Skip to content
2000
image of Synthesis of New Axially Coumarin Disubstituted Silicon(IV) Phthalocyanines, Investigation of their DNA-Binding Properties and Inhibitory Activities on Ache and Buche

Abstract

Introduction

In this study, we report on the synthesis and characterization of new silicon (IV) phthalocyanine compounds (SiPcs) axially substituted with coumarin-linked derivatives, designed for potential application in photodynamic therapy (PDT) due to their photophysical properties.

Methods

Characterization was carried out using FT-IR, UV-Vis, MALDI-TOF-MS, and 1H NMR spectroscopy. In dimethyl sulfoxide (DMSO), the SiPcs produced singlet oxygen with quantum yields of 0.17 to 0.19, assessed by the DPBF quenching method. DNA binding studies UV-Vis spectroscopy and molecular docking suggested high binding affinities (ΔG0 values between -9.90 to -10.4 kcal/mol) and stable interactions with calf thymus DNA (ct-DNA).

Results

The compounds showed promising inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), with IC values indicating higher potency and selectivity compared to galantamine, a known cholinesterase inhibitor.

Conclusion

The combined singlet oxygen generation, DNA binding, and enzyme inhibition data underscore the potential of these SiPc-coumarin derivatives as multifunctional agents for PDT and neuroprotective applications such as Alzheimer's disease (AD).

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266368541250311084659
2025-04-04
2025-09-13
Loading full text...

Full text loading...

