 4 872 880 10.1111/j.1476‑5381.1995.tb13285.x 7773549
    [Google Scholar]
  49. Kawser Hossain M. Abdal Dayem A. Han J. Yin Y. Kim K. Kumar Saha S. Yang G.M. Choi H. Cho S.G. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int. J. Mol. Sci. 2016 17 4 569 10.3390/ijms17040569 27092490
    [Google Scholar]
  50. Matthies A. Clavel T. Gütschow M. Engst W. Haller D. Blaut M. Braune A. Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine. Appl. Environ. Microbiol. 2008 74 15 4847 4852 10.1128/AEM.00555‑08 18539813
    [Google Scholar]
  51. Hong H. Landauer M.R. Foriska M.A. Ledney G.D. Antibacterial activity of the soy isoflavone genistein. J. Basic Microbiol. 2006 46 4 329 335 10.1002/jobm.200510073 16847837
    [Google Scholar]
  52. Kumar S. Effect of isoflavones as antibacterial and anti-quorum sensing agents against chromobacterium violaceum. Int. J. Adv. Sci. Res. 2022 13 54 59
    [Google Scholar]
  53. Gallegos M.T. Vargas P. Rodríguez-García I. Antibacterial actions of flavonoids. Recent Prog Med. Plants 2016 40 99 141
    [Google Scholar]
  54. Ulanowska K. Tkaczyk A. Konopa G. Węgrzyn G. Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains. Arch. Microbiol. 2006 184 5 271 278 10.1007/s00203‑005‑0063‑7 16328542
    [Google Scholar]
  55. Kumar A. Malik J.K. Arya K. In-silico analysis to access the antibacterial effect of genistein: Molecular docking approach. EAS J. Pharm. Pharmacol. 2019 1 125 129
    [Google Scholar]
  56. Choi H. Park J.S. Kim K.M. Kim M. Ko K.W. Hyun C.G. Ahn J.W. Seo J.H. Kim S.Y. Enhancing the antimicrobial effect of genistein by biotransformation in microbial system. J. Ind. Eng. Chem. 2018 63 255 261 10.1016/j.jiec.2018.02.023
    [Google Scholar]
  57. Vivek Babu B. Smiline Girija A.S. Vijayashree Priyadharsini J. Genistein binding protein targets in dental pathogens. Bioinformation 2021 17 12 1109 1115 10.6026/973206300171109 35291343
    [Google Scholar]
  58. Mykhailenko O. Kovalyov V. Kovalyov S. Krechun A. Isoflavonoids from the rhizomes of Iris hungarica and antibacterial activity of the dry rhizomes extract. Ars Pharmaceutica 2017 58 1 39 45 10.30827/ars.v58i1.5919
    [Google Scholar]
  59. Manjunathan R. Periyaswami V. Mitra K. Rosita A.S. Pandya M. Selvaraj J. Ravi L. Devarajan N. Doble M. Molecular docking analysis reveals the functional inhibitory effect of Genistein and Quercetin on TMPRSS2: SARS-COV-2 cell entry facilitator spike protein. BMC Bioinformatics 2022 23 1 180 10.1186/s12859‑022‑04724‑9 35578172
    [Google Scholar]
  60. LeCher J.C. Diep N. Krug P.W. Hilliard J.K. Genistein has antiviral activity against herpes b virus and acts synergistically with antiviral treatments to reduce effective dose. Viruses 2019 11 6 499 10.3390/v11060499 31159175
    [Google Scholar]
  61. Arabyan E. Hakobyan A. Kotsinyan A. Karalyan Z. Arakelov V. Arakelov G. Nazaryan K. Simonyan A. Aroutiounian R. Ferreira F. Zakaryan H. Genistein inhibits African swine fever virus replication in vitro by disrupting viral DNA synthesis. Antiviral Res. 2018 156 128 137 10.1016/j.antiviral.2018.06.014 29940214
    [Google Scholar]
  62. Park E. Lee S.M. Jung I.K. Lim Y. Kim J.H. Effects of genistein on early-stage cutaneous wound healing. Biochem. Biophys. Res. Commun. 2011 410 3 514 519 10.1016/j.bbrc.2011.06.013 21679688
    [Google Scholar]
  63. Marini H. Polito F. Altavilla D. Irrera N. Minutoli L. Calò M. Adamo E.B. Vaccaro M. Squadrito F. Bitto A. Genistein aglycone improves skin repair in an incisional model of wound healing: A comparison with raloxifene and oestradiol in ovariectomized rats. Br. J. Pharmacol. 2010 160 5 1185 1194 10.1111/j.1476‑5381.2010.00758.x 20590611
    [Google Scholar]
  64. Čoma M. Lachová V. Mitrengová P. Gál P. Molecular changes underlying genistein treatment of wound healing: A review. Curr. Issues Mol. Biol. 2021 43 1 127 141 10.3390/cimb43010011 34067763
