Skip to content
2000
Volume 25, Issue 24
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Alzheimer is a progressive neurodegenerative disease characterized by change in brain that led to the buildup of specific proteins, ultimately causing brain shrinkage and the death of brain cells. It is the leading cause of dementia, manifesting as a gradual decline in memory, cognitive abilities, behavior, and social functioning, which severely impairs a person’s ability to carry out daily activities. The complexity of Alzheimer’s poses significant challenges to modern medicine, making the development of new therapeutic strategies crucial. Indole derivatives, with their broad spectrum of pharmacological activities, have garnered attention for their potential in treating Alzheimer’s disease. This review provides a detailed summary of recent progress in developing indole derivatives as therapeutic agents for Alzheimer's disease. It thoroughly examines the pharmacological properties of various indole derivatives, including their mechanisms of action. These compounds have been shown to influence several processes, such as amyloid-beta aggregation, MAO inhibition, AChE and BuChE inhibition. Furthermore, this review discusses the structural modifications of indole derivatives designed to improve their therapeutic effectiveness.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266358563250331175140
2025-04-14
2025-12-12
Loading full text...

Full text loading...

References

  1. AyeniE.A. GongY. YuanH. HuY. BaiX. LiaoX. Medicinal plants for anti-neurodegenerative diseases in West Africa.J. Ethnopharmacol.202228511446810.1016/j.jep.2021.114468 34390796
    [Google Scholar]
  2. AuddyB. FerreiraM. BlasinaF. LafonL. ArredondoF. DajasF. TripathiP.C. SealT. MukherjeeB. Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases.J. Ethnopharmacol.2003842-313113810.1016/S0378‑8741(02)00322‑7 12648805
    [Google Scholar]
  3. BrownR.C. LockwoodA.H. SonawaneB.R. Neurodegenerative diseases: An overview of environmental risk factors.Environ. Health Perspect.200511391250125610.1289/ehp.7567 16140637
    [Google Scholar]
  4. HardyJ. Gwinn-HardyK. Genetic classification of primary neurodegenerative disease.In: Science199828253911075107910.1126/science.282.5391.1075 9804538
    [Google Scholar]
  5. JennekensF.G.I. A short history of the notion of neurodegenerative disease.J. Hist. Neurosci.2014231859410.1080/0964704X.2013.809297 24512132
    [Google Scholar]
  6. LaceG.L. WhartonS.B. InceP.G. A brief history of τ: The evolving view of the microtubule-associated protein τ in neurodegenerative diseases.Clin. Neuropathol.2007263435810.5414/NPP26043 17416103
    [Google Scholar]
  7. CruzD.C. NelsonL.M. McguireV. LongstrethW.T. Physical trauma and family history of neurodegenerative diseases in amyotrophic lateral sclerosis: A population-based case-control study.Neuroepidemiology199918210111010.1159/000069413 10023133
    [Google Scholar]
  8. ErkkinenM.G. KimM.O. GeschwindM.D. Clinical neurology and epidemiology of the major neurodegenerative diseases.Cold Spring Harb. Perspect. Biol.2018104a03311810.1101/cshperspect.a033118 28716886
    [Google Scholar]
  9. FerriC.P. PrinceM. BrayneC. BrodatyH. FratiglioniL. GanguliM. HallK. HasegawaK. HendrieH. HuangY. JormA. MathersC. MenezesP.R. RimmerE. ScazufcaM. Global prevalence of dementia: A Delphi consensus study.Lancet200536695032112211710.1016/S0140‑6736(05)67889‑0 16360788
    [Google Scholar]
  10. ScheltensP. de StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. Alzheimer’s disease.In: Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  11. BlennowK. de LeonM.J. ZetterbergH. Alzheimer’s disease.In: Lancet2006368953338740310.1016/S0140‑6736(06)69113‑7 16876668
    [Google Scholar]
  12. SnyderP.J. AlberJ. AltC. BainL.J. BoumaB.E. BouwmanF.H. DeBucD.C. CampbellM.C.W. CarrilloM.C. ChewE.Y. CordeiroM.F. DueñasM.R. FernándezB.M. Koronyo-HamaouiM. La MorgiaC. CarareR.O. SaddaS.R. van WijngaardenP. SnyderH.M. Retinal imaging in Alzheimer’s and neurodegenerative diseases.Alzheimers Dement.202117110311110.1002/alz.12179 33090722
    [Google Scholar]
  13. GuoL. DugganJ. CordeiroM. Alzheimer’s disease and retinal neurodegeneration.Curr. Alzheimer Res.20107131410.2174/156720510790274491 20205667
    [Google Scholar]
  14. DoustarJ. TorbatiT. BlackK.L. KoronyoY. Koronyo-HamaouiM. Optical coherence tomography in Alzheimer’s disease and other neurodegenerative diseases.Front. Neurol.2017870110.3389/fneur.2017.00701 29312125
