Skip to content
2000
Volume 25, Issue 22
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Aim

To investigate the antimicrobial potential of methanol fruit extract of against Methicillin-Resistant (MRSA) and elucidate its mode of action.

Background

The rise of antimicrobial resistance (AMR) demands the exploration of alternative therapeutic strategies to combat resistant pathogens.

Objective

To evaluate the efficacy of methanol extract against MRSA, and identify its active constituents and mechanism of action.

Methods

The fruits of were extracted using various solvents, with hexane and methanol yielding the highest results. Microbroth dilution assays assessed antimicrobial activity, while assays such as Alamar blue, Scanning Electron Microscopy (SEM), protein, and nucleic acid leakage examined metabolic disruption and cell membrane integrity. Gas Chromatography-Mass Spectrometry (GC-MS) was used to identify active compounds, and molecular docking studies assessed interactions with key MRSA proteins.

Results

The methanol extract demonstrated significant antimicrobial activity against MRSA, causing metabolic disruption and leakage of cellular contents as evidenced by various assays including alarm blue, SEM, and protein and nucleic acid leakage assay. GC-MS analysis identified alpha-linoleic acid and palmitic acid as key active components. Molecular docking studies confirmed their inhibition of beta-lactamase activity, cell wall biosynthesis, efflux pumps, and virulence factors.

Conclusion

The findings suggest that methanol fruit extract has promising potential as a natural remedy against AMR associated with MRSA.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266364747250223154131
2025-03-03
2025-12-22
Loading full text...

Full text loading...