    [Google Scholar]
  65. Irrera N. Pizzino G. D’Anna R. Vaccaro M. Arcoraci V. Squadrito F. Altavilla D. Bitto A. Dietary management of skin health: The role of genistein. Nutrients 2017 9 6 622 10.3390/nu9060622 28629129
    [Google Scholar]
  66. Carvalho M.T.B. Araújo-Filho H.G. Barreto A.S. Quintans-Júnior L.J. Quintans J.S.S. Barreto R.S.S. Wound healing properties of flavonoids: A systematic review highlighting the mechanisms of action. Phytomedicine 2021 90 153636 10.1016/j.phymed.2021.153636 34333340
    [Google Scholar]
  67. ABDEL-RAHEEM I.T Nti-ulcerogenic effect of genistein against indomethacin-induced gastric ulcer in rats. Asian J. Pharm. Clin. Res. 2016 58 63
    [Google Scholar]
  68. Serafim C. Araruna M.E. Júnior E.A. Diniz M. Hiruma-Lima C. Batista L. A review of the role of flavonoids in peptic ulcer (2010–2020). Molecules 2020 25 22 5431 10.3390/molecules25225431 33233494
    [Google Scholar]
  69. Kuzu N. Metin K. Dagli A.F. Akdemir F. Orhan C. Yalniz M. Ozercan I.H. Sahin K. Bahcecioglu I.H. Protective role of genistein in acute liver damage induced by carbon tetrachloride. Mediators Inflamm. 2007 2007 1 6 10.1155/2007/36381 17597837
    [Google Scholar]
  70. Xu Y. Zhang D. Yang H. Liu Y. Zhang L. Zhang C. Chen G. Hu Y. Chen J. Zhang H. Mu Y. Liu P. Liu W. Hepatoprotective effect of genistein against dimethylnitrosamine-induced liver fibrosis in rats by regulating macrophage functional properties and inhibiting the JAK2/STAT3/SOCS3 signaling pathway. Frontiers in Bioscience-Landmark 2021 26 12 1572 1584 10.52586/5050 34994171
    [Google Scholar]
  71. Alipour M.R. Karimi-Sales E. Molecular mechanisms of protective roles of isoflavones against chemicals-induced liver injuries. Chem. Biol. Interact. 2020 329 109213 10.1016/j.cbi.2020.109213 32739323
    [Google Scholar]
  72. Fragoso L.R. Ayala E.A. García V.G.F. Esparza R.J. Genistein produces hepatoprotection through modulating EGFR expression and phosphorylation in experimental fibrosis. J. Liver 2016 5 2 2167 2889 10.4172/2167‑0889.1000196
    [Google Scholar]
  73. Perumal D. Adhimoolam M. Ivan E. Rajamohammed M. Effects of soy isoflavone genistein on lipid profile and hepatic steatosis in high-fat-fed Wistar rats. Natl. J. Physiol. Pharm. Pharmacol. 2019 9 9 856 861 10.5455/njppp.2019.9.0621617062019
    [Google Scholar]
  74. Wei J. Bhatt S. Chang L.M. Sampson H.A. Masilamani M. Isoflavones, genistein and daidzein, regulate mucosal immune response by suppressing dendritic cell function. PLoS One 2012 7 10 e47979 10.1371/journal.pone.0047979 23110148
    [Google Scholar]
  75. Guo T.L. McCay J.A. Zhang L.X. Brown R.D. Karrow N.A. White K.L. You L. Germolec D.R. Genistein modulates immune responses and increases host resistance to B16F10 tumor in adult female B6C3F1 mice. J. Nutr. 2001 131 12 3251 3258 10.1093/jn/131.12.3251 11739876
    [Google Scholar]
  76. Kasendra M. Tovaglieri A. Sontheimer-Phelps A. Jalili-Firoozinezhad S. Bein A. Chalkiadaki A. Scholl W. Zhang C. Rickner H. Richmond C.A. Li H. Breault D.T. Ingber D.E. Development of a primary human small intestine-on-a-Chip using biopsy-derived organoids. Sci. Rep. 2018 8 1 2871 10.1038/s41598‑018‑21201‑7 29440725
    [Google Scholar]
  77. Ghaemi A. Soleimanjahi H. Razeghi S. Gorji A. Tabaraei A. Moradi A. Alizadeh A. Vakili M.A. Genistein induces a protective immunomodulatory effect in a mouse model of cervical cancer. Iran. J. Immunol. 2012 9 2 119 127 22735799
    [Google Scholar]
  78. Guo T.L. Chi R.P. Zhang X.L. Musgrove D.L. Weis C. Germolec D.R. White K.L. Modulation of immune response following dietary genistein exposure in F0 and F1 generations of C57BL/6 mice: Evidence of thymic regulation. Food Chem. Toxicol. 2006 44 3 316 325 10.1016/j.fct.2005.08.001 16162389