References

  1. DeRosa M. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 2002 233-234 351 371 10.1016/S0010‑8545(02)00034‑6
    [Google Scholar]
  2. Berra C.M. Menck C.F.M. Martinez G.R. Oliveira C.S. Baptista M.S. Di Mascio P. Plasmid DNA damage induced by singlet molecular oxygen released from the naphthalene endoperoxide DHPNO2 and photoactivated methylene blue. Quim. Nova 2010 33 2 279 283 10.1590/S0100‑40422010000200009
    [Google Scholar]
  3. Ray R.S. Mujtaba S.F. Dwivedi A. Yadav N. Verma A. Kushwaha H.N. Amar S.K. Goel S. Chopra D. Singlet oxygen mediated DNA damage induced phototoxicity by ketoprofen resulting in mitochondrial depolarization and lysosomal destabilization. Toxicology 2013 314 2-3 229 237 10.1016/j.tox.2013.10.002 24128752
    [Google Scholar]
  4. Plaetzer K. Krammer B. Berlanda J. Berr F. Kiesslich T. Photophysics and photochemistry of photodynamic therapy: Fundamental aspects. Lasers Med. Sci. 2009 24 2 259 268 10.1007/s10103‑008‑0539‑1 18247081
    [Google Scholar]
  5. Castano A.P. Mroz P. Hamblin M.R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 2006 6 7 535 545 10.1038/nrc1894 16794636
    [Google Scholar]
  6. Dolmans D.E.J.G.J. Fukumura D. Jain R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003 3 5 380 387 10.1038/nrc1071 12724736
    [Google Scholar]
  7. Luby B.M. Walsh C.D. Zheng G. Advanced photosensitizer activation strategies for smarter photodynamic therapy beacons. Angew. Chem. Int. Ed. 2018 58 2558 2569
    [Google Scholar]
  8. Kwiatkowski S. Knap B. Przystupski D. Saczko J. Kędzierska E. Knap-Czop K. Kotlińska J. Michel O. Kotowski K. Kulbacka J. Photodynamic therapy – Mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018 106 1098 1107 10.1016/j.biopha.2018.07.049 30119176
    [Google Scholar]
  9. Sibrian-Vazquez M. Jensen T.J. Vicente M.G.H. Synthesis and cellular studies of PEG-functionalized meso-tetraphenylporphyrins. J. Photochem. Photobiol. B 2007 86 1 9 21 10.1016/j.jphotobiol.2006.08.004 16987669
    [Google Scholar]
  10. Celli J.P. Spring B.Q. Rizvi I. Evans C.L. Samkoe K.S. Verma S. Pogue B.W. Hasan T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010 110 5 2795 2838 10.1021/cr900300p 20353192
    [Google Scholar]
  11. Zhou Z. Song J. Nie L. Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 2016 45 23 6597 6626 10.1039/C6CS00271D 27722328
    [Google Scholar]
  12. Fan W. Huang P. Chen X. Overcoming the Achilles’ heel of photodynamic therapy. Chem. Soc. Rev. 2016 45 23 6488 6519 10.1039/C6CS00616G 27722560
    [Google Scholar]
  13. Chen H. Tian J. He W. Guo Z. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc. 2015 137 4 1539 1547 10.1021/ja511420n 25574812
    [Google Scholar]
  14. Abrahamse H. Hamblin M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016 473 4 347 364 10.1042/BJ20150942 26862179
    [Google Scholar]
  15. Owens J.W. Smith R. Robinson R. Robins M. Photophysical properties of porphyrins, phthalocyanines, and benzochlorins. Inorg. Chim. Acta 1998 279 2 226 231 10.1016/S0020‑1693(98)00137‑6
    [Google Scholar]
  16. Li X. Zheng B.D. Peng X.H. Li S.Z. Ying J.W. Zhao Y. Huang J.D. Yoon J. Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coord. Chem. Rev. 2019 379 147 160 10.1016/j.ccr.2017.08.003
    [Google Scholar]
  17. Jing C. Wang R. Ou H. Li A. An Y. Guo S. Shi L. Axial modification inhibited H-aggregation of phthalocyanines in polymeric micelles for enhanced PDT efficacy. Chem. Commun. (Camb.) 2018 54 32 3985 3988 10.1039/C7CC09954A 29611567
    [Google Scholar]
  18. Ghazal B. Husain A. Ganesan A. Durmuş M. Zhang X.F. Makhseed S. Exceptionally effective generation of singlet oxygen in aqueous media via iodinated zinc-phthalocyanine. Dyes Pigments 2019 164 296 304 10.1016/j.dyepig.2019.01.036
    [Google Scholar]
