Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

The increasing prevalence of drug-resistant bacterial infections poses a significant challenge to global healthcare, necessitating the development of novel antibacterial agents. Coumarin-based derivatives are well-recognized for their diverse biological activities, and hybridization with other pharmacophores offers a promising strategy for enhancing therapeutic efficacy and overcoming resistance.

Objective

This study aimed to synthesize and evaluate a novel series of coumarin hybrids by integrating the coumarin scaffold with sulfanilamide () and 2-aminobenzothiazole (), targeting bacterial pathogens through a dual pharmacophoric approach.

Methods

The synthesized hybrids were characterized using mass spectrometry, FTIR, and NMR (1H and 13C) to confirm their structural integrity. Antibacterial activity was assessed against and at concentrations of 100, 250, and 500 µg/ml, with ciprofloxacin as the standard. The molecular binding mechanism was explored using molecular docking and pharmacophore-based analysis.

Results

Among the synthesized derivatives, compounds and exhibited the highest antibacterial activity, with inhibition zones of 22 mm and 21 mm against and 25 mm and 22 mm against at 500 µg/ml, demonstrating comparable efficacy to ciprofloxacin. Molecular docking studies revealed strong interactions of these compounds with bacterial enzymes, supporting the results and highlighting their potential as protein-inhibitor candidates.

Conclusion

The novel hybrid derivatives demonstrated significant antibacterial activities, suggesting their potential as promising therapeutic agents. Their effectiveness against various bacterial strains indicated that these compounds could serve as a foundation for the development of new antibacterial drugs. Further research and optimization are needed to enhance their potency and ensure their safety, paving the way for future clinical applications.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266362029250111172921
2025-01-20
2025-10-26
Loading full text...

Full text loading...

