Skip to content
2000
image of Recent Synthetic Advancement and Medicinal Applications of Asymmetric Cyclic Pyrazoline-based Hydrazine Derivatives: A Review

Abstract

Chemistry research focuses on reducing energy and minimizing harmful byproducts. Pyrazoline and its derivatives have various pharmacological properties. This study aims to compile procedures for creating pyrazoline scaffolds from academic articles and online resources, such as Scopus, Google Scholar, Web of Science, Science Direct, Research Gate and libraries, aiming to minimize environmental and human health impacts. The primary objective is to determine the structural modifications and chemical groups that enhance their bioactivity, low toxicity, and handling. Furthermore, the review explores the bioavailability, synthetic challenges, and progress made in utilising pyrazoline derivatives in pharmaceutical and synthetic organic chemistry. The only goal is to provide insight into the creation of pyrazoline hybrid molecules that are very effective and less hazardous.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266374814250422053723
2025-04-30
2025-10-11
Loading full text...

Full text loading...

References

  1. Malla R.R. Siragam S. Dadi V. Seetini B. Natural chalcones and their derivatives target the tumor microenvironment in colon cancer. Crit. Rev. Immunol. 2022 42 6 27 39 10.1615/CritRevImmunol.2023047427 37082949
    [Google Scholar]
  2. Hu Z.J. Yang J.X. Tian Y.P. Zhou H.P. Tao X.T. Xu G.B. Yu W.T. Yu X.Q. Jiang M.H. Synthesis and optical properties of two 2,2′: 6′,2″-Terpyridyl-based two-photon initiators. J. Mol. Struct. 2007 839 1-3 50 57 10.1016/j.molstruc.2006.10.044
    [Google Scholar]
  3. Kaur P. Berar U. Raghav N. Pyrazole and pyrazoline derivatives as anti-inflammatory agents. Heterocyclic Anti-Inflammatory Agents: A Guide for Medicinal Chemists Bentham Science 2024 117 143
    [Google Scholar]
  4. Bellina F. Rossi R. Rossi R. Synthesis and biological activity of pyrrole, pyrroline and pyrrolidine derivatives with two aryl groups on adjacent positions. Tetrahedron 2006 62 31 7213 7256 10.1016/j.tet.2006.05.024
    [Google Scholar]
  5. Park S. Kwon O.H. Kim S. Park S. Choi M.G. Cha M. Park S.Y. Jang D.J. Imidazole-based excited-state intramolecular proton-transfer materials: synthesis and amplified spontaneous emission from a large single crystal. J. Am. Chem. Soc. 2005 127 28 10070 10074 10.1021/ja0508727 16011371
    [Google Scholar]
  6. Eller G.A. Holzer W. The 4-methoxybenzyl (PMB) function as a versatile protecting group in the synthesis of N-unsubstituted pyrazolones. Heterocycles 2004 63 2537 2555 10.3987/COM‑04‑10190
    [Google Scholar]
  7. Akama Y. Tong A. Spectroscopic studies of the keto and enol tautomers of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone. Microchem. J. 1996 53 1 34 41 10.1006/mchj.1996.0006
    [Google Scholar]
  8. Shi H.B. Ji S.J. Bian B. Studies on transition metal ions recognition properties of 1-(2-benzothiazole)-3-(2-thiophene)-2-pyrazoline derivatives. Dyes Pigments 2007 73 3 394 396 10.1016/j.dyepig.2005.12.011
    [Google Scholar]
  9. Bai G. Li J. Li D. Dong C. Han X. Lin P. Synthesis and spectrum characteristic of four new organic fluorescent dyes of pyrazoline compounds. Dyes Pigments 2007 75 1 93 98 10.1016/j.dyepig.2006.04.017
    [Google Scholar]