  19. Özdemir M. Karapınar B. Yalçın B. Salan Ü. Durmuş M. Bulut M. Synthesis and characterization of novel 7-oxy-3-ethyl-6-hexyl-4-methylcoumarin substituted metallo phthalocyanines and investigation of their photophysical and photochemical properties. Dalton Trans. 2019 48 34 13046 13056 10.1039/C9DT02687H 31407759
    [Google Scholar]
  20. Cheng G. Peng X. Hao G. Kennedy V.O. Ivanov I.N. Knappenberger K. Hill T.J. Rodgers M.A.J. Kenney M.E. Synthesis, photochemistry, and electrochemistry of a series of phthalocyanines with graded steric hindrance. J. Phys. Chem. A 2003 107 18 3503 3514 10.1021/jp027006q
    [Google Scholar]
  21. Nyokong T. Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coord. Chem. Rev. 2007 251 13-14 1707 1722 10.1016/j.ccr.2006.11.011
    [Google Scholar]
  22. Jayme C.C. Calori I.R. Cunha E.M.F. Tedesco A.C. Evaluation of aluminum phthalocyanine chloride and DNA interactions for the design of an advanced drug delivery system in photodynamic therapy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018 201 242 248 10.1016/j.saa.2018.05.009 29753970
    [Google Scholar]
  23. Ertunga N.S. Saka E.T. Taskin-Tok T. Akatin M.Y. Bektas K.I. Colak A. Synthesis, characterization, DNA interaction, molecular docking, and α‐glucosidase inhibition studies of 3‐(pyrimidin‐2‐ylthio) groups substituted water soluble zinc (II) phthalocyanine. Appl. Organomet. Chem. 2024 38 8 e7583 10.1002/aoc.7583
    [Google Scholar]
  24. Barut B. Demirbaş Ü. Şenocak A. Özel A. Kantekin H. Water soluble axially morpholine disubstituted silicon phthalocyanines: Synthesis, characterisation, DNA/BSA binding, DNA photocleavage properties. Synth. Met. 2017 229 22 32 10.1016/j.synthmet.2017.05.006
    [Google Scholar]
  25. Marucci G. Buccioni M. Ben D.D. Lambertucci C. Volpini R. Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2021 190 108352 10.1016/j.neuropharm.2020.108352 33035532
    [Google Scholar]
  26. Greig N.H. Lahiri D.K. Kumar S. Butyrylcholinesterase: An important new target in Alzheimer’s disease therapy. Int. Psychogeriatr. 2002 14 Suppl. 1 77 91 10.1017/S1041610203008676 12636181
    [Google Scholar]
  27. Tamfu A.N. Kucukaydin S. Yeskaliyeva B. Ozturk M. Dinica R.M. Non-alkaloid cholinesterase inhibitory compounds from natural sources. Molecules 2021 26 18 5582 10.3390/molecules26185582 34577053
    [Google Scholar]
  28. Abu-Aisheh M.N. Al-Aboudi A. Mustafa M.S. El-Abadelah M.M. Ali S.Y. Ul-Haq Z. Mubarak M.S. Coumarin derivatives as acetyl- and butyrylcholinestrase inhibitors: An in vitro, molecular docking, and molecular dynamics simulations study. Heliyon 2019 5 4 e01552 10.1016/j.heliyon.2019.e01552 31183424
    [Google Scholar]
  29. Biyiklioglu Z. Keleş T. Sahin H. Synthesis and acetylcholinesterase enzyme inhibition properties of axially disubstituted silicon phthalocyanines and their quaternized derivatives. J. Organomet. Chem. 2022 977 122468 10.1016/j.jorganchem.2022.122468
    [Google Scholar]
  30. Biyiklioglu Z. Baş H. Sahin H. Non‐aggregated and water soluble axially disubstituted silicon phthalocyanines: Synthesis and inhibitory effect on acetylcholinesterase enzyme. Appl. Organomet. Chem. 2022 36 6 e6668 10.1002/aoc.6668
    [Google Scholar]
  31. Yalazan H. Akkaya D. Seyhan G. Barut B. Kantekin H. Novel different furoic acid‐linked axial silicon phthalocyanines: Design, syntheses, cholinesterases, tyrosinase inhibitory, and DNA damage studies. Appl. Organomet. Chem. 2023 37 4 e7040 10.1002/aoc.7040
    [Google Scholar]
  32. Aktas Kamiloglu A. Arslan T. Tekin A. Kantekin H. Acar I. Chlorine‐Thymol Substituted Silicon (IV) Phthalocyanines: Synthesis, characterization, and in vitro Acetylcholinesterase (AChE)/Butyrylcholinesterase (BChE) inhibitory effect. Appl. Organomet. Chem. 2024
    [Google Scholar]