    [Google Scholar]
  15. ScheltensP. BlennowK. BretelerM.M.B. de StrooperB. FrisoniG.B. SallowayS. van der FlierW.M. Alzheimer’s disease.Lancet20163881004350551710.1016/S0140‑6736(15)01124‑1 26921134
    [Google Scholar]
  16. TomberlinJ.K. CrippenT.L. WuG. GriffinA.S. WoodT.K. KilnerR.M. Indole: An evolutionarily conserved influencer of behavior across kingdoms.BioEssays2017392160020310.1002/bies.201600203 28009057
    [Google Scholar]
  17. DarkohC. ChappellC. GonzalesC. OkhuysenP. A rapid and specific method for the detection of indole in complex biological samples.Appl. Environ. Microbiol.201581238093809710.1128/AEM.02787‑15 26386049
    [Google Scholar]
  18. LakhdarS. WestermaierM. TerrierF. GoumontR. BoubakerT. OfialA.R. MayrH. Nucleophilic reactivities of indoles.J. Org. Chem.200671249088909510.1021/jo0614339 17109534
    [Google Scholar]
  19. SomersK.R.F. KryachkoE.S. CeulemansA. Theoretical study of indole: Protonation, indolyl radical, tautomers of indole, and its interaction with water.Chem. Phys.20043011617910.1016/j.chemphys.2004.02.010
    [Google Scholar]
  20. GribbleG.W. Recent developments in indole ring synthesis—methodology and applications.J. Chem. Soc., Perkin Trans. 12000171045107510.1039/a909834h
    [Google Scholar]
  21. EftinkM.R. SelvidgeL.A. CallisP.R. RehmsA.A. Photophysics of indole derivatives: Experimental resolution of La and Lb transitions and comparison with theory.J. Phys. Chem.19909493469347910.1021/j100372a022
    [Google Scholar]
  22. CasarilA.M. DominguesM. BampiS.R. LourençoD.A. SmaniottoT.Â. SegattoN. VieiraB. SeixasF.K. CollaresT. LenardãoE.J. SavegnagoL. The antioxidant and immunomodulatory compound 3-[(4-chlorophenyl)selanyl]-1-methyl-1H-indole attenuates depression-like behavior and cognitive impairment developed in a mouse model of breast tumor.Brain Behav. Immun.20208422924110.1016/j.bbi.2019.12.005 31837417
    [Google Scholar]
  23. BampiS.R. CasarilA.M. FronzaM.G. DominguesM. VieiraB. BegniniK.R. SeixasF.K. CollaresT.V. LenardãoE.J. SavegnagoL. The selenocompound 1-methyl-3-(phenylselanyl)-1H-indole attenuates depression-like behavior, oxidative stress, and neuroinflammation in streptozotocin-treated mice.Brain Res. Bull.202016115816510.1016/j.brainresbull.2020.05.008 32470357
    [Google Scholar]
  24. PadmavathiS. VemulaM. KomreG. KattupalliS. KondamudiS. LagadapatiL. A comprehensive knowledge on review of indole derivatives.Int. J. Pharma Bio Sci.2021114192410.22376/ijpbs/lpr.2021.11.4.P19‑24
    [Google Scholar]
  25. Rezaul IslamM. AkashS. Murshedul IslamM. SarkarN. KumerA. ChakrabortyS. DhamaK. Ahmed Al-ShaeriM. AnwarY. WilairatanaP. RaufA. HalawaniI.F. AlzahraniF.M. KhanH. Alkaloids as drug leads in Alzheimer’s treatment: Mechanistic and therapeutic insights.Brain Res.2024183414888610.1016/j.brainres.2024.148886 38582413
    [Google Scholar]
  26. GeorgeN. Jawaid AkhtarM. Al BalushiK.A. Alam KhanS. Rational drug design strategies for the development of promising multi-target directed indole hybrids as anti-alzheimer agents.Bioorg. Chem.202212710594110.1016/j.bioorg.2022.105941 35714473
    [Google Scholar]
  27. KashyapP. KalaiselvanV. KumarR. KumarS. Ajmalicine and reserpine: Indole alkaloids as multi-target directed ligands towards factors implicated in Alzheimer’s disease.Molecules20202571609
    [Google Scholar]
  28. RosenthalS. KaufmanS. Vincristine neurotoxicity.Ann. Intern. Med.197480673373710.7326/0003‑4819‑80‑6‑733 4364934
    [Google Scholar]
  29. RybakS.M. PearsonJ.W. FoglerW.E. VolkerK. SpenceS.E. NewtonD.L. MikulskiS.M. ArdeltW. RiggsC.W. KungH.F. LongoD.L. Enhancement of vincristine cytotoxicity in drug-resistant cells by simultaneous treatment with onconase, an antitumor ribonuclease.J. Natl. Cancer Inst.1996881174775310.1093/jnci/88.11.747 8637029
    [Google Scholar]
  30. MooreA. PinkertonR. Vincristine: Can its therapeutic index be enhanced?Pediatr. Blood Cancer20095371180118710.1002/pbc.22161 19588521
    [Google Scholar]
  31. DuG.H. ZhangY.W. KongX.Y. WangJ.H. DuG.H. Vinblastine and vincristine.In: Natural Small Molecule Drugs from Plants.Springer2018551557
    [Google Scholar]
  32. RtibiK. GramiD. SelmiS. AmriM. SebaiH. MarzoukiL. Vinblastine, an anticancer drug, causes constipation and oxidative stress as well as others disruptions in intestinal tract in rat.Toxicol. Rep.2017422122510.1016/j.toxrep.2017.04.006 28959642
    [Google Scholar]