    [Google Scholar]
  79. Bahmani M. Ghasemi R. Yousefi Jourdehi A. Effects of dietary isoflavone-genistein on hematological and immunological parameters in pre - Brood stock beluga, Huso huso. Iran. J. Fish. Sci. 2016 15 1 390 401
    [Google Scholar]
  80. Steer T.E. Johnson I.T. Gee J.M. Gibson G.R. Metabolism of the soyabean isoflavone glycoside genistin in vitro by human gut bacteria and the effect of prebiotics. Br. J. Nutr. 2003 90 3 635 642 10.1079/BJN2003949 13129470
    [Google Scholar]
  81. Yang Z. Kulkarni K. Zhu W. Hu M. Bioavailability and pharmacokinetics of genistein: Mechanistic studies on its ADME. Anticancer. Agents Med. Chem. 2012 12 10 1264 1280 10.2174/187152012803833107 22583407
    [Google Scholar]
  82. Amanat S. Eftekhari M.H. Fararouei M. Bagheri Lankarani K. Massoumi S.J. Genistein supplementation improves insulin resistance and inflammatory state in non-alcoholic fatty liver patients: A randomized, controlled trial. Clin. Nutr. 2018 37 4 1210 1215 10.1016/j.clnu.2017.05.028 28647291
    [Google Scholar]
  83. Alharbi T.S. Alshammari Z.S. Alanzi Z.N. Althobaiti F. Elewa M.A.F. Hashem K.S. Al-Gayyar M.M.H. Therapeutic effects of genistein in experimentally induced ulcerative colitis in rats via affecting mitochondrial biogenesis. Mol. Cell. Biochem. 2024 479 2 431 444 10.1007/s11010‑023‑04746‑8 37084167
    [Google Scholar]
  84. Mohammadi M. Salehi A.M. Azadi S.M. Khajvand-Abedini M. Nazari-Serenjeh F. Habibi P. Genistein enhances the beneficial effects of exercise on antioxidant and anti-inflammatory balance and cardiomyopathy in ovariectomized diabetic rats. Antiinflamm. Antiallergy Agents Med. Chem. 2024 10.2174/0118715230305886240916105248 39482917
    [Google Scholar]
  85. Singh N.K. Verma N. Gupta J.K. Raghav J. Anti-amnesic and neuroprotective potential of genistein against Alzheimer’s disease. Rev. Bras. Farmacogn. 2023 34 1 80 92 10.1007/s43450‑023‑00452‑0
    [Google Scholar]
  86. Shah J. Orosz T. Singh A. Laxma S.P. Gross R.E. Smith N. Vroegop S. Sudler S. Porter J.T. Colon M. Jun L. Babu J.R. Shim M. Broderick T.L. Al-Nakkash L. Influence of exercise and genistein to mitigate the deleterious effects of high-fat high-sugar diet on Alzheimer’s disease-related markers in male mice. Int. J. Mol. Sci. 2024 25 16 9019 10.3390/ijms25169019 39201705
    [Google Scholar]
  87. Pierzynowska K. Podlacha M. Gaffke L. Rintz E. Wiśniewska K. Cyske Z. Węgrzyn G. Correction of symptoms of Huntington disease by genistein through FOXO3-mediated autophagy stimulation. Autophagy 2024 20 5 1159 1182 10.1080/15548627.2023.2286116 37992314
    [Google Scholar]
  88. Guillén-Castrillo M. Fierro R. Damián-Matsumura P. Gaona-Domínguez S. Tarragó-Castellanos R. Neonatal co-administration of the phytoestrogens genistein and daidzein disrupts sexual behavior and fertility. Physiol. Behav. 2025 293 114812 10.1016/j.physbeh.2025.114812 39884525
    [Google Scholar]
  89. Arcoraci V. Atteritano M. Squadrito F. D’Anna R. Marini H. Santoro D. Minutoli L. Messina S. Altavilla D. Bitto A. Antiosteoporotic activity of genistein aglycone in postmenopausal women: Evidence from a post-hoc analysis of a multicenter randomized controlled trial. Nutrients 2017 9 2 179 10.3390/nu9020179 28241420
    [Google Scholar]
  90. Genistein Improves B.M.D. Genistein improves BMD in osteopenic postmenopausal women. Nat. Clin. Pract. Endocrinol. Metab. 2007 3 10 677 677 10.1038/ncpendmet0612
    [Google Scholar]
  91. Bilir B. Sharma N.V. Lee J. Hammarstrom B. Svindland A. Kucuk O. Moreno C.S. Effects of genistein supplementation on genome-wide DNA methylation and gene expression in patients with localized prostate cancer. Int. J. Oncol. 2017 51 1 223 234 10.3892/ijo.2017.4017 28560383
    [Google Scholar]