  33. Çakır V. Arslan T. Synthesis and biological evaluation of new silicon(IV) phthalocyanines as carbonic anhydrase and cholinesterase inhibitors. Inorg. Chim. Acta 2022 ••• 530
    [Google Scholar]
  34. Yalazan H. Barut B. Yalçın C.Ö. Kantekin H. Yıldırmış S. In vitro cholinesterases, tyrosinase, α-glucosidase inhibitory and anticancer effects of novel silicon phthalocyanines containing geraniol/phytol. Inorg. Chem. Commun. 2024 165 112548 10.1016/j.inoche.2024.112548
    [Google Scholar]
  35. Usta B. Seyhan G. Akkaya D. Barut B. Biyiklioglu Z. Özel A. Synthesis and cholinesterases inhibitory effects of water soluble zinc(II) and silicon(IV) phthalocyanines bearing (8‐[3‐(dimethylamino)phenoxy]octyloxy) groups. Appl. Organomet. Chem. 2024 38 11 e7643 10.1002/aoc.7643
    [Google Scholar]
  36. Arslan T. Buğrahan Ceylan M. Baş H. Biyiklioglu Z. Senturk M. Design, synthesis, characterization of peripherally tetra-pyridine-triazole-substituted phthalocyanines and their inhibitory effects on cholinesterases (AChE/BChE) and carbonic anhydrases (hCA I, II and IX). Dalton Trans. 2020 49 1 203 209 10.1039/C9DT03897C 31808483
    [Google Scholar]
  37. Zorlu Y. Dumoulin F. Durmuş M. Ahsen V. Comparative studies of photophysical and photochemical properties of solketal substituted platinum(II) and zinc(II) phthalocyanine sets. Tetrahedron 2010 66 17 3248 3258 10.1016/j.tet.2010.02.079
    [Google Scholar]
  38. Spiller W. Kliesch H. Wöhrle D. Hackbarth S. Röder B. Schnurpfeil G.N.T.E.R. Singlet Oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions. J. Porphyr. Phthalocyanines 1998 2 2 145 158 10.1002/(SICI)1099‑1409(199803/04)2:2<145:AID‑JPP60>3.0.CO;2‑2
    [Google Scholar]
  39. Özdemir M. Abliatipova A. Benian S. Yalçın B. Salan Ü. Durmuş M. Bulut M. 1,2,3-Triazole incorporated coumarin carrying metal-free, Zn(II), Mg(II) phthalocyanines: Synthesis, characterization, theoretical studies, photophysical and photochemical properties. J. Photochem. Photobiol. Chem. 2020 403 112845 10.1016/j.jphotochem.2020.112845
    [Google Scholar]
  40. Özdemir M. Köksoy B. Yalçın B. Taşkın T. Selçuki N.A. Salan Ü. Durmuş M. Bulut M. Novel lutetium(III) phthalocyanine-coumarin dyads; Synthesis, characterization, photochemical, theoretical and antioxidant properties. Inorg. Chim. Acta 2021 517 120145 10.1016/j.ica.2020.120145
    [Google Scholar]
  41. Karapınar B. Özdemir M. Salan Ü. Durmuş M. Yalçın B. Bulut M. 7‐Oxy‐3,4‐cyclohexenecoumarin Carrying Novel Zinc(II) and Indium(III) acetate phthalocyanines: Synthesis, characterization, photophysical and photochemical properties. ChemistrySelect 2019 4 33 9632 9639 10.1002/slct.201902582
    [Google Scholar]
  42. Özdemir M. Artuç G.Ö. Akkurt B. Yalçın B. Salan Ü. Durmuş M. Bulut M. Synthesis, characterization, photophysics, and photochemistry of peripherally substituted tetrakis(quinolinylethylenephenoxy)-substituted zinc(II) phthalocyanines. New J. Chem. 2021 45 22 9912 9921 10.1039/D1NJ00854D
    [Google Scholar]
  43. Özgül Artuç G. Karapınar B. Özdemir M. Bulut M. Synthesis, characterization, and determination of photophysicochemical properties of peripheral and nonperipheral tetra‐7‐oxy‐3,4‐dimethylcoumarin substituted zinc, indium phthalocyanines. Appl. Organomet. Chem. 2020 ••• 35
    [Google Scholar]
  44. Kazancıçok Z. Güler H.E. Özdemir M. Pişkin M. Bulut M. Yalçın B. Salan Ü. Photophysical and photochemical properties and comparison of tolyl and tosyl coumarin-bearing phthalocyanines. J. Mol. Struct. 2023 1274 134565 10.1016/j.molstruc.2022.134565
    [Google Scholar]
  45. Ozdemir M. Artuc G.O. Guler E.M. Yalcin B. Salan U. Bozali K. Gorgulu A.O. Bulut M. Phthalocyanines bearing silazane group for colorectal cancer. Dyes Pigments 2021 196 109832 10.1016/j.dyepig.2021.109832
    [Google Scholar]
