Skip to content
2000
image of The Effects of Plasma Exosomes of Young Individuals Compared to Old Ones on Age-Related Inflammation and Lineage Differentiation of CD34+ Umbilical Cord Blood Hematopoietic Stem Cells

Abstract

Introduction

Cellular aging is a complicated event known for gradually reducing homeostasis, leading to a higher susceptibility to diseases and mortality. Since the behavior of Hematopoietic Stem Cells (HSCs) is potentially affected by plasma-derived exosomes, this study aimed to investigate whether the plasma-derived exosome of young and elderly human donors can deliver “youth” or “aging” signals into human umbilical cord blood-derived HSCs .

Methods

Exosomes were isolated from four young (Y-exo) and four old (O-exo) donors. Umbilical cord blood-derived HSCs were exposed to two concentrations of exosomes (5 and 10 μg/mL). Then, lineage differentiation (CD41 and CD38), the mRNA and protein expression of IL-1β and IL-6, and NFκB activity were evaluated using flow cytometry, qRT-PCR Enzyme-Linked Immunosorbent Assay (ELISA) methods, and western blot techniques, respectively.

Results

The lineage-specific markers CD41 and CD38 expression were increased after exposure to O-exo compared to Y-exo at the concentration of 10 μg/mL (P<0.001). The HSCs treated with 10 μg/mL O-exo increased protein and mRNA expression of IL-1β and IL-6 compared to Y-exo at 10 μg/mL concentration (P<0.01). Furthermore, a significant difference was seen in p-NF-κB levels between O-exo and Y-exo at the concentration of 10 μg/mL (P=0.0014).

Conclusion

Our findings advocated the concept that circulating exosomes of old and young individuals may differently affect the pathways involved in the aging process in HSCs.Therefore, exosomes may be applied as therapeutic agents for regenerative medicine.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266361607250418052405
2025-04-30
2025-09-13
Loading full text...

Full text loading...