  10. Wei X.Q. Yang G. Cheng J.B. Lu Z.Y. Xie M.G. Synthesis of novel light-emitting calix[4]arene derivatives and their luminescent properties. Opt. Mater. 2007 29 8 936 940 10.1016/j.optmat.2006.02.005
    [Google Scholar]
  11. Li J.F. Guan B. Li D.X. Dong C. Study on the fluorescence properties of a new intramolecular charge transfer compound 1,5-diphenyl-3-(N-ethylcarbazole-3-yl)-2-pyrazoline. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007 68 2 404 408 10.1016/j.saa.2006.12.010 17379571
    [Google Scholar]
  12. Lu Z. Jiang Q. Zhu W. Xie M. Hou Y. Chen X. Wang Z. Novel pyrazoline derivative used as light emitter in blue organic electroluminescent devices. Synth. Met. 2000 111-112 465 468 10.1016/S0379‑6779(99)00401‑4
    [Google Scholar]
  13. Knorr L. Note on the pyrazoline reaction. Ber. Dtsch. Chem. Ges. 1893 26 1 100 103 10.1002/cber.18930260123
    [Google Scholar]
  14. Raiford L.C. Peterson W.J. Identification of phenylhydrazones and isomeric pyrazolines obtained from chalcones. J. Org. Chem. 1937 1 6 544 551 10.1021/jo01235a003
    [Google Scholar]
  15. Aziz G. Nosseir M.H. Doss N.L. Rizk A.S. Synthesis of pyrazolines and corresponding isomers from fluoro-substituted chalcones. Indian J. Chem. 1976 14B 286 291
    [Google Scholar]
  16. Kabli R.A. Khalaf A.A. Zimaity M.T. Khalil A.M. Kaddah A.M. Al-Rifaie H.A. Synthesis of a new series of furyl and thienyl substituted pyrazolines starting with furyl and thienyl chalcones. J. Indian Chem. Soc. 1991 68 1 47 51
    [Google Scholar]
  17. Jacobs T.L. Elderfield R.C. Heterocyclic Compounds: Five-membered heterocycles containing two hetero atoms and their benzo derivatives. Wiley New York 1957 5 72
    [Google Scholar]
  18. Dhar D.N. Synthesis of hydroxy- and methoxychalcones and their derivatives. J. Indian Chem. Soc. 1961 38 823 824
    [Google Scholar]
  19. Baker W. Butt V.S. Properties and orientation of some derivatives of 3-acylchromones. J. Chem. Soc. 1948 2129 2142
    [Google Scholar]
  20. Gheorghiu C.V. Matei V. Phototropy of ethylenic ketone semicarbazones and phenylhydrazones. Bull. Soc. Chim. Fr. 1939 5 6 1324 1334
    [Google Scholar]
  21. Aubagnac J.L. Elguero J. Jacquir R. Structural characterization of paramagnetic octahedral homoscorpionate (polypyrazolylborate) cobalt complexes by 1H and 13C NMR spectroscopy and by FAB-mass spectrometry. Bull. Soc. Chim. Fr. 1969 9 3292
    [Google Scholar]
  22. Katritzky A.R. Wang M. Zhang S. Voronkov M.V. Steel P.J. Regioselective synthesis of polysubstituted pyrazoles and isoxazoles. J. Org. Chem. 2001 66 20 6787 6791 10.1021/jo0101407 11578235
    [Google Scholar]
  23. Borkhade K.T. Marathev M.G. Syntheses of pyrazoles and pyrazolines. Indian J. Chem. 1972 10 1 48 50
    [Google Scholar]
  24. Sammour A.E.A. Behaviour of O- hydroxychalcones towards the action of phenylhydrazine, hydroxylamine, primary aliphatic amines and paraformaldehyde. Tetrahedron 1964 20 4 1067 1071 10.1016/S0040‑4020(01)98444‑3
    [Google Scholar]
  25. Subbanwad G.R. Vibhute Y.B. Studies on synthesis and antimicrobial activity of some new pyrazolines and N-phenylpyrazolines. J. Indian Chem. Soc. 1992 69 11 781 783
    [Google Scholar]
  26. Dawane B.S. Ph.D. Thesis Submitted to S. R.T. M. University, Nanded, India 1998
    [Google Scholar]
  27. Paul S. Gupta R. Microwave assisted synthesis of 2-pyrazolines. Indian J. Chem. 1998 37B 1279 1282
    [Google Scholar]