References

  1. ShengY. NarayananM. BashaS. ElfasakhanyA. BrindhadeviK. XiaC. PugazhendhiA. In vitro and in vivo efficacy of green synthesized AgNPs against Gram negative and Gram positive bacterial pathogens.Process Biochem.202211224124710.1016/j.procbio.2021.12.012
    [Google Scholar]
  2. DanarajJ. UthirakrishnanU. KumaresanS. NatarajanP.K. KrishnaJ. PerumalA.S. SelvakumarK. KaramiZ. PugazhendhiA. Multifunctional application of seagrass-derived rosmarinic acid in mitigating biofilm and quorum-sensing virulence transcripts of methicillin-resistant Staphylococcus aureus.J. Environ. Chem. Eng.202412411308610.1016/j.jece.2024.113086
    [Google Scholar]
  3. Antimicrobial resistance.2023Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  4. AhmedS.K. HusseinS. QurbaniK. IbrahimR.H. FareeqA. MahmoodK.A. MohamedM.G. Antimicrobial resistance: Impacts, challenges, and future prospects.Journal of Medicine, Surgery, and Public Health2024210008110.1016/j.glmedi.2024.100081
    [Google Scholar]
  5. WHO reports widespread overuse of antibiotics in patients hospitalized with COVID-19.2024Available from: https://www.who.int/news/item/26-04-2024-who-reports-widespread-overuse-of-antibiotics-in-patients--hospitalized-with-covid-19
  6. Chinemerem NwobodoD. UgwuM.C. Oliseloke AnieC. Al-OuqailiM.T.S. Chinedu IkemJ. Victor ChigozieU. SakiM. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace.J. Clin. Lab. Anal.2022369e2465510.1002/jcla.24655 35949048
    [Google Scholar]
  7. DavidM.Z. DaumR.S. Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic.Clin. Microbiol. Rev.201023361668710.1128/CMR.00081‑09 20610826
    [Google Scholar]
  8. WieldersC.L.C. FluitA.C. BrisseS. VerhoefJ. SchmitzF.J. mecA gene is widely disseminated in Staphylococcus aureus population.J. Clin. Microbiol.200240113970397510.1128/JCM.40.11.3970‑3975.2002 12409360
    [Google Scholar]
  9. LadeH. KimJ.S. Molecular determinants of β-Lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA): An updated review.Antibiotics2023129136210.3390/antibiotics12091362 37760659
    [Google Scholar]
  10. GauravA. BakhtP. SainiM. PandeyS. PathaniaR. Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors.Microbiology2023169500133310.1099/mic.0.001333 37224055
    [Google Scholar]
  11. BelayW.Y. GetachewM. TegegneB.A. TefferaZ.H. DagneA. ZelekeT.K. AbebeR.B. GedifA.A. FentaA. YirdawG. TilahunA. AschaleY. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: A review.Front. Pharmacol.202415144478110.3389/fphar.2024.1444781 39221153
    [Google Scholar]
  12. BoudetA. SorlinP. PougetC. ChironR. LavigneJ.P. Dunyach-RemyC. MarchandinH. Biofilm formation in methicillin-resistant Staphylococcus aureus isolated in cystic fibrosis patients is strain-dependent and differentially influenced by antibiotics.Front. Microbiol.20211275048910.3389/fmicb.2021.750489 34721354
    [Google Scholar]
  13. TurnerA.B. Zermeño-PérezD. MysiorM.M. Giraldo-OsornoP.M. GarcíaB. O’GormanE. OubihiS. SimpsonJ.C. LasaI. Ó CróinínT. TrobosM. Biofilm morphology and antibiotic susceptibility of methicillin-resistant Staphylococcus aureus (MRSA) on poly-D,L-lactide-co-poly(ethylene glycol) (PDLLA-PEG) coated titanium.Biofilm2024810022810.1016/j.bioflm.2024.100228
    [Google Scholar]
  14. KaushikA. KestH. SoodM. SteussyB. ThiemanC. GuptaS. Biofilm producing methicillin-resistant Staphylococcus aureus (MRSA) infections in humans: Clinical implications and management.Pathogens20241317610.3390/pathogens13010076 38251383
    [Google Scholar]
  15. SchilcherK. HorswillA.R. Staphylococcal biofilm development: Structure, regulation, and treatment strategies.Microbiol. Mol. Biol. Rev.2020843e00026e1910.1128/MMBR.00026‑19 32792334
    [Google Scholar]
  16. McCarthyA.J. LoefflerA. WitneyA.A. GouldK.A. LloydD.H. LindsayJ.A. Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo.Genome Biol. Evol.20146102697270810.1093/gbe/evu214 25260585
    [Google Scholar]