  92. De Gregorio C. Marini H. Alibrandi A. Di Benedetto A. Bitto A. Adamo E. Altavilla D. Irace C. Di Vieste G. Pancaldo D. Granese R. Atteritano M. Corrao S. Licata G. Squadrito F. Arcoraci V. Genistein supplementation and cardiac function in postmenopausal women with metabolic syndrome: Results from a pilot strain-echo study. Nutrients 2017 9 6 584 10.3390/nu9060584 28590452
    [Google Scholar]
  93. Jochum F. Alteheld B. Meinardus P. Dahlinger N. Nomayo A. Stehle P. Mothers’ consumption of soy drink but not black tea increases the flavonoid content of term breast milk: A pilot randomized, controlled intervention study. Ann. Nutr. Metab. 2017 70 2 147 153 10.1159/000471857 28391283
    [Google Scholar]
  94. Li Y. Zhang H. Soybean isoflavones ameliorate ischemic cardiomyopathy by activating Nrf2-mediated antioxidant responses. Food Funct. 2017 8 8 2935 2944 10.1039/C7FO00342K 28745354
    [Google Scholar]
  95. Lu L.J.W. Chen N.W. Nayeem F. Ramanujam V.M.S. Kuo Y.F. Brunder D.G. Nagamani M. Anderson K.E. Novel effects of phytoestrogenic soy isoflavones on serum calcium and chloride in premenopausal women: A 2-year double-blind, randomized, placebo-controlled study. Clin. Nutr. 2018 37 6 1862 1870 10.1016/j.clnu.2017.11.002 29183775
    [Google Scholar]
  96. Nayeem F. Chen N.W. Nagamani M. Anderson K.E. Lu L.J.W. Daidzein and genistein have differential effects in decreasing whole body bone mineral density but had no effect on hip and spine density in premenopausal women: A 2-year randomized, double-blind, placebo-controlled study. Nutr. Res. 2019 68 70 81 10.1016/j.nutres.2019.06.007 31421395
    [Google Scholar]
  97. Orsatti F.L. Maestá N. de Oliveira E.P. Nahas Neto J. Burini R.C. Nunes P.R.P. Souza A.P. Martins F.M. Nahas E.P. Adding soy protein to milk enhances the effect of resistance training on muscle strength in postmenopausal women. J. Diet. Suppl. 2018 15 2 140 152 10.1080/19390211.2017.1330794 28604135
    [Google Scholar]
  98. Pérez-Alonso M. Briongos L-S. Ruiz-Mambrilla M. Velasco E.A. Linares L. Cuellar L. Olmos J-M. De Luis D. Dueñas-Laita A. Pérez-Castrillón J-L. The effect of genistein supplementation on vitamin D levels and bone turnover markers during the summer in healthy postmenopausal women: Role of genotypes of isoflavone metabolism. J. Nutrigenet. Nutrigenomics 2017 10 5-6 139 145 29151102
    [Google Scholar]
  99. Pintova S. Dharmupari S. Moshier E. Zubizarreta N. Ang C. Holcombe R.F. Genistein combined with FOLFOX or FOLFOX–Bevacizumab for the treatment of metastatic colorectal cancer: phase I/II pilot study. Cancer Chemother. Pharmacol. 2019 84 3 591 598 10.1007/s00280‑019‑03886‑3 31203390
    [Google Scholar]
  100. Silva L.A. Ferraz Carbonel A.A. de Moraes A.R.B. Simões R.S. Sasso G.R.S. Goes L. Nunes W. Simões M.J. Patriarca M.T. Collagen concentration on the facial skin of postmenopausal women after topical treatment with estradiol and genistein: A randomized double-blind controlled trial. Gynecol. Endocrinol. 2017 33 11 845 848 10.1080/09513590.2017.1320708 28508697
    [Google Scholar]
  101. Zhang H. Gordon R. Li W. Yang X. Pattanayak A. Fowler G. Zhang L. Catalona W.J. Ding Y. Xu L. Huang X. Jovanovic B. Kelly D.L. Jiang H. Bergan R. Genistein treatment duration effects biomarkers of cell motility in human prostate. PLoS One 2019 14 3 e0214078 10.1371/journal.pone.0214078 30917169
    [Google Scholar]
  102. Coutinho A.J. Pinheiro M. Neves A.R. Pinto M.M.M. Therapeutic potential of genistein: Preclinical studies, clinical evidence, and nanotechnology application. Curr. Med. Chem. 2023 30 22 2480 2517 10.2174/0929867329666221004124800 36200214
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266377646250527075042
Loading
/content/journals/ctmc/10.2174/0115680266377646250527075042
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test