  28. Raunak Kumar V. Mukherjee S. Poonam Prasad A.K. Olsen C.E. Schäffer S.J.C. Sharma S.K. Watterson A.C. Errington W. Parmar V.S. Microwave mediated synthesis of spiro-(indoline-isoxazolidines): mechanistic study and biological activity evaluation. Tetrahedron 2005 61 23 5687 5697 10.1016/j.tet.2005.03.027
    [Google Scholar]
  29. Raghuwanshi P.B. Doshi A.G. New pyrazolines from -2′-hydroxy -3′-nitro-5′-metyl-3-nitrochalcones. J. Indian Chem. Soc. 1997 74 421
    [Google Scholar]
  30. Shah M. Patel P. Synthesis of hydroxypyrazoline derivatives. Indian J. Chem. 1996 35B 1282 1286
    [Google Scholar]
  31. Morsi A.M.A. Gamal A.G.K. Kinetics and mechanism of ligand-exchange reactions in fac-(piperidine)[1,2-bis(diphenylphosphino)ethane]tricarbonyltungsten(0). J. Indian Chem. Soc. 1995 72 1 5 11
    [Google Scholar]
  32. Fernandes Y.J. Parekh H. Studies on pyrazolines. Part II. Preparation and antimicrobial activity of 3-(3-phenylsulfonamidophenyl)-5-arylpyrazolines. J. Indian Chem. Soc. 1997 74 3 238
    [Google Scholar]
  33. Sorathia S.D. Patel V.B. Parikh A.R. Preparation and antimicrobial activity of 3-(p-(2′, 5′-dibromobenzenesulphonamido)-phenyl)~5-aryl-l HI acetyl/phenyl2-pyrazolines. Indian J. Chem. 1997 36B 630 632
    [Google Scholar]
  34. Holla B.S. Shivananda M.K. Akberali P.M. A convenient synthesis of some fluorine-containing (arylfuryl)-N-phenylpyrazolines and their antibacterial activity. Ind. J. Het. Chem 2001 10 4 305 306
    [Google Scholar]
  35. Deshmukh M.S. Rajput P.R. Chincholkar M.M. Synthesis and in vitro selective anti-Helicobacter pylori activity of pyrazoline derivatives. Asian J. Chem. 1997 9 4 848
    [Google Scholar]
  36. Palaska E. Erol D. Demirdamar R. Synthesis and antidepressant activities of some 1,3,5-triphenyl-2-pyrazolines. Eur. J. Med. Chem. 1996 31 1 43 47 10.1016/S0223‑5234(96)80005‑5
    [Google Scholar]
  37. a Ankhiwala M.D. Hathi M.V. Synthesis and antibacterial activity of some 1-phenyl-3,5-diaryl-2-pyrazolines and 3,5-diaryl-2-isoxazolines. J. Indian Chem. Soc. 1994 71 9 587 587
    [Google Scholar]
  38. b Ankhiwala M.D. Naik H.B. Preparation and antibacterial activity of 1-phenyl-3-(2”-hydroxy-3”-bromo-4”-n-butoxy-5”-nitrophen-1”-yl)-5-substituted-phenyl-2-pyrazolines and 3-(2”-hydroxy-3”-bromo-4”-n-butoxy-5”-nitrophen-l”-yl)-5-substituted-phenyl-2-isoxazolines. J. Indian Chem. Soc. 1990 67 3 258 260
    [Google Scholar]
  39. Bharmal F.M. Kaneriya D.J. Parekh H.H. Synthesis of some pyrazoline derivatives as biologically active agents. Ind. J. Het. Chem 2000 10 189 192
    [Google Scholar]
  40. Sayed G.H. Synthesis of some new pyrazolines from 4-nitro- and 4-chloro-4′-methoxybenzalacetophenones. Part III. Indian J. Chem. 1980 19B 5 364 367
    [Google Scholar]
  41. Khalaf A.A. Kabli R.A. Zimaity M.T. Khalil A.M. Kaddah A.M. Al-Rifaie H.A. N-Derivatisation of some 3-(2-furyl)- and 3-(2-thienyl)-5-aryl-2-pyrazolines. Indian J. Chem. 1993 32B 1125 1129
    [Google Scholar]
  42. Shingh N. Sangwan N.K. Dhindra K.D. Complexes of derivatives of 4, 5‐Dihydro‐1H‐pyrazole as potential pesticides. J. Indian Chem. Soc. 2001 78 119 122
    [Google Scholar]
  43. Shenoy G.G. Bhat A.R. Bhat G.V. Kotian M Synthesis and antimicrobial activities of 1, 3, 5 trisubstituted 2-pyrazolines. Ind. J. Het. Chem 2001 10 3 197
    [Google Scholar]
  44. Levai A. Cziaky Z. Jeko J. Szebo Z. Synthesis of 3-acyl-4-aryl-2-pyrazolines by the reaction of α,β-unsaturated ketones with diazomethane. Indian J. Chem. 1996 35 10 1091 1096
    [Google Scholar]