  17. HaaberJ. PenadésJ.R. IngmerH. Transfer of antibiotic resistance in Staphylococcus aureus.Trends Microbiol.2017251189390510.1016/j.tim.2017.05.011 28641931
    [Google Scholar]
  18. EmamalipourM. SeidiK. Zununi VahedS. Jahanban-EsfahlanA. JaymandM. MajdiH. AmoozgarZ. ChitkushevL.T. JavaheriT. Jahanban-EsfahlanR. ZareP. Horizontal gene transfer: From Evolutionary flexibility to disease progression.Front. Cell Dev. Biol.2020822910.3389/fcell.2020.00229 32509768
    [Google Scholar]
  19. ChenJ. ZhouH. HuangJ. ZhangR. RaoX. Virulence alterations in staphylococcus aureus upon treatment with the sub-inhibitory concentrations of antibiotics.J. Adv. Res.20213116517510.1016/j.jare.2021.01.008 34194840
    [Google Scholar]
  20. SinghV. PhukanU.J. Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity.Med. Microbiol. Immunol.2019208558560710.1007/s00430‑018‑0573‑y 30483863
    [Google Scholar]
  21. CheungG.Y.C. BaeJ.S. OttoM. Pathogenicity and virulence of Staphylococcus aureus.Virulence202112154756910.1080/21505594.2021.1878688 33522395
    [Google Scholar]
  22. AslamB. AsgharR. MuzammilS. ShafiqueM. SiddiqueA.B. KhurshidM. IjazM. RasoolM.H. ChaudhryT.H. AamirA. BalochZ. AMR and Sustainable Development Goals: At a crossroads.Global. Health20242017310.1186/s12992‑024‑01046‑8 39415207
    [Google Scholar]
  23. AnnaduraiP. GideonD.A. NirusimhanV. SivaramakrishnanR. DhandayuthapaniK. PugazhendhiA. Deciphering the pharmacological potentials of Aganosma cymosa (Roxb.) G. Don using in vitro and computational methods.Process Biochem.202211411913310.1016/j.procbio.2022.01.024
    [Google Scholar]
  24. VeeramuthuK. AnnaduraiP. GideonD.A. SivaramakrishnanR. SundarrajanB. DhandayuthapaniK. PugazhendhiA. In silico molecular docking approach and in vitro cytotoxic, antioxidant, antimicrobial and anti-inflammatory activity of Ixora brachiata Roxb.Process Biochem.202312415015910.1016/j.procbio.2022.11.014
    [Google Scholar]
  25. RameshkumarA. MahalakshmiP. SudhaG. DineshkumarT. VinothH. A MalarA.D. Evaluation of antimicrobial properties of Solanum xanthocarpum and Pistacia lentiscus extracts on Streptococcus mutans, Lactobacillus species and Actinomyces viscosus: An in vitro study.J. Oral Maxillofac. Pathol.201923338338810.4103/jomfp.JOMFP_30_19 31942118
    [Google Scholar]
  26. GovindanS. ViswanathanS. VijayasekaranV. AlagappanR. A pilot study on the clinical efficacy of Solanum xanthocarpum and Solanum trilobatum in bronchial asthma.J. Ethnopharmacol.199966220521010.1016/S0378‑8741(98)00160‑3 10433479
    [Google Scholar]
  27. ShivnathN. SiddiquiS. RawatV. KhanM.S. ArshadM. Solanum xanthocarpum fruit extract promotes chondrocyte proliferation in vitro and protects cartilage damage in collagenase induced osteoarthritic rats (article reference number: JEP 114028).J. Ethnopharmacol.202127411402810.1016/j.jep.2021.114028 33775807
    [Google Scholar]
  28. KumarS. PandeyA.K. Medicinal attributes of Solanum xanthocarpum fruit consumed by several tribal communities as food: An in vitro antioxidant, anticancer and anti HIV perspective.BMC Complement. Altern. Med.201414111210.1186/1472‑6882‑14‑112 24678980
    [Google Scholar]
  29. SahuN. MadanS. WaliaR. TyagiR. FantoukhO.I. HawwalM.F. AkhtarA. AlmarabiI. AlamP. SaxenaS. Multi-target mechanism of Solanum xanthocarpum for treatment of psoriasis based on network pharmacology and molecular docking.Saudi Pharm. J.2023311110178810.1016/j.jsps.2023.101788 37811124
    [Google Scholar]
  30. MawireP. MozirandiW. HeydenreichM. ChiG.F. MukanganyamaS. Isolation and Antimicrobial Activities of Phytochemicals from Parinari curatellifolia (Chrysobalanaceae).Adv. Pharmacol. Pharm. Sci.20212021111810.1155/2021/8842629 33763648
    [Google Scholar]
  31. TourabiM. MetouekelA. ghouizi, A.E.L.; Jeddi, M.; Nouioura, G.; Laaroussi, H.; Hosen, M.E.; Benbrahim, K.F.; Bourhia, M.; Salamatullah, A.M.; Nafidi, H.A.; Wondmie, G.F.; Lyoussi, B.; Derwich, E. Efficacy of various extracting solvents on phytochemical composition, and biological properties of Mentha longifolia L. leaf extracts.Sci. Rep.20231311802810.1038/s41598‑023‑45030‑5 37865706
