Skip to content
2000
image of An Insight into the Recent Advancement in Anti-Alzheimer’s Potential of Indole Derivatives and their SAR Study

Abstract

Alzheimer is a progressive neurodegenerative disease characterized by change in brain that led to the buildup of specific proteins, ultimately causing brain shrinkage and the death of brain cells. It is the leading cause of dementia, manifesting as a gradual decline in memory, cognitive abilities, behavior, and social functioning, which severely impairs a person’s ability to carry out daily activities. The complexity of Alzheimer’s poses significant challenges to modern medicine, making the development of new therapeutic strategies crucial. Indole derivatives, with their broad spectrum of pharmacological activities, have garnered attention for their potential in treating Alzheimer’s disease. This review provides a detailed summary of recent progress in developing indole derivatives as therapeutic agents for Alzheimer's disease. It thoroughly examines the pharmacological properties of various indole derivatives, including their mechanisms of action. These compounds have been shown to influence several processes, such as amyloid-beta aggregation, MAO inhibition, AChE and BuChE inhibition. Furthermore, this review discusses the structural modifications of indole derivatives designed to improve their therapeutic effectiveness.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266358563250331175140
2025-04-14
2025-09-14
Loading full text...

Full text loading...

References

  1. Ayeni E.A. Gong Y. Yuan H. Hu Y. Bai X. Liao X. Medicinal plants for anti-neurodegenerative diseases in West Africa. J. Ethnopharmacol. 2022 285 114468 10.1016/j.jep.2021.114468 34390796
    [Google Scholar]
  2. Auddy B. Ferreira M. Blasina F. Lafon L. Arredondo F. Dajas F. Tripathi P.C. Seal T. Mukherjee B. Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. J. Ethnopharmacol. 2003 84 2-3 131 138 10.1016/S0378‑8741(02)00322‑7 12648805
    [Google Scholar]
  3. Brown R.C. Lockwood A.H. Sonawane B.R. Neurodegenerative diseases: An overview of environmental risk factors. Environ. Health Perspect. 2005 113 9 1250 1256 10.1289/ehp.7567 16140637
    [Google Scholar]
  4. Hardy J. Gwinn-Hardy K. Genetic classification of primary neurodegenerative disease. Science 1998 282 5391 1075 1079 10.1126/science.282.5391.1075 9804538
    [Google Scholar]
  5. Jennekens F.G.I. A short history of the notion of neurodegenerative disease. J. Hist. Neurosci. 2014 23 1 85 94 10.1080/0964704X.2013.809297 24512132
    [Google Scholar]
  6. Lace G.L. Wharton S.B. Ince P.G. A brief history of τ: The evolving view of the microtubule-associated protein τ in neurodegenerative diseases. Clin. Neuropathol. 2007 26 3 43 58 10.5414/NPP26043 17416103
    [Google Scholar]
  7. Cruz D.C. Nelson L.M. Mcguire V. Longstreth W.T. Physical trauma and family history of neurodegenerative diseases in amyotrophic lateral sclerosis: A population-based case-control study. Neuroepidemiology 1999 18 2 101 110 10.1159/000069413 10023133
    [Google Scholar]
  8. Erkkinen M.G. Kim M.O. Geschwind M.D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2018 10 4 a033118 10.1101/cshperspect.a033118 28716886