References

  1. AliM.I. NaseerM.M. Recent biological applications of heterocyclic hybrids containing s -triazine scaffold.RSC Adv.20231343304623049010.1039/D3RA05953G 37854486
    [Google Scholar]
  2. AbbotV. SharmaP. DhimanS. NoolviM.N. PatelH.M. BhardwajV. Small hybrid heteroaromatics: Resourceful biological tools in cancer research.RSC Adv.2017745283132834910.1039/C6RA24662A
    [Google Scholar]
  3. G, A.C.; Gondru, R.; Li, Y.; Banothu, J. Coumarin-benzimidazole hybrids: A review of developments in medicinal chemistry.Eur. J. Med. Chem.202222711392110.1016/j.ejmech.2021.113921 34715585
    [Google Scholar]
  4. LataS. KaurR. SinghG. BhandariD.D. AbbotV. Exploring the antimicrobial potential of novel 2-oxo-2-H-chromene conjugates with guanine, thiazole, and imidazole: Synthesis, characterization, and biological evaluation.Eur. J. Med. Chem. Rep.20241210017910.1016/j.ejmcr.2024.100179
    [Google Scholar]
  5. RohillaS. SharmaD. Sulfonamides, quinolones, antiseptics, and disinfectants.In: Medicinal Chemistry of Chemotherapeutic Agents. AcharyaP.C. KurosuM. Academic Press2023216310.1016/B978‑0‑323‑90575‑6.00015‑6
    [Google Scholar]
  6. HaroonF. FarwaU. ArifM. RazaM.A. SandhuZ.A. OirdiE.M. FarhanM. AlhasawiM.A.I. Novel para-aminobenzoic acid analogs and their potential therapeutic applications.Biomedicines20231110268610.3390/biomedicines11102686 37893060
    [Google Scholar]
  7. SzollosiD.E. Antibiotic Discoveries and a Century of Creating Superbugs.EnglandCambridge Scholars Publishing2023
    [Google Scholar]
  8. OvungA. BhattacharyyaJ. Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions.Biophys. Rev.202113225927210.1007/s12551‑021‑00795‑9 33936318
    [Google Scholar]
  9. GhomashiR. GhomashiS. AghaeiH. MassahS. MassahA.R. Recent advances in biological active sulfonamide based hybrid compounds part c: Multicomponent sulfonamide hybrids.Curr. Med. Chem.202330374181425510.2174/0929867330666221128142730 36443978
    [Google Scholar]
  10. DuanY. ZhaoY. LiZ. LiuZ. WangM. WangX. SunM. SongC. YaoY. Discovery of n-(2-oxoethyl) sulfanilamide-derived inhibitors of kat6a (moz) against leukemia by an isostere strategy.Eur. J. Med. Chem.202326011577010.1016/j.ejmech.2023.115770 37651878
    [Google Scholar]
  11. KrátkýM. Novel sulfonamide derivatives as a tool to combat methicillin-resistant Staphylococcus aureus.Future Med. Chem.202416654556210.4155/fmc‑2023‑0116 38348480
    [Google Scholar]
  12. SuiY.F. LiD. WangJ. BheemanaboinaR.R.Y. AnsariM.F. GanL.L. ZhouC.H. Design and biological evaluation of a novel type of potential multi-targeting antimicrobial sulfanilamide hybrids in combination of pyrimidine and azoles.Bioorg. Med. Chem. Lett.202030612698210.1016/j.bmcl.2020.126982 32001137
    [Google Scholar]
  13. BarbosaA.H. DiasD.F. FrancoL.L. HawkesJ.A. CarvalhoD.T. From antibacterial to antitumour agents: A brief review on the chemical and medicinal aspects of sulfonamides.Mini Rev. Med. Chem.202020192052206610.2174/1389557520666200905125738 32888265
    [Google Scholar]
  14. MunJ. JabbarA.A. DeviN.S. YinS. WangY. TanC. CulverD. SnyderJ.P. Meirv.E.G. GoodmanM.M. Design and in vitro activities of N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, novel, small-molecule hypoxia inducible factor-1 pathway inhibitors and anticancer agents.J. Med. Chem.201255156738675010.1021/jm300752n 22746274
    [Google Scholar]
  15. AhmadS. QadirA.M. AhmedM. ImranM. YousafN. WaniT.A. ZargarS. AliI. MuddassarM. Exploring the potential of propanamide-sulfonamide based drug conjugates as dual inhibitors of urease and cyclooxygenase-2: Biological and their in silico studies.Front Chem.202311120638010.3389/fchem.2023.1206380 37601915
    [Google Scholar]
  16. BibiD. MawasiH. NocentiniA. SupuranC.T. WlodarczykB. FinnellR.H. BialerM. Design and comparative evaluation of the anticonvulsant profile, carbonic-anhydrate inhibition and teratogenicity of novel carbamate derivatives of branched aliphatic carboxylic acids with 4-aminobenzensulfonamide.Neurochem. Res.20174271972198210.1007/s11064‑017‑2216‑x 28275953
    [Google Scholar]
  17. SalubiC.A. Research progress in hiv and mycobacterium tuberculosis inhibitors containing sulfonamide moiety.J. Chem.2023202312210.1155/2023/3601764
    [Google Scholar]
  18. AkdemirG.Ö. TrawallyM. BabuçO.M. ÇelikO.B. ErmutG. ÖzdemirH. Synthesis and antibacterial activity of new hybrid derivatives of 5-sulfamoyl-1H-indole and 4-thiazolidinone groups.Monatsh. Chem.202015191443145210.1007/s00706‑020‑02664‑9
    [Google Scholar]