References

  1. Berben L. Floris G. Wildiers H. Hatse S. Cancer and aging: Two tightly interconnected biological processes. Cancers 2021 13 6 1400 10.3390/cancers13061400 33808654
    [Google Scholar]
  2. Bashiri Dezfouli A. Pourfathollah A.A. Salar-Amoli J. Khosravi M. Nikogoftar-Zarif M. Yazdi M. Ali-Esfahani T. Evaluation of age effects on doxorubicin-induced toxicity in mesenchymal stem cells. Med. J. Islam. Repub. Iran 2017 31 1 572 578 10.14196/mjiri.31.98 29951399
    [Google Scholar]
  3. Cai Y. Song W. Li J. Jing Y. Liang C. Zhang L. Zhang X. Zhang W. Liu B. An Y. Li J. Tang B. Pei S. Wu X. Liu Y. Zhuang C.L. Ying Y. Dou X. Chen Y. Xiao F.H. Li D. Yang R. Zhao Y. Wang Y. Wang L. Li Y. Ma S. Wang S. Song X. Ren J. Zhang L. Wang J. Zhang W. Xie Z. Qu J. Wang J. Xiao Y. Tian Y. Wang G. Hu P. Ye J. Sun Y. Mao Z. Kong Q.P. Liu Q. Zou W. Tian X.L. Xiao Z.X. Liu Y. Liu J.P. Song M. Han J.D.J. Liu G.H. The landscape of aging. Sci. China Life Sci. 2022 65 12 2354 2454 10.1007/s11427‑022‑2161‑3 36066811
    [Google Scholar]
  4. Bashiri Dezfouli A. Salar-Amoli J. Pourfathollah A.A. Yazdi M. Nikougoftar-Zarif M. Khosravi M. Hassan J. Doxorubicin‐induced senescence through NF‐κB affected by the age of mouse mesenchymal stem cells. J. Cell. Physiol. 2020 235 3 2336 2349 10.1002/jcp.29140 31517394
    [Google Scholar]
  5. Khalil R. Diab-Assaf M. Lemaitre J.M. Emerging therapeutic approaches to target the dark side of senescent cells: New hopes to treat aging as a disease and to delay age-related pathologies. Cells 2023 12 6 915 10.3390/cells12060915 36980256
    [Google Scholar]
  6. Elias H.K. Bryder D. Park C.Y. Molecular mechanisms underlying lineage bias in aging hematopoiesis. Semin. Hematol. 2017 54 1 4 11 10.1053/j.seminhematol.2016.11.002 28088987
    [Google Scholar]
  7. Lee J.Y. Hong S.H. Hematopoietic stem cells and their roles in tissue regeneration. Int. J. Stem Cells 2020 13 1 1 12 10.15283/ijsc19127 31887851
    [Google Scholar]
  8. Li X. Zeng X. Xu Y. Wang B. Zhao Y. Lai X. Qian P. Huang H. Mechanisms and rejuvenation strategies for aged hematopoietic stem cells. J. Hematol. Oncol. 2020 13 1 31 10.1186/s13045‑020‑00864‑8 32252797
    [Google Scholar]
  9. Gekas C. Graf T. CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood 2013 121 22 4463 4472 10.1182/blood‑2012‑09‑457929 23564910
    [Google Scholar]
  10. Valletta S. Thomas A. Meng Y. Ren X. Drissen R. Sengül H. Di Genua C. Nerlov C. Micro-environmental sensing by bone marrow stroma identifies IL-6 and TGFβ1 as regulators of hematopoietic ageing. Nat. Commun. 2020 11 1 4075 10.1038/s41467‑020‑17942‑7 32796847
    [Google Scholar]
  11. Coppé J.-P. The senescence-associated secretory phenotype: The dark side of tumor suppression. Annu. Rev. Pathol. 2010 5 99 118 10.1146/annurev‑pathol‑121808‑102144 20078217
    [Google Scholar]
  12. Montazersaheb S. Cellular and molecular mechanisms involved in hematopoietic stem cell aging as a clinical prospect. Oxid. Med. Cell Longev. 2022 2022 2713483 10.1155/2022/2713483 35401928
    [Google Scholar]
  13. Singh A.K. Althoff M.J. Cancelas J.A. Signaling pathways regulating hematopoietic stem cell and progenitor aging. Curr. Stem Cell Rep. 2018 4 2 166 181 10.1007/s40778‑018‑0128‑6 31453073
    [Google Scholar]