  33. FergusonP.J. PhillipsJ.R. SeinerM. Differential activity of vincristine and vinblastine against cultured cells.Cancer Res.198444833073312 6744266
    [Google Scholar]
  34. Rojas-DuranR. González-AspajoG. Ruiz-MartelC. BourdyG. Doroteo-OrtegaV.H. Alban-CastilloJ. RobertG. AubergerP. DeharoE. Anti-inflammatory activity of Mitraphylline isolated from Uncaria tomentosa bark.J. Ethnopharmacol.2012143380180410.1016/j.jep.2012.07.015 22846434
    [Google Scholar]
  35. García PradoE. García GimenezM.D. De la Puerta VázquezR. Espartero SánchezJ.L. Sáenz RodríguezM.T. Antiproliferative effects of mitraphylline, a pentacyclic oxindole alkaloid of Uncaria tomentosa on human glioma and neuroblastoma cell lines.Phytomedicine200714428028410.1016/j.phymed.2006.12.023 17296291
    [Google Scholar]
  36. Montserrat-de la PazS. Fernandez-ArcheA. de la PuertaR. QuilezA.M. MurianaF.J.G. Garcia-GimenezM.D. BermudezB. Mitraphylline inhibits lipopolysaccharide-mediated activation of primary human neutrophils.Phytomedicine201623214114810.1016/j.phymed.2015.12.015 26926175
    [Google Scholar]
  37. TangW. McCormickA. LiJ. MassonE. Clinical pharmacokinetics and pharmacodynamics of cediranib.Clin. Pharmacokinet.201756768970210.1007/s40262‑016‑0488‑y 27943222
    [Google Scholar]
  38. LoRussoP. ShieldsA.F. GadgeelS. VaishampayanU. GuthrieT. PuchalskiT. XuJ. LiuQ. Cediranib in combination with various anticancer regimens: Results of a phase I multi-cohort study.Invest. New Drugs20112961395140510.1007/s10637‑010‑9484‑5 20607586
    [Google Scholar]
  39. DietrichJ. WangD. BatchelorT.T. Cediranib: profile of a novel anti-angiogenic agent in patients with glioblastoma.Expert Opin. Investig. Drugs200918101549155710.1517/13543780903183528 19671039
    [Google Scholar]
  40. Garnock-JonesK.P. Panobinostat: First global approval.Drugs201575669570410.1007/s40265‑015‑0388‑8 25837990
    [Google Scholar]
  41. LaubachJ.P. MoreauP. San-MiguelJ.F. RichardsonP.G. Panobinostat for the treatment of multiple myeloma.Clin. Cancer Res.201521214767477310.1158/1078‑0432.CCR‑15‑0530 26362997
    [Google Scholar]
  42. SamaraweeraL. AdomakoA. Rodriguez-GabinA. McDaidH.M. A novel indication for panobinostat as a senolytic drug in NSCLC and HNSCC.Sci. Rep.201771190010.1038/s41598‑017‑01964‑1 28507307
    [Google Scholar]
  43. ArendsT.J.H. Alfred WitjesJ. Apaziquone for nonmuscle invasive bladder cancer.Urol. Clin. North Am.2020471738210.1016/j.ucl.2019.09.009 31757302
    [Google Scholar]
  44. YutkinV. ChinJ. Apaziquone as an intravesical therapeutic agent for urothelial non-muscle-invasive bladder cancer.Expert Opin. Investig. Drugs201221225126010.1517/13543784.2012.646081 22188461
    [Google Scholar]
  45. LeeC.R. PloskerG.L. McTavishD. Tropisetron.Drugs199346592594310.2165/00003495‑199346050‑00009 7507039
    [Google Scholar]
  46. de BruijnK.M. Tropisetron.Drugs199243Suppl. 3112210.2165/00003495‑199200433‑00005 1380428
    [Google Scholar]
  47. FereshtehS. KalhorH. SepehrA. RahimiH. ZafariM. Ahangari CohanR. BadmastiF. Rational design of inhibitors against LpxA protein of Acinetobacter baumannii using a virtual screening method.J. Indian Chem. Soc.202299210031910.1016/j.jics.2021.100319
    [Google Scholar]
  48. VliegheP. LisowskiV. MartinezJ. KhrestchatiskyM. Synthetic therapeutic peptides: Science and market.Drug Discov. Today2010151-2405610.1016/j.drudis.2009.10.009 19879957
    [Google Scholar]
  49. LeeK.I. KimM.J. KohH. LeeJ.I. NamkoongS. OhW.K. ParkJ. The anti-hypertensive drug reserpine induces neuronal cell death through inhibition of autophagic flux.Biochem. Biophys. Res. Commun.2015462440240810.1016/j.bbrc.2015.04.145 25976674
    [Google Scholar]
  50. MetzgerR.R. BrownJ.M. SandovalV. RauK.S. ElwanM.A. MillerG.W. HansonG.R. FleckensteinA.E. Inhibitory effect of reserpine on dopamine transporter function.Eur. J. Pharmacol.20024561-3394310.1016/S0014‑2999(02)02647‑X 12450567
    [Google Scholar]
  51. ToddP.A. FittonA. Perindopril.Drugs19914219011410.2165/00003495‑199142010‑00006 1718688
    [Google Scholar]
  52. AlfakihK. HallA.S. Perindopril.Expert Opin. Pharmacother.200671637110.1517/14656566.7.1.63 16370923
    [Google Scholar]
  53. AelligW.H. Clinical pharmacology of pindolol.Am. Heart J.1982104234635610.1016/0002‑8703(82)90125‑9 6125094
    [Google Scholar]
  54. ArtigasF. AdellA. CeladaP. Pindolol augmentation of antidepressant response.Curr. Drug Targets20067213914710.2174/138945006775515446 16475955
    [Google Scholar]