  19. KumarR. VatsL. BuaS. SupuranC.T. SharmaP.K. Design and synthesis of novel benzenesulfonamide containing 1,2,3-triazoles as potent human carbonic anhydrase isoforms I, II, IV and IX inhibitors.Eur. J. Med. Chem.201815554555110.1016/j.ejmech.2018.06.021 29909339
    [Google Scholar]
  20. ThabetK.H. RagabA. ImranM. HelalM.H. AlaqelI.S. AlshehriA. MohdA.A. AlshammariR.M. AbusaifS.M. AmmarA.Y. Discovery of new anti-diabetic potential agents based on paracetamol incorporating sulfa-drugs: Design, synthesis, α-amylase, and α-glucosidase inhibitors with molecular docking simulation.Eur. J. Med. Chem.202427511658910.1016/j.ejmech.2024.116589 38878516
    [Google Scholar]
  21. ChauhanL.K. ChopraJ. VanangamudiM. TripathiI.P. BhargavaA. GoswamiA.K. BaroliyaP.K. Hydroxytriazenes incorporating sulphonamide derivatives: Evaluation of antidiabetic, antioxidant, anti-inflammatory activities, and computational study.Mol. Divers.202327122323710.1007/s11030‑022‑10420‑w 35414151
    [Google Scholar]
  22. XieJ. LongZ.Q. ChenA.Q. DingY.G. LiuS.T. ZhouX. LiuL.W. YangS. Novel sulfonamide derivatives containing a piperidine moiety as new bactericide leads for managing plant bacterial diseases.Int. J. Mol. Sci.2023246586110.3390/ijms24065861 36982936
    [Google Scholar]
  23. MincioneF. NocentiniA. SupuranC.T. Advances in the discovery of novel agents for the treatment of glaucoma.Expert Opin. Drug Discov.202116101209122510.1080/17460441.2021.1922384 33914670
    [Google Scholar]
  24. RafuseP. Ocular Pharmacology.Ophthalmology.CRC Press2011
    [Google Scholar]
  25. LiY. HuX. DongG. WangX. LiuT. Acne treatment: Research progress and new perspectives.Front. Med.202411142567510.3389/fmed.2024.1425675 39050538
    [Google Scholar]
  26. ArafaF.M. OsmanD.H. TolbaM.M. RezkiN. AouadM.R. HagarM. OsmanM. SaidH. Sulfadiazine analogs: Anti-Toxoplasma in vitro study of sulfonamide triazoles.Parasitol. Res.2023122102353236510.1007/s00436‑023‑07936‑x 37610452
    [Google Scholar]
  27. GhorabM.M. SolimanM.A. SayyadE.G.S. KaderA.M.S. BatalE.A.I. Synthesis, antimicrobial, and antibiofilm activities of some novel 7-methoxyquinoline derivatives bearing sulfonamide moiety against urinary tract infection-causing pathogenic microbes.Int. J. Mol. Sci.20232410893310.3390/ijms24108933 37240275
    [Google Scholar]
  28. Tannupriya; Garg, V.K. A review on traditional natural compounds and conventional methods for the treatment of UTI.URINE20235132210.1016/j.urine.2023.04.001
    [Google Scholar]
  29. JiangX. Sulfur Chemistry.New YorkSpringer Nature201910.1007/978‑3‑030‑25598‑5
    [Google Scholar]
  30. BhatM. BelagaliS.L. Structural activity relationship and importance of benzothiazole derivatives in medicinal chemistry: A comprehensive review.Mini Rev. Org. Chem.202017332335010.2174/1570193X16666190204111502
    [Google Scholar]
  31. YadavK.P. RahmanM.A. NishadS. MauryaS.K. AnasM. MujahidM. Synthesis and biological activities of benzothiazole derivatives: A review.Intelligent Pharmacy20231312213210.1016/j.ipha.2023.06.001
    [Google Scholar]
  32. HarounM. Review on the developments of benzothiazole-containing antimicrobial agents.Curr. Top. Med. Chem.202222322630265910.2174/1568026623666221207161752 36503470
    [Google Scholar]
  33. KashyapP. VermaS. GuptaP. NarangR. LalS. DevgunM. Recent insights into antibacterial potential of benzothiazole derivatives.Med. Chem. Res.20233281543157310.1007/s00044‑023‑03077‑z 37362317
    [Google Scholar]
  34. SharmaC.P. SharmaD. SharmaA. BansalK.K. RajakH. SharmaS. ThakurV.K. New horizons in benzothiazole scaffold for cancer therapy: Advances in bioactivity, functionality, and chemistry.Appl. Mater. Today20202010078310.1016/j.apmt.2020.100783
    [Google Scholar]
  35. SalihO.M. Al-Sha’erM.A. BasheerH.A. Novel 2-aminobenzothiazole derivatives: Docking, synthesis, and biological evaluation as anticancer agents.ACS Omega2024912139281395010.1021/acsomega.3c09212 38559989
    [Google Scholar]
  36. HuangG. CierpickiT. GrembeckaJ. 2-Aminobenzothiazoles in anticancer drug design and discovery.Bioorg. Chem.202313510647710.1016/j.bioorg.2023.106477 36989736
    [Google Scholar]
  37. MahajanK. ChandelR. SharmaP. AbbotV. Nanotechnology-based tools to overcome antimicrobial resistance.In: Nanotechnology Based Strategies for Combating Antimicrobial Resistance. WaniM.Y. WaniI.A. RaiA. SingaporeSpringer Nature2024618010.1007/978‑981‑97‑2023‑1_3
    [Google Scholar]
  38. AbbotV. SharmaT. BhardwajV. SharmaS. SharmaP. Development, characterization and in vitro antimicrobial evaluation of novel flavonoids entrapped micellar topical formulations of neomycin sulfate.J. Pharm. Sci.2022111123287329610.1016/j.xphs.2022.08.013 35977592