  45. Sayed G.H. Kjosen H. Chemistry of pyrazolines. Part V. Syntheses and mass spectrometric fragmentations of some 4-aryl-5-aroyl-2-pyrazolines. Indian J. Chem. 1980 19B 11 980 983
    [Google Scholar]
  46. Chouiter M.I. Boulebd H. Pereira D.M. Valentão P. Andrade P.B. Belfaitah A. Silva A.M.S. New chalcone-type compounds and 2-pyrazoline derivatives: Synthesis and caspase-dependent anticancer activity. Future Med. Chem. 2020 12 6 493 509 10.4155/fmc‑2019‑0342 32100558
    [Google Scholar]
  47. Bhatt A.H. Parekh H.H. Parikh K.A. Parikh A.R. Synthesis of pyrazolines and cyanopyridines as potential antimicrobial agents. Indian J. Chem. 2001 40B 57 61
    [Google Scholar]
  48. Raga B. Bodke Y. Sangapure S.S. Synthesis of some 1H-pyrazolines bearing benzofuran as biologically active agents. Ind. J. Het. Chem 2001 11 1 31 34
    [Google Scholar]
  49. Archana Microwave assisted synthesis of some novel substituted 2-furyl pyrazoline derivatives. Indian J. Chem. 2002 41B 2371 2375
    [Google Scholar]
  50. Kanjariya H.M. Radhakri Shanan T.V. Ramchandran K.R. Parekh H. Studies on biological evaluation of cyanopyrans and pyrazolines using microwave assisted synthesis. Indian J. Chem. 2004 43B 1469 1573
    [Google Scholar]
  51. Pawar S.B. Dalvi N.R. Karale B.K. Gill C.H. Synthesis of some 4-(2-hydroxy phenyl)-6-(1, 3-diphenyl-1H-pyrazol-4-yl) pyrimidine-2 (1H)-thiones and 2 (5-(1, 3-diphenyl-1H-pyrazol-4-yl)-1H-pyrazol-3-yl) phenols I nd. J. Het. Chem 2005 15 2 197 198
    [Google Scholar]
  52. Lokhande P.D. Wagmare B.Y. Sakate S.S. Regioselective one-pot synthesis of 3,5-diarylpyrazoles. Indian J. Chem. 2005 44 11 2338 2342
    [Google Scholar]
  53. Shaharyar M. Siddiqui A.A. Ali M.A. Sriram D. Yogeeswari P. Synthesis and in vitro antimycobacterial activity of N1-nicotinoyl-3-(4′-hydroxy-3′-methyl phenyl)-5-[(sub)phenyl]-2-pyrazolines. Bioorg. Med. Chem. Lett. 2006 16 15 3947 3949 10.1016/j.bmcl.2006.05.024 16725324
    [Google Scholar]
  54. Kolos N.N. Paponov B.V. Orlov V.D. Lvovskaya M.I. Doroshenko A.O. Shishkin O.V. Derivatives of Δ2-pyrazoline-products of 1,5-diaminotetrazole interaction with chalcone: Molecular structure and spectral properties. J. Mol. Struct. 2006 785 1-3 114 122 10.1016/j.molstruc.2005.10.004
    [Google Scholar]
  55. Budakoti A. Abid M. Azam A. Synthesis and antiamoebic activity of new 1-N-substituted thiocarbamoyl-3,5-diphenyl-2-pyrazoline derivatives and their Pd(II) complexes. Eur. J. Med. Chem. 2006 41 1 63 70 10.1016/j.ejmech.2005.06.013 16300860
    [Google Scholar]
  56. Kudar V. Zsoldos-Mády V. Simon K. Csámpai A. Sohár P. Synthesis, IR-, NMR- and X-ray investigations on some novel N-hetaryl-dihydro-pyrazolyl ferrocenes. Study on ferrocenes, part 16. J. Organomet. Chem. 2005 690 17 4018 4026 10.1016/j.jorganchem.2005.05.045
    [Google Scholar]
  57. Raut D.G. Patil S.B. Kadu V.D. Hublikar M.G. Bhosale R.B. Synthesis of asymmetric 1-thiocarbamoyl pyrazoles as potent anti colon cancer, antioxidant and anti-inflammatory agent. Anticancer. Agents Med. Chem. 2019 18 15 2117 2123 10.2174/1871520618666181112122528 30417799
    [Google Scholar]
  58. Raut D.G. Lawand A.S. Kadu V.D. Hublikar M.G. Patil S.B. Bhosale D.G. Bhosale R.B. Synthesis of asymmetric thiazolyl pyrazolines as a potential antioxidant and anti-inflammatory agents. Polycycl. Aromat. Compd. 2022 42 1 70 79 10.1080/10406638.2020.1716028
    [Google Scholar]