  55. MorinD. ZiniR. LedewynS. ColonnaJ.P. CzajkaM. TillementJ.P. Binedaline binding to plasma proteins and red blood cells in humans.J. Pharm. Sci.198574772773010.1002/jps.2600740706 4032243
    [Google Scholar]
  56. MorinD. ZiniR. UrienS. TillementJ.P. Pharmacological profile of binedaline, a new antidepressant drug.J. Pharmacol. Exp. Ther.19892491288296 2540319
    [Google Scholar]
  57. TriggleD.J. Dictionary of pharmacological agents.LondonChapman & Hall1997
    [Google Scholar]
  58. BlierP. de MontignyC. TardifD. Effects of the two antidepressant drugs mianserin and indalpine on the serotonergic system: Single-cell studies in the rat.Psychopharmacology (Berl.)198484224224910.1007/BF00427453 6438684
    [Google Scholar]
  59. UzanA. KaboucheM. RataudJ. le FurG. Pharmacological evidence of a possible tryptaminergic regulation of opiate receptors by using indalpine, a selective 5-HT uptake inhibitor.Neuropharmacology1980191110751079
    [Google Scholar]
  60. TamS.W. WorcelM. WyllieM. Yohimbine: A clinical review.Pharmacol. Ther.200191321524310.1016/S0163‑7258(01)00156‑5
    [Google Scholar]
  61. ErnstE. PittlerM.H. Yohimbine for erectile dysfunction: A systematic review and meta-analysis of randomized clinical trials.J. Urol.1998159243343610.1016/S0022‑5347(01)63942‑9 9649257
    [Google Scholar]
  62. LucasS. The pharmacology of indomethacin.Headache201656243644610.1111/head.12769 26865183
    [Google Scholar]
  63. HarmanR.E. MeisingerM.A. DavisG.E. KuehlF.A.Jr The metabolites of indomethacin, a new anti-inflammatory drug.J. Pharmacol. Exp. Ther.19641432215220 14163995
    [Google Scholar]
  64. AdkinsJ.C. BrogdenR.N. Zafirlukast.Drugs199855112114410.2165/00003495‑199855010‑00008 9463793
    [Google Scholar]
  65. DekhuijzenP.N.R. KoopmansP.P. Pharmacokinetic profile of zafirlukast.Clin. Pharmacokinet.200241210511410.2165/00003088‑200241020‑00003 11888331
    [Google Scholar]
  66. MajJ. KotodziejczykK. RogóżZ. SkuzaG. Roxindole, a potential antidepressant I. Effect on the dopamine system.J. Neural Transm.1996103562764110.1007/BF01273159 8811507
    [Google Scholar]
  67. BennasarM.L. SoléD. RocaT. ValldoseraM. Exploratory studies toward a total synthesis of pericine (subincanadine E).Tetrahedron201571152246225410.1016/j.tet.2015.02.074
    [Google Scholar]
  68. EverettR.M. DescotesG. Nephrotoxicity of pravadoline maleate (WIN 48098-6) in dogs: Evidence of maleic acid-induced acute tubular necrosis.Fundam. Appl. Toxicol.1993211596510.1006/faat.1993.1072
    [Google Scholar]
  69. ShattatG. Al-QirimT. SheikhaG.A. Al-HiariY. SweidanK. Al-QirimR. HikmatS. HamadnehL. Al-kouzS. The Pharmacological effects of novel 5-fluoro- N -(9,10-dihydro-9,10-dioxoanthracen-8-yl)-1 H -indole-2-carboxamide derivatives on plasma lipid profile of Triton-WR-1339-induced Wistar rats.J. Enzyme Inhib. Med. Chem.201328486386910.3109/14756366.2012.692085 22651797
    [Google Scholar]
  70. WanY. LiY. YanC. YanM. TangZ. Indole: A privileged scaffold for the design of anti-cancer agents.Eur. J. Med. Chem.201918318311169110.1016/j.ejmech.2019.111691 31536895
    [Google Scholar]
  71. TanC. YangS.J. ZhaoD.H. LiJ. YinL.Q. Antihypertensive activity of indole and indazole analogues: A review.Arab. J. Chem.202215510375610.1016/j.arabjc.2022.103756
    [Google Scholar]
  72. PradoN.J. RamirezD. MazzeiL. ParraM. CasarottoM. CalvoJ.P. Cuello carrión, D.; Ponce Zumino, A.Z.; Diez, E.R.; Camargo, A.; Manucha, W. Anti-inflammatory, antioxidant, antihypertensive, and antiarrhythmic effect of indole-3-carbinol, a phytochemical derived from cruciferous vegetables.Heliyon202282e0898910.1016/j.heliyon.2022.e08989 35243102
    [Google Scholar]
  73. BlaisingJ. PolyakS.J. PécheurE.I. Arbidol as a broad-spectrum antiviral: An update.Antiviral Res.20141071849410.1016/j.antiviral.2014.04.006 24769245
    [Google Scholar]
  74. DodickD.W. MartinV. Triptans and CNS side-effects.Cephalalgia200424641742410.1111/j.1468‑2982.2004.00694.x 15154851
    [Google Scholar]
  75. Kochanowska-KaramyanA.J. HamannM.T. Marine indole alkaloids: Potential new drug leads for the control of depression and anxiety.Chem. Rev.201011084489449710.1021/cr900211p 20380420
    [Google Scholar]
  76. PesaricoA.P. BirmannP.T. PintoR. PadilhaN.B. LenardãoE.J. SavegnagoL. Short- and long-term repeated forced swim stress induce depressive-like phenotype in mice: Effectiveness of 3-[(4-Chlorophenyl)Selanyl]-1-Methyl-1H-Indole.Front. Behav. Neurosci.20201414010.3389/fnbeh.2020.00140 33192355