  14. Wu X. Yang Y. Li W. Cheng Y. Li X. Huang C. Meng X. Wu B. Liu X. Zhang L. Lv X. Li J. Telomerase reverse transcriptase acts in a feedback loop with NF-κB pathway to regulate macrophage polarization in alcoholic liver disease. Sci. Rep. 2016 6 1 18685 10.1038/srep18685 28442705
    [Google Scholar]
  15. Christian F. Smith E. Carmody R. The regulation of NF-κB subunits by phosphorylation. Cells 2016 5 1 12 10.3390/cells5010012 26999213
    [Google Scholar]
  16. Groarke E.M. Young N.S. Aging and Hematopoiesis. Clin. Geriatr. Med. 2019 35 3 285 293 10.1016/j.cger.2019.03.001 31230730
    [Google Scholar]
  17. Flach J. Bakker S.T. Mohrin M. Conroy P.C. Pietras E.M. Reynaud D. Alvarez S. Diolaiti M.E. Ugarte F. Forsberg E.C. Le Beau M.M. Stohr B.A. Méndez J. Morrison C.G. Passegué E. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 2014 512 7513 198 202 10.1038/nature13619 25079315
    [Google Scholar]
  18. Bolton K. Update on clonal hematopoiesis. Clin. Lymphoma Myeloma Leuk. 2021 21 S32 S33 10.1016/S2152‑2650(21)01199‑X
    [Google Scholar]
  19. Simsek T. Kocabas F. Zheng J. DeBerardinis R.J. Mahmoud A.I. Olson E.N. Schneider J.W. Zhang C.C. Sadek H.A. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010 7 3 380 390 10.1016/j.stem.2010.07.011 20804973
    [Google Scholar]
  20. Ludin A. Gur-Cohen S. Golan K. Kaufmann K.B. Itkin T. Medaglia C. Lu X.J. Ledergor G. Kollet O. Lapidot T. Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxid. Redox Signal. 2014 21 11 1605 1619 10.1089/ars.2014.5941 24762207
    [Google Scholar]
  21. Camussi G. Deregibus M.C. Cantaluppi V. Role of stem-cell-derived microvesicles in the paracrine action of stem cells. Biochem. Soc. Trans. 2013 41 1 283 287 10.1042/BST20120192 23356298
    [Google Scholar]
  22. Noren Hooten N. Byappanahalli A.M. Vannoy M. Omoniyi V. Evans M.K. Influences of age, race, and sex on extracellular vesicle characteristics. Theranostics 2022 12 9 4459 4476 10.7150/thno.72676 35673574
    [Google Scholar]
  23. De Jong O.G. Van Balkom B.W.M. Schiffelers R.M. Bouten C.V.C. Verhaar M.C. Extracellular vesicles: Potential roles in regenerative medicine. Front. Immunol. 2014 5 608 10.3389/fimmu.2014.00608 25520717
    [Google Scholar]
  24. Fernández-Messina L. Gutiérrez-Vázquez C. Rivas-García E. Sánchez-Madrid F. de la Fuente H. Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol. Cell 2015 107 3 61 77 10.1111/boc.201400081 25564937
    [Google Scholar]
  25. Melo S.A. Sugimoto H. O’Connell J.T. Kato N. Villanueva A. Vidal A. Qiu L. Vitkin E. Perelman L.T. Melo C.A. Lucci A. Ivan C. Calin G.A. Kalluri R. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 2014 26 5 707 721 10.1016/j.ccell.2014.09.005 25446899
    [Google Scholar]
  26. Mathivanan S. Ji H. Simpson R.J. Exosomes: Extracellular organelles important in intercellular communication. J. Proteomics 2010 73 10 1907 1920 10.1016/j.jprot.2010.06.006 20601276
    [Google Scholar]
  27. Dragovic R.A. Gardiner C. Brooks A.S. Tannetta D.S. Ferguson D.J.P. Hole P. Carr B. Redman C.W.G. Harris A.L. Dobson P.J. Harrison P. Sargent I.L. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine 2011 7 6 780 788 10.1016/j.nano.2011.04.003 21601655
    [Google Scholar]
  28. Chen W. Zhu J. Lin F. Xu Y. Feng B. Feng X. Sheng X. Shi X. Pan Q. Yang J. Yu J. Li L. Cao H. Human placenta mesenchymal stem cell-derived exosomes delay H2O2-induced aging in mouse cholangioids. Stem Cell Res. Ther. 2021 12 1 201 10.1186/s13287‑021‑02271‑3 33752720