  59. Rangarajan T.M. Mathew B. Recent updates an pyrazoline derivatives as promising candidates for neuropsychiatric and neurodegenerative disorder. Curr. Top. Med. Chem. 2021 21 30 2695 2714 10.2174/1568026621999210902123132 34477522
    [Google Scholar]
  60. Jain E.M. Bhatnagar S. Muddagoni J. Srivastava R. Panda K.C. Kulshrestha S. Gupta S.P. Singh G. Green synthesis of pyrazolines with potential antioxidant properties. Afr. J. Bio. Sc. 2024 6 14 9517 9532
    [Google Scholar]
  61. Aqlan F.M. Synthesis characterization and in vitro antibacterial activity of the N -substituted bis-pyrazoline derivative as polycyclic aromatic compounds. Polycycl. Aromat. Compd. 2022 42 6 3412 3421 10.1080/10406638.2020.1866040
    [Google Scholar]
  62. Zhang Y.L. Qin Y.J. Tang D.J. Yang M.R. Li B.Y. Wang Y.T. Cai H.Y. Wang B.Z. Zhu H.L. Synthesis and biological evaluation of 1-methyl-1Hindole–Pyrazoline hybrids as potential tubulin polymerization inhibitors. ChemMedChem 2016 11 13 1446 1458 10.1002/cmdc.201600137 27159418
    [Google Scholar]
  63. Jain S. Pattnaik S. Pathak K. Kumar S. Pathak D. Jain S. Vaidya A. Anticancer potential of thiazole derivatives: A retrospective review. Mini Rev. Med. Chem. 2018 18 8 640 655 10.2174/1389557517666171123211321 29173166
    [Google Scholar]
  64. Havrylyuk D. Roman O. Lesyk R. Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline–thiazolidine-based hybrids. Eur. J. Med. Chem. 2016 113 145 166 10.1016/j.ejmech.2016.02.030 26922234
    [Google Scholar]
  65. Sever B. Altıntop M.D. Gencer H.K. Kapkac H.A. Atli O. Baysal M. Ozdemir A. Synthesis of new thiazolyl-pyrazoline derivatives and evaluation of their antimicrobial, cytotoxic and genotoxic effects. Lett. Drug Des. Discov. 2018 15 7 744 756 10.2174/1570180814666170925152902
    [Google Scholar]
  66. Sever B. Altıntop M.D. Radwan M.O. Özdemir A. Otsuka M. Fujita M. Ciftci H.I. Design, synthesis and biological evaluation of a new series of thiazolyl-pyrazolines as dual EGFR and HER2 inhibitors. Eur. J. Med. Chem. 2019 182 111648 10.1016/j.ejmech.2019.111648 31493743
    [Google Scholar]
  67. Gomha S.M. Abdelaziz M.R. Kheder N.A. Abdel-aziz H.M. Alterary S. Mabkhot Y.N. A facile access and evaluation of some novel thiazole and 1,3,4-thiadiazole derivatives incorporating thiazole moiety as potent anticancer agents. Chem. Cent. J. 2017 11 1 105 10.1186/s13065‑017‑0335‑8 29086869
    [Google Scholar]
  68. Mansour E. Aboelnaga A. Nassar E.M. Elewa S.I. A new series of thiazolyl pyrazoline derivatives linked to benzo[1,3]dioxole moiety: Synthesis and evaluation of antimicrobial and anti-proliferative activities. Synth. Commun. 2020 50 3 368 379 10.1080/00397911.2019.1695839
    [Google Scholar]
  69. Linden M. Hofmann S. Herman A. Ehler N. Bär R.M. Waldvogel S.R. Electrochemical synthesis of pyrazolines and pyrazoles via [3+2] dipolar cycloaddition. Angew. Chem. Int. Ed. 2023 62 9 e202214820 10.1002/anie.202214820 36478106
    [Google Scholar]
  70. Ozmen Ozgun D. Gul H.I. Yamali C. Sakagami H. Gulcin I. Sukuroglu M. Supuran C.T. Synthesis and bioactivities of pyrazoline benzensulfonamides as carbonic anhydrase and acetylcholinesterase inhibitors with low cytotoxicity. Bioorg. Chem. 2019 84 511 517 10.1016/j.bioorg.2018.12.028 30605787
    [Google Scholar]
  71. Farooq S. Ngaini Z. One-pot and two-pot synthesis of chalcone-based mono and bis-pyrazolines. Tetrahedron Lett. 2020 61 4 151416 10.1016/j.tetlet.2019.151416
    [Google Scholar]