    [Google Scholar]
  77. KimT.H. PaeA.N. Translocator protein (TSPO) ligands for the diagnosis or treatment of neurodegenerative diseases: A patent review (2010–2015; part 1).Expert Opin. Ther. Pat.201626111325135110.1080/13543776.2016.1230606 27607364
    [Google Scholar]
  78. GirdharS. GirdharA. Kumar VermaS. LatherV. PanditaD. Plant derived alkaloids in major neurodegenerative diseases: from animal models to clinical trials.J. Ayurved. Herb. Med.2015139110010.31254/jahm.2015.1307
    [Google Scholar]
  79. ShadabS. RaoG.S.N.K. PaliwalD. YadavD. AlamA. SinghA. SultanaM.J. A comprehensive review of herbal medicines for the treatment of alzheimer’s disease.Curr. Tradit. Med.2024105e08062321781610.2174/2215083810666230608151821
    [Google Scholar]
  80. ShuklaM. GovitrapongP. BoontemP. ReiterR.J. SatayavivadJ. Mechanisms of melatonin in alleviating Alzheimer’s disease.Curr. Neuropharmacol.201715710101031 28294066
    [Google Scholar]
  81. SahuR. ShahK. MisbahA. PaliwalD. SharmaN. RaniT. Recent advancement of benzofuran in treatment of Alzheimer’s disease.Indian J. Pharm. Sci.202385615391550
    [Google Scholar]
  82. TiptonK.F. Enzymology of monoamine oxidase.Cell Biochem. Funct.198642798710.1002/cbf.290040202 3518979
    [Google Scholar]
  83. LaneC.A. HardyJ. SchottJ.M. Alzheimer’s disease.Eur. J. Neurol.2018251597010.1111/ene.13439 28872215
    [Google Scholar]
  84. ShihJ.C. ThompsonR.F. Monoamine oxidase in neuropsychiatry and behavior.Am. J. Hum. Genet.199965359359810.1086/302562 10441564
    [Google Scholar]
  85. ManzoorS. HodaN. A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer’s disease agents: A review.Eur. J. Med. Chem.202020611278710.1016/j.ejmech.2020.112787 32942081
    [Google Scholar]
  86. ThakurA. SharmaB. ParasharA. SharmaV. KumarA. MehtaV. 2D-QSAR, molecular docking and MD simulation based virtual screening of the herbal molecules against Alzheimer’s disorder: An approach to predict CNS activity.J. Biomol. Struct. Dyn.202442114816210.1080/07391102.2023.2192805 36970779
    [Google Scholar]
  87. BallardC. GauthierS. CorbettA. BrayneC. AarslandD. JonesE. Alzheimer’s disease.Lancet201137797701019103110.1016/S0140‑6736(10)61349‑9 21371747
    [Google Scholar]
  88. GoedertM. SpillantiniM.G. A century of Alzheimer’s disease.Science2006314580077778110.1126/science.1132814 17082447
    [Google Scholar]
  89. BushA.I. The metallobiology of Alzheimer’s disease.Trends Neurosci.200326420721410.1016/S0166‑2236(03)00067‑5 12689772
    [Google Scholar]
  90. SmallG.W. GreenfieldS. Current and future treatments for Alzheimer disease.Am. J. Geriatr. Psychiatry201523111101110510.1016/j.jagp.2015.08.006 26614911
    [Google Scholar]
  91. YiannopoulouK.G. PapageorgiouS.G. Current and future treatments in Alzheimer disease: An update.J. Cent. Nerv. Syst. Dis.20201210.1177/1179573520907397 32165850
    [Google Scholar]
  92. DenyaI. MalanS.F. EnogieruA.B. OmoruyiS.I. EkpoO.E. KappE. ZindoF.T. JoubertJ. Design, synthesis and evaluation of indole derivatives as multifunctional agents against Alzheimer’s disease.MedChemComm20189235737010.1039/C7MD00569E 30108930
    [Google Scholar]
  93. PurgatorioR. GambacortaN. CattoM. de CandiaM. PisaniL. EspargaróA. SabatéR. CellamareS. NicolottiO. AltomareC. Pharmacophore modeling and 3D-QSAR study of indole and isatin derivatives as antiamyloidogenic agents targeting Alzheimer’s disease.Molecules20202523577310.3390/molecules25235773 33297547
    [Google Scholar]
  94. ChirkovaZ.V. KabanovaM.V. FilimonovS.I. AbramovI.G. PetzerA. EngelbrechtI. PetzerJ.P. Yu SuponitskyK. VeselovskyA.V. An investigation of the monoamine oxidase inhibition properties of pyrrolo[3,4‐ f]indole‐5,7‐dione and indole‐5,6‐dicarbonitrile derivatives.Drug Dev. Res.2018792819310.1002/ddr.21425 29570223
    [Google Scholar]
  95. Shahid NadeemM. Azam KhanJ. KazmiI. RashidU. Design, synthesis, and bioevaluation of indole core containing 2-arylidine derivatives of thiazolopyrimidine as multitarget inhibitors of cholinesterases and monoamine oxidase a/b for the treatment of alzheimer disease.ACS Omega20227119369937910.1021/acsomega.1c06344 35350344
    [Google Scholar]
  96. RulloM. La SpadaG. MinieroD.V. GottingerA. CattoM. DelreP. MastromarinoM. LatronicoT. MarcheseS. MangiatordiG.F. BindaC. LinussonA. LiuzziG.M. PisaniL. Bioisosteric replacement based on 1,2,4-oxadiazoles in the discovery of 1H-indazole-bearing neuroprotective MAO B inhibitors.Eur. J. Med. Chem.202325511535210.1016/j.ejmech.2023.115352 37178666