    [Google Scholar]
  9. Ferri C.P. Prince M. Brayne C. Brodaty H. Fratiglioni L. Ganguli M. Hall K. Hasegawa K. Hendrie H. Huang Y. Jorm A. Mathers C. Menezes P.R. Rimmer E. Scazufca M. Alzheimer’s Disease International Global prevalence of dementia: A Delphi consensus study. Lancet 2005 366 9503 2112 2117 10.1016/S0140‑6736(05)67889‑0 16360788
    [Google Scholar]
  10. Scheltens P. de Strooper B. Kivipelto M. Holstege H. Chételat G. Teunissen C.E. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  11. Blennow K. de Leon M.J. Zetterberg H. Alzheimer’s disease. Lancet 2006 368 9533 387 403 10.1016/S0140‑6736(06)69113‑7 16876668
    [Google Scholar]
  12. Snyder P.J. Alber J. Alt C. Bain L.J. Bouma B.E. Bouwman F.H. DeBuc D.C. Campbell M.C.W. Carrillo M.C. Chew E.Y. Cordeiro M.F. Dueñas M.R. Fernández B.M. Koronyo-Hamaoui M. La Morgia C. Carare R.O. Sadda S.R. van Wijngaarden P. Snyder H.M. Retinal imaging in Alzheimer’s and neurodegenerative diseases. Alzheimers Dement. 2021 17 1 103 111 10.1002/alz.12179 33090722
    [Google Scholar]
  13. Guo L. Duggan J. Cordeiro M. Alzheimer’s disease and retinal neurodegeneration. Curr. Alzheimer Res. 2010 7 1 3 14 10.2174/156720510790274491 20205667
    [Google Scholar]
  14. Doustar J. Torbati T. Black K.L. Koronyo Y. Koronyo-Hamaoui M. Optical coherence tomography in Alzheimer’s disease and other neurodegenerative diseases. Front. Neurol. 2017 8 701 10.3389/fneur.2017.00701 29312125
    [Google Scholar]
  15. Scheltens P. Blennow K. Breteler M.M.B. de Strooper B. Frisoni G.B. Salloway S. van der Flier W.M. Alzheimer’s disease. Lancet 2016 388 10043 505 517 10.1016/S0140‑6736(15)01124‑1 26921134
    [Google Scholar]
  16. Tomberlin J.K. Crippen T.L. Wu G. Griffin A.S. Wood T.K. Kilner R.M. Indole: An evolutionarily conserved influencer of behavior across kingdoms. BioEssays 2017 39 2 1600203 10.1002/bies.201600203 28009057
    [Google Scholar]
  17. Darkoh C. Chappell C. Gonzales C. Okhuysen P. A rapid and specific method for the detection of indole in complex biological samples. Appl. Environ. Microbiol. 2015 81 23 8093 8097 10.1128/AEM.02787‑15 26386049
    [Google Scholar]
  18. Lakhdar S. Westermaier M. Terrier F. Goumont R. Boubaker T. Ofial A.R. Mayr H. Nucleophilic reactivities of indoles. J. Org. Chem. 2006 71 24 9088 9095 10.1021/jo0614339 17109534
    [Google Scholar]
  19. Somers K.R.F. Kryachko E.S. Ceulemans A. Theoretical study of indole: Protonation, indolyl radical, tautomers of indole, and its interaction with water. Chem. Phys. 2004 301 1 61 79 10.1016/j.chemphys.2004.02.010
    [Google Scholar]
  20. Gribble G.W. Recent developments in indole ring synthesis—methodology and applications. J. Chem. Soc., Perkin Trans. 1 2000 1 7 1045 1075 10.1039/a909834h
    [Google Scholar]
  21. Eftink M.R. Selvidge L.A. Callis P.R. Rehms A.A. Photophysics of indole derivatives: Experimental resolution of La and Lb transitions and comparison with theory. J. Phys. Chem. 1990 94 9 3469 3479 10.1021/j100372a022
    [Google Scholar]