    [Google Scholar]
  39. GrossmanS. FishwickC.W.G. McPhillieM.J. Developments in non-intercalating bacterial topoisomerase inhibitors: Allosteric and atpase inhibitors of dna gyrase and topoisomerase iv.Pharmaceuticals202316226110.3390/ph16020261 37259406
    [Google Scholar]
  40. ThayilR. KrishnaG.K. ChinthamreddyA. ParneR.S. Exploring the multifunctionality of MoS2 and MoSe2 nanostructures: Enhanced ammonia sensing, antimicrobial activity and organic dye adsorption.Microchem. J.202420411117510.1016/j.microc.2024.111175
    [Google Scholar]
  41. EnupeO.J. UmarC.M. PhilipM. MusaE. OtiV.B. KhaliqA. Evaluation of the antibacterial and antibiofilm activity of erythrina senegalensis leaf extract against multidrug-resistant bacteria.Acta Microbiologica Hellenica202469425827310.3390/amh69040024
    [Google Scholar]
  42. MartinsY.A. dos Santos SousaR. Oliveirad.C.L.C.G. Development and validation of a microbiological agar assay for determination of thiamphenicol in soft capsules.Curr. Pharm. Anal.202016780681310.2174/1573412915666190328213828
    [Google Scholar]
  43. METTL3 alleviates D-gal-induced renal tubular epithelial cellular senescence via promoting miR-181a maturation.Mech. Ageing Dev. 210:1117742023210111774
    [Google Scholar]
  44. HalgrenT.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94.J. Comput. Chem.1996175-649051910.1002/(SICI)1096‑987X(199604)17:5/6<490:AID‑JCC1>3.0.CO;2‑P
    [Google Scholar]
  45. HasanH.A. PreetG. MilneB.F. EbelR. JasparsM. Arabinofuranosyl thymine derivatives—potential candidates against cowpox virus: A computational screening study.Int. J. Mol. Sci.2023242175110.3390/ijms24021751 36675269
    [Google Scholar]
  46. OwoloyeA.J. LigaliF.C. EnejohO.A. MusaA.Z. AinaO. IdowuE.T. OyebolaK.M. Molecular docking, simulation and binding free energy analysis of small molecules as PfHT1 inhibitors.PLoS One2022178e026826910.1371/journal.pone.0268269 36026508
    [Google Scholar]
  47. SaibuO.A. SinghG. OlugbodiS.A. OluwafemiA.T. AjayiT.M. HammedS.O. OladipoO.O. OdunitanT.T. OmoboyowaD.A. Identification of HER2 inhibitors from curcumin derivatives using combination of in silico screening and molecular dynamics simulation.J. Biomol. Struct. Dyn.20234121123281233710.1080/07391102.2023.2175260 36752338
    [Google Scholar]
  48. BellE.W. ZhangY. DockRMSD: An open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism.J. Cheminform.20191114010.1186/s13321‑019‑0362‑7 31175455
    [Google Scholar]
  49. DonadioG. MensitieriF. SantoroV. ParisiV. BelloneM.L. TommasiD.N. IzzoV. PiazD.F. Interactions with microbial proteins driving the antibacterial activity of flavonoids.Pharmaceutics202113566010.3390/pharmaceutics13050660 34062983
    [Google Scholar]
  50. NourbakhshF. LotfalizadehM. BadpeymaM. ShakeriA. SoheiliV. From plants to antimicrobials: Natural products against bacterial membranes.Phytother. Res.2022361335210.1002/ptr.7275 34532918
    [Google Scholar]
  51. TavaresT.D. AntunesJ.C. PadrãoJ. RibeiroA.I. ZilleA. AmorimM.T.P. FerreiraF. FelgueirasH.P. Activity of specialized biomolecules against gram-positive and gram-negative bacteria.Antibiotics20209631410.3390/antibiotics9060314 32526972
    [Google Scholar]
  52. RoyS. NarangB. GuptaM. AbbotV. SinghV. RawalR. Molecular docking studies on isocytosine analogues as xanthine oxidase inhibitors.Drug Res.201868739540210.1055/s‑0043‑125210 29342493
    [Google Scholar]
  53. KumariR. DalalV. Identification of potential inhibitors for LLM of Staphylococcus aureus: Structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies.J. Biomol. Struct. Dyn.202240209833984710.1080/07391102.2021.1936179 34096457
    [Google Scholar]
  54. DalalV. DhankharP. SinghV. SinghV. RakhaminovG. KotraG.D. KumarP. Structure-based identification of potential drugs against fmta of staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM.Protein J.202140214816510.1007/s10930‑020‑09953‑6 33421024
    [Google Scholar]
  55. DalalV. KumariR. Screening and identification of natural product‐like compounds as potential antibacterial agents targeting femc of staphylococcus aureus: An in‐silico approach.ChemistrySelect2022742e20220172810.1002/slct.202201728
    [Google Scholar]
  56. KumariR. RathiR. PathakS.R. DalalV. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus.J. Mol. Struct.2022125513247610.1016/j.molstruc.2022.132476
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266362029250111172921
Loading
/content/journals/ctmc/10.2174/0115680266362029250111172921
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test