    [Google Scholar]
  97. KumarV. DeP. OjhaP.K. SahaA. RoyK. A multi-layered variable selection strategy for QSAR modeling of butyrylcholinesterase inhibitors.Curr. Top. Med. Chem.202020181601162710.2174/1568026620666200616142753 32543359
    [Google Scholar]
  98. OrhanI. ŞenerB. ChoudharyM.I. KhalidA. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants.J. Ethnopharmacol.2004911576010.1016/j.jep.2003.11.016 15036468
    [Google Scholar]
  99. KumarV. SahaA. RoyK. In silico modeling for dual inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes in Alzheimer’s disease.Comput. Biol. Chem.20208810735510.1016/j.compbiolchem.2020.107355 32801088
    [Google Scholar]
  100. SamarelliF. PurgatorioR. LopopoloG. DeruvoC. CattoM. AndresiniM. CarrieriA. NicolottiO. De PalmaA. MinieroD.V. de CandiaM. AltomareC.D. Novel 6-alkyl-bridged 4-arylalkylpiperazin-1-yl derivatives of azepino[4,3-b]indol-1(2H)-one as potent BChE-selective inhibitors showing protective effects against neurodegenerative insults.Eur. J. Med. Chem.202427027011635310.1016/j.ejmech.2024.116353 38579622
    [Google Scholar]
  101. LiuY. MaC. LiY. LiM. CuiT. ZhaoX. LiZ. JiaH. WangH. XiuX. HuD. ZhangR. WangN. LiuP. YangH. ChengM. Design, synthesis and biological evaluation of carbamate derivatives incorporating multifunctional carrier scaffolds as pseudo-irreversible cholinesterase inhibitors for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.202426526511607110.1016/j.ejmech.2023.116071 38157596
    [Google Scholar]
  102. AlımZ. ŞirinzadeH. KılınçN. DilekE. SüzenS. Assessing indole derivative molecules as dual acetylcholinesterase and butyrylcholinesterase inhibitors through In vitro inhibition and molecular modelling studies.J. Mol. Struct.2024131113827610.1016/j.molstruc.2024.138276
    [Google Scholar]
  103. Abdo MoustafaE. Abdelrasheed AllamH. FouadM.A. El KerdawyA.M. Nasser Eid El-SayedN. WagnerC. Abdel-AzizH.A. Abdel Fattah EzzatM. Discovery of novel quinolin-2-one derivatives as potential GSK-3β inhibitors for treatment of Alzheimer’s disease: Pharmacophore-based design, preliminary SAR, in vitro and in vivos biological evaluation.Bioorg. Chem.202414614610732410.1016/j.bioorg.2024.107324 38569322
    [Google Scholar]
  104. ZaibS. KhanI. AliH.S. YounasM.T. IbrarA. Al-OdayniA.B. Al-KahtaniA.A. Design and discovery of anthranilamide derivatives as a potential treatment for neurodegenerative disorders via targeting cholinesterases and monoamine oxidases.Int. J. Biol. Macromol.2024272Pt 113274810.1016/j.ijbiomac.2024.132748 38821306
    [Google Scholar]
  105. TahaM. RahimF. UddinN. KhanI.U. IqbalN. AnouarE.H. SalahuddinM. FarooqR.K. GollapalliM. KhanK.M. ZafarA. Exploring indole-based-thiadiazole derivatives as potent acetylcholinesterase and butyrylcholinesterase enzyme inhibitors.Int. J. Biol. Macromol.20211881025103610.1016/j.ijbiomac.2021.08.065 34390751
    [Google Scholar]
  106. ShaikhS. PavaleG. DhavanP. SinghP. UparkarJ. VaidyaS.P. JadhavB.L. RamanaM.M.V. Design, synthesis and evaluation of dihydropyranoindole derivatives as potential cholinesterase inhibitors against Alzheimer’s disease.Bioorg. Chem.202111010477010.1016/j.bioorg.2021.104770 33667902
    [Google Scholar]
  107. BonL. BanaśA. DiasI. Melo-MarquesI. CardosoS.M. ChavesS. SantosM.A. New multitarget rivastigmine–indole hybrids as potential drug candidates for Alzheimer’s disease.Pharmaceutics202416228110.3390/pharmaceutics16020281 38399339
    [Google Scholar]
  108. GujralS.S. ShakeriA. HejaziL. RaoP.P.N. Design, synthesis and structure-activity relationship studies of 3-phenylpyrazino[1,2-a]indol-1(2H)-ones as amyloid aggregation and cholinesterase inhibitors with antioxidant activity.Eur. J. Med. Chem. Rep.2022610007510.1016/j.ejmcr.2022.100075
    [Google Scholar]
  109. Rodríguez-LavadoJ. Gallardo-GarridoC. MalleaM. BustosV. OsorioR. Hödar-SalazarM. ChungH. Araya-MaturanaR. LorcaM. Pessoa-MahanaC.D. Mella-RaipánJ. SaitzC. JaqueP. Reyes-ParadaM. Iturriaga-VásquezP. Pessoa-MahanaH. Synthesis, in vitro evaluation and molecular docking of a new class of indolylpropyl benzamidopiperazines as dual AChE and SERT ligands for Alzheimer’s disease.Eur. J. Med. Chem.202019811236810.1016/j.ejmech.2020.112368 32388114
    [Google Scholar]