    [Google Scholar]
  29. Chakravarti D. LaBella K.A. DePinho R.A. Telomeres: History, health, and hallmarks of aging. Cell 2021 184 2 306 322 10.1016/j.cell.2020.12.028 33450206
    [Google Scholar]
  30. Prattichizzo F. Micolucci L. Cricca M. De Carolis S. Mensà E. Ceriello A. Procopio A.D. Bonafè M. Olivieri F. Exosome-based immunomodulation during aging: A nano-perspective on inflamm-aging. Mech. Ageing Dev. 2017 168 44 53 10.1016/j.mad.2017.02.008 28259747
    [Google Scholar]
  31. Ahmadi M. Rezaie J. Ageing and mesenchymal stem cells derived exosomes: Molecular insight and challenges. Cell Biochem. Funct. 2021 39 1 60 66 10.1002/cbf.3602 33164248
    [Google Scholar]
  32. Oh M. Lee J. Kim Y.J. Rhee W.J. Park J.H. Exosomes derived from human induced pluripotent stem cells ameliorate the aging of skin fibroblasts. Int. J. Mol. Sci. 2018 19 6 1715 10.3390/ijms19061715 29890746
    [Google Scholar]
  33. Mleczko J. Ortega F.J. Falcon-Perez J.M. Wabitsch M. Fernandez-Real J.M. Mora S. Extracellular vesicles from hypoxic adipocytes and obese subjects reduce insulin‐stimulated glucose uptake. Mol. Nutr. Food Res. 2018 62 5 1700917 10.1002/mnfr.201700917 29292863
    [Google Scholar]
  34. Albeni̇z I. Türker-Şener L. Baş A. Kaleli̇oğlu İ. Nurten R. Isolation of hematopoietic stem cells and the effect of CD38 expression during the early erythroid progenitor cell development process. Oncol. Lett. 2012 3 1 55 60 10.3892/ol.2011.455 22740856
    [Google Scholar]
  35. Afrisham R. Anti-inflammatory effects of plasma circulating exosomes obtained from normal-weight and obese subjects on hepatocytes. Endocr. Metab. Immune Disord. Drug Targets 2021 21 3 478 484 10.2174/1871530320666200505121426 32368986
    [Google Scholar]
  36. Afrisham R. Sadegh-Nejadi S. Meshkani R. Emamgholipour S. Paknejad M. Effect of circulating exosomes derived from normal-weight and obese women on gluconeogenesis, glycogenesis, lipogenesis and secretion of FGF21 and fetuin A in HepG2 cells. Diabetol. Metab. Syndr. 2020 12 1 32 10.1186/s13098‑020‑00540‑4 32322309
    [Google Scholar]
  37. Pahlevan Kakhki M. TRIzol-based RNA extraction: A reliable method for gene expression studies. J. Sci. Islam. Rep. Iran. 2014 25 1 13 17
    [Google Scholar]
  38. Robbins P.D. Extracellular vesicles and aging. Stem Cell Investig. 2017 4 12 98 10.21037/sci.2017.12.03 29359137
    [Google Scholar]
  39. Manni G. Buratta S. Pallotta M.T. Chiasserini D. Di Michele A. Emiliani C. Giovagnoli S. Pascucci L. Romani R. Bellezza I. Urbanelli L. Fallarino F. Extracellular vesicles in aging: An emerging hallmark? Cells 2023 12 4 527 10.3390/cells12040527 36831194
    [Google Scholar]
  40. Im K. Baek J. Kwon W.S. Rha S.Y. Hwang K.W. Kim U. Min H. The comparison of exosome and exosomal cytokines between young and old individuals with or without gastric cancer. Int. J. Gerontol. 2018 12 3 233 238 10.1016/j.ijge.2018.03.013
    [Google Scholar]
  41. Xun J. Li C. Liu M. Mei Y. Zhou Q. Wu B. Xie F. Liu Y. Dai R. Serum exosomes from young rats improve the reduced osteogenic differentiation of BMSCs in aged rats with osteoporosis after fatigue loading in vivo. Stem Cell Res. Ther. 2021 12 1 424 10.1186/s13287‑021‑02449‑9 34315544
    [Google Scholar]