  72. Peerzade N.A. Jadhav S.Y. Bhosale R.B. Masand V.H. Gawali R.G. Al-Hussain S.A. Al-Mutairi A.A. Zaki M.E.A. Pyrazole-based N-phenyl pyrazolines: Synthesis, docking, and pharmacological evaluation. Results Chem. 2024 11 101793 10.1016/j.rechem.2024.101793
    [Google Scholar]
  73. Yamali C. Gul H.I. Kazaz C. Levent S. Gulcin I. Synthesis, structure elucidation, and in vitro pharmacological evaluation of novel polyfluoro substituted pyrazoline type sulfonamides as multi-target agents for inhibition of acetylcholinesterase and carbonic anhydrase I and II enzymes. Bioorg. Chem. 2020 96 103627 10.1016/j.bioorg.2020.103627 32058104
    [Google Scholar]
  74. James J.P. Bhat K.I. More U.A. Joshi S.D. Design, synthesis, molecular modeling, and ADMET studies of some pyrazoline derivatives as shikimate kinase inhibitors. Med. Chem. Res. 2018 27 2 546 559 10.1007/s00044‑017‑2081‑9
    [Google Scholar]
  75. Ravindar L. Hasbullah S.A. Rakesh K.P. Hassan N.I. Pyrazole and pyrazoline derivatives as antimalarial agents: A key review. Eur. J. Pharm. Sci. 2023 183 106365 10.1016/j.ejps.2022.106365 36563914
    [Google Scholar]
  76. Lv P.C. Li D.D. Li Q.S. Lu X. Xiao Z.P. Zhu H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives as EGFR TK inhibitors and potential anticancer agents. Bioorg. Med. Chem. Lett. 2011 21 18 5374 5377 10.1016/j.bmcl.2011.07.010 21802290
    [Google Scholar]
  77. Kaplancikli Z.A. Yurttaş L. Turan-Zitouni G. Özdemir A. Özic R. Ulusoylar-Yıldırım Ş. Synthesis, antimicrobial activity and cytotoxicity of some new carbazole derivatives. J. Enzyme Inhib. Med. Chem. 2012 27 6 868 874 10.3109/14756366.2011.622273 21999633
    [Google Scholar]
  78. Wang H.H. Qiu K.M. Cui H.E. Yang Y.S. Yin-Luo Xing M. Qiu X.Y. Bai L.F. Zhu H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives containing benzodioxole as potential anticancer agents. Bioorg. Med. Chem. 2013 21 2 448 455 10.1016/j.bmc.2012.11.020 23245802
    [Google Scholar]
  79. a Qiu K.M. Wang H.H. Wang L.M. Luo Y. Yang X.H. Wang X.M. Zhu H.L. Design, synthesis and biological evaluation of pyrazolyl-thiazolinone derivatives as potential EGFR and HER-2 kinase inhibitors. Bioorg. Med. Chem. 2012 20 6 2010 2018 10.1016/j.bmc.2012.01.051 22361272
    [Google Scholar]
  80. b Awadallah F.M. Piazza G.A. Gary B.D. Keeton A.B. Canzoneri J.C. Synthesis of some dihydropyrimidine-based compounds bearing pyrazoline moiety and evaluation of their antiproliferative activity. Eur. J. Med. Chem. 2013 70 273 279 10.1016/j.ejmech.2013.10.003 24161704
    [Google Scholar]
  81. El-Sayed M.A.A. Abdel-Aziz N.I. Abdel-Aziz A.A.M. El-Azab A.S. ElTahir K.E.H. Synthesis, biological evaluation and molecular modeling study of pyrazole and pyrazoline derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Part 2. Bioorg. Med. Chem. 2012 20 10 3306 3316 10.1016/j.bmc.2012.03.044 22516672
    [Google Scholar]
  82. He J. Ma L. Wei Z. Zhu J. Peng F. Shao M. Lei L. He L. Tang M. He L. Wu Y. Chen L. Synthesis and biological evaluation of novel pyrazoline derivatives as potent anti-inflammatory agents. Bioorg. Med. Chem. Lett. 2015 25 11 2429 2433 10.1016/j.bmcl.2015.03.087 25881822
    [Google Scholar]
  83. Kumar P. Chandak N. Kaushik P. Sharma C. Kaushik D. Aneja K.R. Sharma P.K. Benzenesulfonamide bearing pyrazolylpyrazolines: Synthesis and evaluation as anti-inflammatory–antimicrobial agents. Med. Chem. Res. 2014 23 2 882 895 10.1007/s00044‑013‑0679‑0