  110. TahaM. AlshamraniF.J. RahimF. AnouarE.H. UddinN. ChigurupatiS. AlmandilN.B. FarooqR.K. IqbalN. AldubayanM. VenugopalV. KhanK.M. Synthesis, characterization, biological evaluation, and kinetic study of indole base sulfonamide derivatives as acetylcholinesterase inhibitors in search of potent anti-Alzheimer agent.J. King Saud Univ. Sci.202133310140110.1016/j.jksus.2021.101401
    [Google Scholar]
  111. KanhedA.M. PatelD.V. PatelN.R. SinhaA. ThakorP.S. PatelK.B. PrajapatiN.K. PatelK.V. YadavM.R. Indoloquinoxaline derivatives as promising multi-functional anti-Alzheimer agents.J. Biomol. Struct. Dyn.20224062498251510.1080/07391102.2020.1840441 33111617
    [Google Scholar]
  112. NerellaA. JeripothulaM. Design, synthesis and biological evaluation of novel deoxyvasicinone-indole as multi-target agents for Alzheimer’s disease.Bioorg. Med. Chem. Lett.20214912821210.1016/j.bmcl.2021.128212 34153471
    [Google Scholar]
  113. PurgatorioR. de CandiaM. CattoM. CarrieriA. PisaniL. De PalmaA. TomaM. IvanovaO.A. VoskressenskyL.G. AltomareC.D. Investigating 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole as scaffold of butyrylcholinesterase-selective inhibitors with additional neuroprotective activities for Alzheimer’s disease.Eur. J. Med. Chem.201917717741442410.1016/j.ejmech.2019.05.062 31158754
    [Google Scholar]
  114. IsmailM.M. KamelM.M. MohamedL.W. FaggalS.I. Synthesis of new indole derivatives structurally related to donepezil and their biological evaluation as acetylcholinesterase inhibitors.Molecules20121754811482310.3390/molecules17054811 22534665
    [Google Scholar]
  115. VrabecR. MaříkováJ. LočárekM. KorábečnýJ. HulcováD. HošťálkováA. KunešJ. ChlebekJ. KučeraT. HrabinováM. JunD. SoukupO. AndrisanoV. JenčoJ. ŠafratováM. NovákováL. OpletalL. CahlíkováL. Monoterpene indole alkaloids from Vinca minor L. (Apocynaceae): Identification of new structural scaffold for treatment of Alzheimer’s disease.Phytochemistry202219411301710.1016/j.phytochem.2021.113017 34798410
    [Google Scholar]
  116. HamulakovaS. KudlickovaZ. JanovecL. MezencevR. DecknerZ.J. ChernoffY.O. JanockovaJ. IhnatovaV. BzonekP. NovakovaN. HepnarovaV. HrabinovaM. JunD. KorabecnyJ. SoukupO. KucaK. Design and synthesis of novel tacrine-indole hybrids as potential multitarget-directed ligands for the treatment of Alzheimer’s disease.Future Med. Chem.202113978580410.4155/fmc‑2020‑0184 33829876
    [Google Scholar]
  117. LeeS.H. PurgatorioR. SamarelliF. CattoM. DenoraN. MorgeseM.G. TucciP. TrabaceL. KimH.W. ParkH.S. KimS.E. LeeB.C. de CandiaM. AltomareC.D. Radiosynthesis and whole‐body distribution in mice of a 18 F‐labeled azepino[4,3‐ b]indole‐1‐one derivative with multimodal activity for the treatment of Alzheimer’s disease.Arch. Pharm.20243573230049110.1002/ardp.202300491 38158335
    [Google Scholar]
  118. UllahH. BibiU. HussainA. SarfrazM. RahimF. HayatS. ZadaH. KhanF. WadoodA. Synthesis and molecular docking study of bis-indolylmethane thiourea derivatives as anti-alzheimer agents.Russ. J. Org. Chem.202359118118910.1134/S1070428023010207
    [Google Scholar]
  119. MateevE. Kondeva-BurdinaM. GeorgievaM. MateevaA. ValkovaI. TzankovaV. ZlatkovA. Synthesis, biological evaluation, molecular docking and ADME studies of novel pyrrole-based schiff bases as dual acting MAO/AChE inhibitors.Sci. Pharm.20249221810.3390/scipharm92020018
    [Google Scholar]
  120. KhanS. IqbalS. TahaM. RahimF. ShahM. UllahH. BahadurA. AlrbyawiH. DeraA.A. AlahmdiM.I. PashameahR.A. AlzahraniE. FaroukA.E. Synthesis, in vitro biological evaluation and in silico molecular docking studies of indole based thiadiazole derivatives as dual inhibitor of acetylcholinesterase and butyrylchloinesterase.Molecules20222721736810.3390/molecules27217368 36364195
    [Google Scholar]
  121. AkdemirA.O. AslanS. Some new fractional order integral inequalities for logarithmically convex functions. 5th international conference on advances in natural & applied science chemistry.2023
    [Google Scholar]
  122. AshrafianH. ZadehE.H. KhanR.H. Review on Alzheimer’s disease: Inhibition of amyloid beta and tau tangle formation.Int. J. Biol. Macromol.202116738239410.1016/j.ijbiomac.2020.11.192 33278431
    [Google Scholar]
  123. AisenP.S. VellasB. HampelH. Moving towards early clinical trials for amyloid-targeted therapy in Alzheimer’s disease.Nat. Rev. Drug Discov.201312432410.1038/nrd3842‑c1 23493086
    [Google Scholar]
  124. HampelH. HardyJ. BlennowK. ChenC. PerryG. KimS.H. VillemagneV.L. AisenP. VendruscoloM. IwatsuboT. MastersC.L. ChoM. LannfeltL. CummingsJ.L. VergalloA. The amyloid-β pathway in Alzheimer’s disease.Mol. Psychiatry202126105481550310.1038/s41380‑021‑01249‑0 34456336