    [Google Scholar]
  32. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically.12th edClinical and Laboratory Standards Institute2024
    [Google Scholar]
  33. AugustusA.R. JanaS. SamsudeenM.B. NagaiahH.P. ShunmugiahK.P. In vitro and in vivo evaluation of the anti-infective potential of the essential oil extracted from the leaves of Plectranthus amboinicus (lour.) spreng against Klebsiella pneumoniae and elucidation of its mechanism of action through proteomics approach.J. Ethnopharmacol.202433011820210.1016/j.jep.2024.118202 38641078
    [Google Scholar]
  34. KasthuriT. SwethaT.K. BhaskarJ.P. PandianS.K. Rapid-killing efficacy substantiates the antiseptic property of the synergistic combination of carvacrol and nerol against nosocomial pathogens.Arch. Microbiol.2022204959010.1007/s00203‑022‑03197‑x 36053368
    [Google Scholar]
  35. LiJ. LiuW. ZhangX. ChuP.K. CheungK.M.C. YeungK.W.K. Temperature-responsive tungsten doped vanadium dioxide thin film starves bacteria to death.Mater. Today201922354910.1016/j.mattod.2018.04.005
    [Google Scholar]
  36. TopçuS. ŞekerM.G. In vitro antimicrobial effects and inactivation mechanisms of 5,8-Dihydroxy-1,4-Napthoquinone.Antibiotics20221111153710.3390/antibiotics11111537 36358192
    [Google Scholar]
  37. YuanC. HaoX. Antibacterial mechanism of action and in silico molecular docking studies of Cupressus funebris essential oil against drug resistant bacterial strains.Heliyon202398e1874210.1016/j.heliyon.2023.e18742 37636470
    [Google Scholar]
  38. LakshmiS.A. AlexpandiR. ShafreenR.M.B. TamilmuhilanK. SrivathsanA. KasthuriT. RaviA.V. ShiburajS. PandianS.K. Evaluation of antibiofilm potential of four-domain α-amylase from Streptomyces griseus against exopolysaccharides (EPS) of bacterial pathogens using Danio rerio.Arch. Microbiol.2022204524310.1007/s00203‑022‑02847‑4 35381886
    [Google Scholar]
  39. Chóez-GuarandaI. Maridueña-ZavalaM. QuevedoA. Quijano-AvilésM. ManzanoP. Cevallos-CevallosJ.M. Changes in GC-MS metabolite profile, antioxidant capacity and anthocyanins content during fermentation of fine-flavor cacao beans from Ecuador.PLoS One2024193e029890910.1371/journal.pone.0298909 38427658
    [Google Scholar]
  40. ChadhaJ. AhujaP. MudgilU. KhullarL. HarjaiK. Citral and triclosan synergistically silence quorum sensing and potentiate antivirulence response in Pseudomonas aeruginosa.Arch. Microbiol.2024206732410.1007/s00203‑024‑04059‑4 38913239
    [Google Scholar]
  41. HossainS. RafiR.H. RipaF.A. KhanM.R.I. HosenM.E. MollaM.K.I. FaruqeM.O. Al-BariM.A.A. DasS. Modulating the antibacterial effect of the existing antibiotics along with repurposing drug metformin.Arch. Microbiol.2024206419010.1007/s00203‑024‑03917‑5 38519821
    [Google Scholar]
  42. Extraction of Bioactive Compounds from Medicinal Plants and Herbs.
    [Google Scholar]
  43. BarbieriR. CoppoE. MarcheseA. DagliaM. Sobarzo-SánchezE. NabaviS.F. NabaviS.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity.Microbiol. Res.2017196446810.1016/j.micres.2016.12.003 28164790
    [Google Scholar]
  44. NikolicP. MudgilP. The cell wall, cell membrane and virulence factors of Staphylococcus aureus and their role in antibiotic resistance.Microorganisms202311225910.3390/microorganisms11020259 36838224
    [Google Scholar]
  45. KangX. YangX. HeY. GuoC. LiY. JiH. QinY. WuL. Strategies and materials for the prevention and treatment of biofilms.Mater. Today Bio20232310082710.1016/j.mtbio.2023.100827 37859998
    [Google Scholar]
  46. AlgburiA. ComitoN. KashtanovD. DicksL.M.T. ChikindasM.L. Control of biofilm formation: Antibiotics and beyond.Appl. Environ. Microbiol.2017833e02508e0251610.1128/AEM.02508‑16 27864170
    [Google Scholar]