    [Google Scholar]
  84. Bandgar B.P. Adsul L.K. Chavan H.V. Jalde S.S. Shringare S.N. Shaikh R. Meshram R.J. Gacche R.N. Masand V. Synthesis, biological evaluation, and docking studies of 3-(substituted)-aryl-5-(9-methyl-3-carbazole)-1H-2-pyrazolines as potent anti-inflammatory and antioxidant agents. Bioorg. Med. Chem. Lett. 2012 22 18 5839 5844 10.1016/j.bmcl.2012.07.080 22901385
    [Google Scholar]
  85. Patel M.V. Bell R. Majest S. Henry R. Kolasa T. Synthesis of 4,5-diaryl-1H-pyrazole-3-ol derivatives as potential COX-2 inhibitors. J. Org. Chem. 2004 69 21 7058 7065 10.1021/jo049264k 15471453
    [Google Scholar]
  86. Sharma P.K. Kumar S. Kumar P. Kaushik P. Kaushik D. Dhingra Y. Aneja K.R. Synthesis and biological evaluation of some pyrazolylpyrazolines as anti-inflammatory–antimicrobial agents. Eur. J. Med. Chem. 2010 45 6 2650 2655 10.1016/j.ejmech.2010.01.059 20171763
    [Google Scholar]
  87. Amir M. Kumar H. Khan S.A. Synthesis and pharmacological evaluation of pyrazoline derivatives as new anti-inflammatory and analgesic agents. Bioorg. Med. Chem. Lett. 2008 18 3 918 922 10.1016/j.bmcl.2007.12.043 18182288
    [Google Scholar]
  88. a Barsoum F.F. Hosni H.M. Girgis A.S. Novel bis(1-acyl-2-pyrazolines) of potential anti-inflammatory and molluscicidal properties. Bioorg. Med. Chem. 2006 14 11 3929 3937 10.1016/j.bmc.2006.01.042 16460945
    [Google Scholar]
  89. b Ghorab M.M. Ismail Z.H. Abdel-Gawad S.M. Aziem A.A. Antimicrobial activity of amino acid, imidazole, and sulfonamide derivatives of pyrazolo[3,4‐ d ]pyrimidine. Heteroatom Chem. 2004 15 1 57 62 10.1002/hc.10212
    [Google Scholar]
  90. Bekhit A.A. Abdel-Aziem T. Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents. Bioorg. Med. Chem. 2004 12 8 1935 1945 10.1016/j.bmc.2004.01.037 15051061
    [Google Scholar]
  91. Acharya B.N. Saraswat D. Tiwari M. Shrivastava A.K. Ghorpade R. Bapna S. Kaushik M.P. Synthesis and antimalarial evaluation of 1, 3, 5-trisubstituted pyrazolines. Eur. J. Med. Chem. 2010 45 2 430 438 10.1016/j.ejmech.2009.10.023 19926176
    [Google Scholar]
  92. Jeong T.S. Kim K.S. Kim J.R. Cho K.H. Lee S. Lee W.S. Novel 3,5-diaryl pyrazolines as human acyl-CoA:cholesterol acyltransferase inhibitors. Bioorg. Med. Chem. Lett. 2004 14 11 2719 2723 10.1016/j.bmcl.2004.03.072 15125921
    [Google Scholar]
  93. Karthikeyan M.S. Holla B.S. Kumari N.S. Synthesis and antimicrobial studies on novel chloro-fluorine containing hydroxy pyrazolines. Eur. J. Med. Chem. 2007 42 1 30 36 10.1016/j.ejmech.2006.07.011 17007964
    [Google Scholar]
  94. Shelke S.N. Mhaske G.R. Bonifácio V.D.B. Gawande M.B. Green synthesis and anti-infective activities of fluorinated pyrazoline derivatives. Bioorg. Med. Chem. Lett. 2012 22 17 5727 5730 10.1016/j.bmcl.2012.06.072 22832312
    [Google Scholar]
  95. Niyami Syed A. Kumar Prasad S.A. Marihal S.C. Gurumurty M. Heteroaryl cyclization and biological evaluation of some synthesized 9-(5-phenyl-1H-pyrazolin-3-yl)-9H-carbazoles. J. Adv. Pharm. Res. 2012 3 2 14 19
    [Google Scholar]
  96. Desai N.C. Joshi V.V. Rajpara K.M. Vaghani H.V. Satodiya H.M. Facile synthesis of novel fluorine containing pyrazole based thiazole derivatives and evaluation of antimicrobial activity. J. Fluor. Chem. 2012 142 67 78 10.1016/j.jfluchem.2012.06.021
    [Google Scholar]
  97. Ruhoğlu O. Ozdemir Z. Caliş U. Gümüşel B. Bilgin A.A. Synthesis of and pharmacological studies on the antidepressant and anticonvulsant activities of some 1,3,5-trisubstituted pyrazolines. Arzneimittelforschung 2005 55 8 431 436 16149709