  42. Farrokhi V. Afrisham R. Soleimani M. Ahmadvand M. Mousavi S.H. Kashanikhatib Z. Owchi S. Mohammadali F. Alizadeh S. The effect of circulating exosomes obtained from young and old individuals on the aging related hTERT and P16 expression in hematopoietic stem cells. Nat. Prod. J. 2024 14 8 e140324227998 10.2174/0122103155285692240301052306
    [Google Scholar]
  43. Moradi R. Afrisham R. Kashanikhatib Z. Mousavi S.H. Soleimani M. Alizadeh S. The comparative effect of plasma exosomes of young and old people on the expression of BCL-2 and BAX genes in hematopoietic stem cells. Indian J. Hematol. Blood Transfus. 2024 40 4 647 654 10.1007/s12288‑024‑01779‑x 39469166
    [Google Scholar]
  44. Lei Q. Gao F. Liu T. Ren W. Chen L. Cao Y. Chen W. Guo S. Zhang Q. Chen W. Wang H. Chen Z. Li Q. Hu Y. Guo A.Y. Extracellular vesicles deposit PCNA to rejuvenate aged bone marrow–derived mesenchymal stem cells and slow age-related degeneration. Sci. Transl. Med. 2021 13 578 eaaz8697 10.1126/scitranslmed.aaz8697 33504653
    [Google Scholar]
  45. Fafián-Labora J. Morente-López M. Sánchez-Dopico M.J. Arntz O.J. van de Loo F.A.J. De Toro J. Arufe M.C. Influence of mesenchymal stem cell-derived extracellular vesicles in vitro and their role in ageing. Stem Cell Res. Ther. 2020 11 1 13 10.1186/s13287‑019‑1534‑0 31900239
    [Google Scholar]
  46. Chen X. Small extracellular vesicles from young plasma reverse age-related functional declines by improving mitochondrial energy metabolism. Nat. Aging 2024 4 6 814 838 10.1038/s43587‑024‑00612‑4 38627524
    [Google Scholar]
  47. Kodidela S. Ranjit S. Sinha N. McArthur C. Kumar A. Kumar S. Cytokine profiling of exosomes derived from the plasma of HIV-infected alcohol drinkers and cigarette smokers. PLoS One 2018 13 7 e0201144 10.1371/journal.pone.0201144 30052665
    [Google Scholar]
  48. Gomes de Andrade G. Reck Cechinel L. Bertoldi K. Galvão F. Valdeci Worm P. Rodrigues Siqueira I. The aging process alters IL-1β and CD63 levels differently in extracellular vesicles obtained from the plasma and cerebrospinal fluid. Neuroimmunomodulation 2018 25 1 18 22 10.1159/000488943 30021215
    [Google Scholar]
  49. Frisch B.J. Hoffman C.M. Latchney S.E. LaMere M.W. Myers J. Ashton J. Li A.J. Saunders J. II Palis J. Perkins A.S. McCabe A. Smith J.N.P. McGrath K.E. Rivera-Escalera F. McDavid A. Liesveld J.L. Korshunov V.A. Elliott M.R. MacNamara K.C. Becker M.W. Calvi L.M. Aged marrow macrophages expand platelet-biased hematopoietic stem cells via interleukin-1B. JCI Insight 2019 4 10 e124213 10.1172/jci.insight.124213 30998506
    [Google Scholar]
  50. Sanz-Ros J. Romero-García N. Mas-Bargues C. Monleón D. Gordevicius J. Brooke R.T. Dromant M. Díaz A. Derevyanko A. Guío-Carrión A. Román-Domínguez A. Inglés M. Blasco M.A. Horvath S. Viña J. Borrás C. Small extracellular vesicles from young adipose-derived stem cells prevent frailty, improve health span, and decrease epigenetic age in old mice. Sci. Adv. 2022 8 42 eabq2226 10.1126/sciadv.abq2226 36260670
    [Google Scholar]
  51. Grants J.M. Wegrzyn J. Hui T. O’Neill K. Shadbolt M. Knapp D.J.H.F. Parker J. Deng Y. Gopal A. Docking T.R. Fuller M. Li J. Boldin M. Eaves C.J. Hirst M. Karsan A. Altered microRNA expression links IL6 and TNF-induced inflammaging with myeloid malignancy in humans and mice. Blood 2020 135 25 2235 2251 10.1182/blood.2019003105 32384151
    [Google Scholar]