  47. ZaferM.M. MohamedG.A. IbrahimS.R.M. GhoshS. BornmanC. ElfakyM.A. Biofilm-mediated infections by multidrug-resistant microbes: A comprehensive exploration and forward perspectives.Arch. Microbiol.2024206310110.1007/s00203‑023‑03826‑z 38353831
    [Google Scholar]
  48. SaraswathiK. BharkaviR. KhusroA. SivarajC. ArumugamP. AlghamdiS. DabloolA.S. AlmehmadiM. BannunahA.M. Umar Khayam SahibzadaM. Assessment on in vitro medicinal properties and chemical composition analysis of Solanum virginianum dried fruits.Arab. J. Chem.2021141210344210.1016/j.arabjc.2021.103442
    [Google Scholar]
  49. WeiM. WangP. LiT. WangQ. SuM. GuL. WangS. Antimicrobial and antibiofilm effects of essential fatty acids against clinically isolated vancomycin-resistant Enterococcus faecium.Front. Cell. Infect. Microbiol.202313126667410.3389/fcimb.2023.1266674 37842001
    [Google Scholar]
  50. BorrebyC. LillebækE.M.S. KallipolitisB.H. Anti-infective activities of long-chain fatty acids against foodborne pathogens.FEMS Microbiol. Rev.2023474fuad03710.1093/femsre/fuad037 37437907
    [Google Scholar]
  51. RosselliaS. MaggioA. FormisanoC. NapolitanoF. SenatoreF. SpadaroV. Chemical composition and antibacterial activity of extracts of Helleborus bocconei Ten. subsp. intermedius.Nat. Prod. Commun.200726
    [Google Scholar]
  52. DilikaF. BremnerP.D. MeyerJ.J.M. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: A plant used during circumcision rites.Fitoterapia200071445045210.1016/S0367‑326X(00)00150‑7 10925024
    [Google Scholar]
  53. ZhengC.J. YooJ.S. LeeT.G. ChoH.Y. KimY.H. KimW.G. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids.FEBS Lett.2005579235157516210.1016/j.febslet.2005.08.028 16146629
    [Google Scholar]
  54. Casillas-VargasG. Ocasio-MalavéC. MedinaS. Morales-GuzmánC. Del ValleR.G. CarballeiraN.M. Sanabria-RíosD.J. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents.Prog. Lipid Res.20218210109310.1016/j.plipres.2021.101093 33577909
    [Google Scholar]
  55. YoonB. JackmanJ. Valle-GonzálezE. ChoN.J. Antibacterial free fatty acids and Monoglycerides: Biological activities, experimental testing, and therapeutic applications.Int. J. Mol. Sci.2018194111410.3390/ijms19041114 29642500
    [Google Scholar]
  56. GreenwayD.L.A. DykeK.G.H. Mechanism of the inhibitory action of linoleic acid on the growth of Staphylococcus aureus.J. Gen. Microbiol.1979115123324510.1099/00221287‑115‑1‑233 93615
    [Google Scholar]
  57. YuyamaK.T. RohdeM. MolinariG. StadlerM. AbrahamW.R. Unsaturated fatty acids control biofilm formation of Staphylococcus aureus and other gram-positive bacteria.Antibiotics202091178810.3390/antibiotics9110788 33171584
    [Google Scholar]
  58. DesboisA.P. SmithV.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential.Appl. Microbiol. Biotechnol.20108561629164210.1007/s00253‑009‑2355‑3 19956944
    [Google Scholar]
  59. PadminiN. RashiyaN. SivakumarN. KannanN.D. ManjuladeviR. RajasekarP. PrabhuN.M. SelvakumarG. In vitro and in vivo efficacy of methyl oleate and palmitic acid against ESBL producing MDR Escherichia coli and Klebsiella pneumoniae.Microb. Pathog.202014810444610.1016/j.micpath.2020.104446 32810555
    [Google Scholar]
  60. KhanN.A. BarthesN. McCormackG. O’GaraJ.P. ThomasO.P. BoydA. Sponge-derived fatty acids inhibit biofilm formation of MRSA and MSSA by down-regulating biofilm-related genes specific to each pathogen.J. Appl. Microbiol.20231348lxad15210.1093/jambio/lxad152 37468451
    [Google Scholar]
  61. SongH.S. ChoiT.R. BhatiaS.K. LeeS.M. ParkS.L. LeeH.S. KimY.G. KimJ.S. KimW. YangY.H. Combination therapy using low-concentration oxacillin with palmitic acid and Span85 to control clinical methicillin-resistant Staphylococcus aureus.Antibiotics202091068210.3390/antibiotics9100682 33049970
    [Google Scholar]
  62. KimM. SeoY. KimS.G. ChoiY. KimH.J. KimT.J. Synergistic antibiotic activity of ricini semen extract with oxacillin against methicillin-resistant Staphylococcus aureus.Antibiotics202312234010.3390/antibiotics12020340 36830251
    [Google Scholar]