    [Google Scholar]
  98. Grosscurt A.C. Van Hes R. Wellinga K. 1-Phenylcarbamoyl-2-pyrazolines, a new class of insecticides. 3. Synthesis and insecticidal properties of 3,4-diphenyl-1-phenylcarbamoyl-2-pyrazolines. J. Agric. Food Chem. 1979 27 2 406 409 10.1021/jf60222a061
    [Google Scholar]
  99. Palaska E. Aytemir M. Uzbay I.T. Erol D. Synthesis and antidepressant activities of some 3,5-diphenyl-2-pyrazolines. Eur. J. Med. Chem. 2001 36 6 539 543 10.1016/S0223‑5234(01)01243‑0 11525844
    [Google Scholar]
  100. Rajendra Prasad Y. Lakshmana Rao A. Prasoona L. Murali K. Ravi Kumar P. Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2″-hydroxy naphthalen-1″-yl)-1,5-diphenyl-2-pyrazolines. Bioorg. Med. Chem. Lett. 2005 15 22 5030 5034 10.1016/j.bmcl.2005.08.040 16168645
    [Google Scholar]
  101. Mathew B. Suresh J. Anbazhagan S. Mathew G. Pyrazoline: A promising scaffold for the inhibition of monoamine oxidase. Cent. Nerv. Syst. Agents Med. Chem. 2014 13 3 195 206 10.2174/1871524914666140129122632 24533911
    [Google Scholar]
  102. Can Ö.D. Özkay Ü.D. Kaplancıklı Z.A. Öztürk Y. Effects of some 1,3,5-trisubstitued-2-pyrazoline derivatives on depression and anxiety parameters of mice. Arch. Pharm. Res. 2009 32 9 1293 1299 10.1007/s12272‑009‑1915‑5 19784586
    [Google Scholar]
  103. Aftab A. Asif H. Shah A. K. Mohd M. Bhandari A. Synthesis, antimicrobial and antitubercular activities of some novel pyrazoline derivatives. J. Saudi Chem. Soc. 2014 20 5 577 584
    [Google Scholar]
  104. Havrylyuk D. Zimenkovsky B. Vasylenko O. Day C.W. Smee D.F. Grellier P. Lesyk R. Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones. Eur. J. Med. Chem. 2013 66 228 237 10.1016/j.ejmech.2013.05.044 23811085
    [Google Scholar]
  105. Nair A. S. Oh J-M. Koyiparambath V. P. Kumar S. Sudevan S. T. Soremekun O. Development of halogenated pyrazolines as selective monoamine oxidase-B inhibitors: Deciphering via molecular dynamics approach. Molecules 2021 26 11 3264
    [Google Scholar]
  106. Ahsan M.J. Ali A. Ali A. Thiriveedhi A. Bakht M.A. Yusuf M. Pyrazoline containing compounds as therapeutic targets for neurodegenerative disorders. ACS Omega 2022 17 7 43 , 38207-38245
    [Google Scholar]
  107. Mukherjee A. Recent Developments in the Biological Activities of 2- Pyrazoline Derivatives. Lincoln Publication 2024 101 111 10.31674/book.2024ecc.009
    [Google Scholar]
  108. Kumar G. Tanwar O. Kumar J. Akhter M. Sharma S. Pillai C.R. Alam M.M. Zama M.S. Pyrazole-pyrazoline as promising novel antimalarial agents: A mechanistic study. Eur. J. Med. Chem. 2018 149 149 139 147 10.1016/j.ejmech.2018.01.082 29499486
    [Google Scholar]
  109. Deecher D.C. Soderlund D.M. RH 3421, an insecticidal dihydropyrazole, inhibits sodium channel-dependent sodium uptake in mouse brain preparations. Pestic. Biochem. Physiol. 1991 39 2 130 137 10.1016/0048‑3575(91)90133‑7
    [Google Scholar]
  110. Wu J. Song B.A. Hu D.Y. Yue M. Yang S. Design, synthesis and insecticidal activities of novel pyrazole amides containing hydrazone substructures. Pest Manag. Sci. 2012 68 5 801 810 10.1002/ps.2329 22190278
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266374814250422053723
Loading
/content/journals/ctmc/10.2174/0115680266374814250422053723
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test