  46. Ellman G.L. Courtney K.D. Andres V. Jr Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961 7 2 88 95 10.1016/0006‑2952(61)90145‑9 13726518
    [Google Scholar]
  47. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  48. Hanwell M.D. Curtis D.E. Lonie D.C. Vandermeersch T. Zurek E. Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012 4 1 17 10.1186/1758‑2946‑4‑17 22889332
    [Google Scholar]
  49. Asensio J.L. Brown T. Lane A.N. Solution conformation of a parallel DNA triple helix with 5′ and 3′ triplex–duplex junctions. Structure 1999 7 1 1 11 10.1016/S0969‑2126(99)80004‑5 10368268
    [Google Scholar]
  50. Goodsell D.S. Kopka M.L. Dickerson R.E. Refinement of netropsin bound to DNA: Bias and feedback in electron density map interpretation. Biochemistry 1995 34 15 4983 4993 10.1021/bi00015a009 7711020
    [Google Scholar]
  51. Barton J.K. Rees D.C. Kielkopf C.L. Erkkila K.E. Hudson B.P. Structure of a photoactive rhodium complex intercalated into DNA. Nat. Struct. Biol. 2000 7 2 117 121 10.1038/72385 10655613
    [Google Scholar]
  52. Cheung J. Gary E.N. Shiomi K. Rosenberry T.L. Structures of human acetylcholinesterase bound to dihydrotanshinone I and territrem B show peripheral site flexibility. ACS Med. Chem. Lett. 2013 4 11 1091 1096 10.1021/ml400304w 24900610
    [Google Scholar]
  53. Nachon F. Carletti E. Ronco C. Trovaslet M. Nicolet Y. Jean L. Renard P.Y. Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer’s drugs targeting acetyl- and butyryl-cholinesterase. Biochem. J. 2013 453 3 393 399 10.1042/BJ20130013 23679855
    [Google Scholar]
  54. Çelik E. Meletli F. Özdemir M. Köksoy B. Danış Ö. Yalçın B. DNA and hemoglobin binding activities: Investigation of coumarin-thiosemicarbazone hybrids. Bioorg. Chem. 2024 153 107857 10.1016/j.bioorg.2024.107857 39383810
    [Google Scholar]
  55. Maestro S. 2020
  56. Hu Y. Wang B. Yang J. Liu T. Sun J. Wang X. Synthesis and biological evaluation of 3-arylcoumarin derivatives as potential anti-diabetic agents. J. Enzyme Inhib. Med. Chem. 2019 34 1 15 30 10.1080/14756366.2018.1518958 30362362
    [Google Scholar]
  57. Ozluer C. Kara H.E.S. In vitro DNA binding studies of anticancer drug idarubicin using spectroscopic techniques. J. Photochem. Photobiol. B 2014 138 36 42 10.1016/j.jphotobiol.2014.05.015 24911270
    [Google Scholar]
  58. Maree M.D. Nyokong T. Suhling K. Phillips D. Effects of axial ligands on the photophysical properties of silicon octaphenoxyphthalocyanine. J. Porphyr. Phthalocyanines 2002 6 6 373 376 10.1142/S1088424602000452
    [Google Scholar]
  59. Günsel A. Günsel H. Taslimi P. Taskin-Tok T. Erden B.A. Bilgiçli A.T. Sadeghian N. Gülçin İ. Yarasir M.N. Novel composite structures based on cobalt phthalocyanine/graphene oxide: Identification of potential drug candidates to treat Alzheimer’s disease and diabetes. Inorg. Chim. Acta 2024 570 122190 10.1016/j.ica.2024.122190
    [Google Scholar]
  60. Batibay G.S. Keser Karaoglan G. Gumrukcu Kose G. Ozcelik Kazancioglu E. Metin E. Danisman Kalindemirtas F. Erdem Kuruca S. Arsu N. DNA groove binder and significant cytotoxic activity on human colon cancer cells: Potential of a dimeric zinc (II) phthalocyanine derivative. Biophys. Chem. 2023 295 106974 10.1016/j.bpc.2023.106974 36827854
    [Google Scholar]
  61. Burle S.S. Gupta K.R. Jibhkate Y.J. Hemke A.T. Umekar M.J. Insights into molecular docking: A comprehensive view. Int. J. Pharm. Chem. Anal. 2023 10 3 175 184 10.18231/j.ijpca.2023.030
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266368541250311084659
Loading
/content/journals/ctmc/10.2174/0115680266368541250311084659
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: DNA-binding ; singlet oxygen ; coumarin ; AChE ; Silicon(IV) phthalocyanines ; BuChE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test