  63. ShalabyM.A.W. DoklaE.M.E. SeryaR.A.T. AbouzidK.A.M. Penicillin binding protein 2a: An overview and a medicinal chemistry perspective.Eur. J. Med. Chem.202019911231210.1016/j.ejmech.2020.112312 32442851
    [Google Scholar]
  64. FishovitzJ. HermosoJ.A. ChangM. MobasheryS. Penicillin‐binding protein 2a of methicillin‐resistant Staphylococcus aureus.IUBMB Life201466857257710.1002/iub.1289 25044998
    [Google Scholar]
  65. FergestadM.E. StamsåsG.A. Morales AngelesD. SalehianZ. WastesonY. KjosM. Penicillin‐binding protein PBP2a provides variable levels of protection toward different β‐lactams in Staphylococcus aureus RN4220.MicrobiologyOpen202098e105710.1002/mbo3.1057 32419377
    [Google Scholar]
  66. SpenglerG. KincsesA. GajdácsM. AmaralL. New roads leading to old destinations: Efflux pumps as targets to reverse multidrug resistance in bacteria.Molecules201722346810.3390/molecules22030468 28294992
    [Google Scholar]
  67. BrawleyD.N. SauerD.B. LiJ. ZhengX. KoideA. JedheG.S. SuwattheeT. SongJ. LiuZ. AroraP.S. KoideS. TorresV.J. WangD.N. TraasethN.J. Structural basis for inhibition of the drug efflux pump NorA from Staphylococcus aureus.Nat. Chem. Biol.202218770671210.1038/s41589‑022‑00994‑9 35361990
    [Google Scholar]
  68. HervinV. RoyV. AgrofoglioL.A. Antibiotics and antibiotic resistance—Mur Ligases as an antibacterial target.Molecules20232824807610.3390/molecules28248076 38138566
    [Google Scholar]
  69. PelzA. WielandK.P. PutzbachK. HentschelP. AlbertK. GötzF. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus.J. Biol. Chem.200528037324933249810.1074/jbc.M505070200 16020541
    [Google Scholar]
  70. SongY. LiuC.I. LinF.Y. NoJ.H. HenslerM. LiuY.L. JengW.Y. LowJ. LiuG.Y. NizetV. WangA.H.J. OldfieldE. Inhibition of staphyloxanthin virulence factor biosynthesis in Staphylococcus aureus: In vitro, in vivo, and crystallographic results.J. Med. Chem.200952133869388010.1021/jm9001764 19456099
    [Google Scholar]
  71. MahasenanK.V. MolinaR. BouleyR. BatuecasM.T. FisherJ.F. HermosoJ.A. ChangM. MobasheryS. Conformational dynamics in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus, Allosteric communication network and enablement of catalysis.J. Am. Chem. Soc.201713952102211010.1021/jacs.6b12565 28099001
    [Google Scholar]
  72. TintinoS.R. WilairatanaP. de SouzaV.C.A. da SilvaJ.M.A. PereiraP.S. de Morais Oliveira-TintinoC.D. de MatosY.M.L.S. JúniorJ.T.C. de Queiroz BalbinoV. Siqueira-JuniorJ.P. MenezesI.R.A. SiyadatpanahA. CoutinhoH.D.M. BalbinoT.C.L. Inhibition of the norA gene expression and the NorA efflux pump by the tannic acid.Sci. Rep.20231311739410.1038/s41598‑023‑43038‑5 37833301
    [Google Scholar]
  73. TintinoS.R. Oliveira-TintinoC.D.M. CampinaF.F. SilvaR.L.P. CostaM.S. MenezesI.R.A. Calixto-JúniorJ.T. Siqueira-JuniorJ.P. CoutinhoH.D.M. Leal-BalbinoT.C. BalbinoV.Q. Evaluation of the tannic acid inhibitory effect against the NorA efflux pump of Staphylococcus aureus.Microb. Pathog.20169791310.1016/j.micpath.2016.04.003 27057677
    [Google Scholar]
  74. Diniz-SilvaH.T. CirinoI.C.S. Falcão-SilvaV.S. MagnaniM. de SouzaE.L. Siqueira-JúniorJ.P. Tannic acid as a potential modulator of norfloxacin resistance in Staphylococcus Aureus overexpressing norA.Chemotherapy201661631932210.1159/000443495 27144278
    [Google Scholar]
  75. MannP.A. MüllerA. XiaoL. PereiraP.M. YangC. Ho LeeS. WangH. TrzeciakJ. SchneeweisJ. dos SantosM.M. MurgoloN. SheX. GillC. BalibarC.J. LabroliM. SuJ. FlatteryA. SherborneB. MaierR. TanC.M. BlackT. ÖnderK. KargmanS. MonsmaF.J.Jr PinhoM.G. SchneiderT. RoemerT. Murgocil is a highly bioactive staphylococcal-specific inhibitor of the peptidoglycan glycosyltransferase enzyme MurG.ACS Chem. Biol.20138112442245110.1021/cb400487f 23957438
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266364747250223154131
Loading
/content/journals/ctmc/10.2174/0115680266364747250223154131
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test