    [Google Scholar]
  125. ZhouL.C. LiangY.F. HuangY. YangG.X. ZhengL.L. SunJ.M. LiY. ZhuF.L. QianH.W. WangR. MaL. Design, synthesis, and biological evaluation of diosgenin-indole derivatives as dual-functional agents for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.202121911342610.1016/j.ejmech.2021.113426 33848787
    [Google Scholar]
  126. SreenivasacharyN. KrothH. BenderitterP. HamelA. VariscoY. HickmanD.T. FroestlW. PfeiferA. MuhsA. Discovery and characterization of novel indole and 7-azaindole derivatives as inhibitors of β-amyloid-42 aggregation for the treatment of Alzheimer’s disease.Bioorg. Med. Chem. Lett.20172761405141110.1016/j.bmcl.2017.02.001 28216401
    [Google Scholar]
  127. BowrojuS.K. MainaliN. AyyadevaraS. PenthalaN.R. KrishnamachariS. KakrabaS. ReisR.J.S. CrooksP.A. Design and synthesis of novel hybrid 8-hydroxy quinoline-indole derivatives as inhibitors of Aβ self-aggregation and metal chelation-induced Aβ aggregation.Molecules20202516361010.3390/molecules25163610 32784464
    [Google Scholar]
  128. LaivutS. MoongkarndiP. KitphatiW. RukthongP. SathirakulK. SriphaK. Design, synthesis, and neuroprotective activity of phenoxyindole derivatives on antiamyloid beta (Aβ) aggregation, antiacetylcholinesterase, and antioxidant activities.Pharmaceuticals202316335510.3390/ph16030355 36986454
    [Google Scholar]
  129. KrasnovskayaO. SpectorD. ZlobinA. PavlovK. GorelkinP. ErofeevA. BeloglazkinaE. MajougaA. Metals in imaging of alzheimer’s disease.In: Int. J. Mol. Sci20202123919010.3390/ijms21239190 33276505
    [Google Scholar]
  130. YuL. ScheunemannM. Deuther-ConradW. HillerA. FischerS. SorgerD. SabriO. JiaH. SteinbachJ. BrustP. LiuB. Novel indole derivatives as potential imaging agents for Alzheimer’s disease.Bull. Korean Chem. Soc.201031117718010.5012/bkcs.2010.31.01.177
    [Google Scholar]
  131. YangY. JiaH.M. LiuB.L. (E)-5-styryl-1H-indole and (E)-6-styrylquinoline derivatives serve as probes for β-amyloid plaques.Molecules20121744252426510.3390/molecules17044252 22491675
    [Google Scholar]
  132. DoensD. Valdés-TresancoM.E. VasquezV. CarreiraM.B. de La GuardiaY. StephensD.E. NguyenV.D. NguyenV.T. GuJ. HegdeM.L. LarionovO.v. ValienteP.A. LleonartR. FernándezP.L. Hexahydropyrrolo[2,3- b]indole compounds as potential therapeutics for alzheimer’s disease.ACS Chem. Neurosci.201910104250426310.1021/acschemneuro.9b00297 31545596
    [Google Scholar]
  133. ChengB. LinY. KuangM. FangS. GuQ. XuJ. WangL. Synthesis and anti-neuroinflammatory activity of lactone benzoyl hydrazine and 2-nitro-1-phenyl-1h-indole derivatives as p38α MAPK inhibitors.Chem. Biol. Drug Des.20158651121113010.1111/cbdd.12581 25960125
    [Google Scholar]
  134. OcakA. AgriA. ÜniversitesiI.Ç. Some new fractional order integral inequalities for logarithmically convex functions. 5th INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL and APPLIED SCIENCE MATHEMATICS/STATISTICS, Ağrı, Türkiye. September 2021
    [Google Scholar]
  135. ChangK.H. LinC.H. ChenH.C. HuangH.Y. ChenS.L. LinT.H. RameshC. HuangC.C. FungH.C. WuY.R. HuangH.J. Lee-ChenG.J. Hsieh-LiH.M. YaoC.F. The potential of indole/indolylquinoline compounds in tau misfolding reduction by enhancement of HSPB 1.CNS Neurosci. Ther.2017231455610.1111/cns.12592 27424519
    [Google Scholar]
  136. TaraziH. OdehR.A. Al-QawasmehR. YousefI.A. VoelterW. Al-TelT.H. Design, synthesis and SAR analysis of potent BACE1 inhibitors: Possible lead drug candidates for Alzheimer’s disease.Eur. J. Med. Chem.20171251213122410.1016/j.ejmech.2016.11.021 27871037
    [Google Scholar]
  137. GonzalezD. ArribasR.L. ViejoL. Lajarin-CuestaR. de los RiosC. Substituent effect of N-benzylated gramine derivatives that prevent the PP2A inhibition and dissipate the neuronal Ca2+ overload, as a multitarget strategy for the treatment of Alzheimer’s disease.Bioorg. Med. Chem.20182692551256010.1016/j.bmc.2018.04.019 29656989
    [Google Scholar]
  138. BlokhinaS. SharapovaA. Ol’khovichM. UstinovA. PerlovichG. New derivatives of hydrogenated pyrido[4,3-b]indoles as potential neuroprotectors: Synthesis, biological testing and solubility in pharmaceutically relevant solvents.Saudi Pharm. J.201826680180910.1016/j.jsps.2018.04.003 30202220
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266358563250331175140
Loading
/content/journals/ctmc/10.2174/0115680266358563250331175140
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test