  52. Dolati S. Shakouri S.K. Dolatkhah N. Yousefi M. Jadidi- Niaragh F. Sanaie S. The role of exosomal non‐coding RNAs in aging‐related diseases. Biofactors 2021 47 3 292 310 10.1002/biof.1715 33621363
    [Google Scholar]
  53. Grenier-Pleau I. Tyryshkin K. Le T.D. Rudan J. Bonneil E. Thibault P. Zeng K. Lässer C. Mallinson D. Lamprou D. Hui J. Postovit L.M. Chan E.Y.W. Abraham S.A. Blood extracellular vesicles from healthy individuals regulate hematopoietic stem cells as humans age. Aging Cell 2020 19 11 e13245 10.1111/acel.13245 33029858
    [Google Scholar]
  54. de Yébenes V.G. Briones A.M. Martos-Folgado I. Mur S.M. Oller J. Bilal F. González-Amor M. Méndez-Barbero N. Silla-Castro J.C. Were F. Jiménez-Borreguero L.J. Sánchez-Cabo F. Bueno H. Salaices M. Redondo J.M. Ramiro A.R. Aging-associated miR-217 aggravates atherosclerosis and promotes cardiovascular dysfunction. Arterioscler. Thromb. Vasc. Biol. 2020 40 10 2408 2424 10.1161/ATVBAHA.120.314333 32847388
    [Google Scholar]
  55. Smith-Vikos T. Slack F.J. MicroRNAs and their roles in aging. J. Cell Sci. 2012 125 1 7 17 10.1242/jcs.099200 22294612
    [Google Scholar]
  56. Abbasi Sourki P. Pourfathollah A.A. Kaviani S. Soufi Zomorrod M. Ajami M. Wollenberg B. Multhoff G. Bashiri Dezfouli A. The profile of circulating extracellular vesicles depending on the age of the donor potentially drives the rejuvenation or senescence fate of hematopoietic stem cells. Exp. Gerontol. 2023 175 112142 10.1016/j.exger.2023.112142 36921675
    [Google Scholar]
  57. Chen Z. Amro E.M. Becker F. Hölzer M. Rasa S.M.M. Njeru S.N. Han B. Di Sanzo S. Chen Y. Tang D. Tao S. Haenold R. Groth M. Romanov V.S. Kirkpatrick J.M. Kraus J.M. Kestler H.A. Marz M. Ori A. Neri F. Morita Y. Rudolph K.L. Cohesin-mediated NF-κB signaling limits hematopoietic stem cell self-renewal in aging and inflammation. J. Exp. Med. 2019 216 1 152 175 10.1084/jem.20181505 30530755
    [Google Scholar]
  58. de Lencastre A. Pincus Z. Zhou K. Kato M. Lee S.S. Slack F.J. MicroRNAs both promote and antagonize longevity in C. elegans. Curr. Biol. 2010 20 24 2159 2168 10.1016/j.cub.2010.11.015 21129974
    [Google Scholar]
  59. Ibáñez-Ventoso C. Yang M. Guo S. Robins H. Padgett R.W. Driscoll M. Modulated microRNA expression during adult lifespan in Caenorhabditis elegans. Aging Cell 2006 5 3 235 246 10.1111/j.1474‑9726.2006.00210.x 16842496
    [Google Scholar]
  60. Karp X. Hammell M. Ow M.C. Ambros V. Effect of life history on microRNA expression during C. elegans development. RNA 2011 17 4 639 651 10.1261/rna.2310111 21343388
    [Google Scholar]
  61. Kato M. Chen X. Inukai S. Zhao H. Slack F.J. Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans. RNA 2011 17 10 1804 1820 10.1261/rna.2714411 21810936
    [Google Scholar]
  62. Fulzele S. Mendhe B. Khayrullin A. Johnson M. Kaiser H. Liu Y. Isales C.M. Hamrick M.W. Muscle-derived miR-34a increases with age in circulating extracellular vesicles and induces senescence of bone marrow stem cells. Aging 2019 11 6 1791 1803 10.18632/aging.101874 30910993
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266361607250418052405
Loading
/content/journals/ctmc/10.2174/0115680266361607250418052405
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: hematopoietic stem cells ; inflammation ; aging ; differentiation ; Exosomes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test