  22. Casaril A.M. Domingues M. Bampi S.R. Lourenço D.A. Smaniotto T.Â. Segatto N. Vieira B. Seixas F.K. Collares T. Lenardão E.J. Savegnago L. The antioxidant and immunomodulatory compound 3-[(4-chlorophenyl)selanyl]-1-methyl-1H-indole attenuates depression-like behavior and cognitive impairment developed in a mouse model of breast tumor. Brain Behav. Immun. 2020 84 229 241 10.1016/j.bbi.2019.12.005 31837417
    [Google Scholar]
  23. Bampi S.R. Casaril A.M. Fronza M.G. Domingues M. Vieira B. Begnini K.R. Seixas F.K. Collares T.V. Lenardão E.J. Savegnago L. The selenocompound 1-methyl-3-(phenylselanyl)-1H-indole attenuates depression-like behavior, oxidative stress, and neuroinflammation in streptozotocin-treated mice. Brain Res. Bull. 2020 161 158 165 10.1016/j.brainresbull.2020.05.008 32470357
    [Google Scholar]
  24. Padmavathi S. Vemula M. Komre G. Kattupalli S. Kondamudi S. Lagadapati L. A comprehensive knowledge on review of indole derivatives. Int. J. Pharma Bio Sci. 2021 11 4 19 24 10.22376/ijpbs/lpr.2021.11.4.P19‑24
    [Google Scholar]
  25. Rezaul Islam M. Akash S. Murshedul Islam M. Sarkar N. Kumer A. Chakraborty S. Dhama K. Ahmed Al-Shaeri M. Anwar Y. Wilairatana P. Rauf A. Halawani I.F. Alzahrani F.M. Khan H. Alkaloids as drug leads in Alzheimer’s treatment: Mechanistic and therapeutic insights. Brain Res. 2024 1834 148886 10.1016/j.brainres.2024.148886 38582413
    [Google Scholar]
  26. George N. Jawaid Akhtar M. Al Balushi K.A. Alam Khan S. Rational drug design strategies for the development of promising multi-target directed indole hybrids as anti-alzheimer agents. Bioorg. Chem. 2022 127 105941 10.1016/j.bioorg.2022.105941 35714473
    [Google Scholar]
  27. Kashyap P Kalaiselvan V Kumar R Kumar S. Ajmalicine and reserpine: Indole alkaloids as multi-target directed ligands towards factors implicated in Alzheimer’s disease. Molecules. 2020 25 7 1609
    [Google Scholar]
  28. Rosenthal S. Kaufman S. Vincristine neurotoxicity. Ann. Intern. Med. 1974 80 6 733 737 10.7326/0003‑4819‑80‑6‑733 4364934
    [Google Scholar]
  29. Rybak S.M. Pearson J.W. Fogler W.E. Volker K. Spence S.E. Newton D.L. Mikulski S.M. Ardelt W. Riggs C.W. Kung H.F. Longo D.L. Enhancement of vincristine cytotoxicity in drug-resistant cells by simultaneous treatment with onconase, an antitumor ribonuclease. J. Natl. Cancer Inst. 1996 88 11 747 753 10.1093/jnci/88.11.747 8637029
    [Google Scholar]
  30. Moore A. Pinkerton R. Vincristine: Can its therapeutic index be enhanced? Pediatr. Blood Cancer 2009 53 7 1180 1187 10.1002/pbc.22161 19588521
    [Google Scholar]
  31. Du G.H. Zhang Y.W. Kong X.Y. Wang J.H. Du G.H. Vinblastine and vincristine. Natural Small Molecule Drugs from Plants. Springer 2018 551 557
    [Google Scholar]
  32. Rtibi K. Grami D. Selmi S. Amri M. Sebai H. Marzouki L. Vinblastine, an anticancer drug, causes constipation and oxidative stress as well as others disruptions in intestinal tract in rat. Toxicol. Rep. 2017 4 221 225 10.1016/j.toxrep.2017.04.006 28959642
    [Google Scholar]
  33. Ferguson P. J. Phillips J. R. Seiner M. Differential activity of vincristine and vinblastine against cultured cells. Cancer Res. 1984 44 8 3307 3312 6744266
    [Google Scholar]
  34. Rojas-Duran R. González-Aspajo G. Ruiz-Martel C. Bourdy G. Doroteo-Ortega V. H. Alban-Castillo J. Robert G. Auberger P. Deharo E. Anti-inflammatory activity of Mitraphylline isolated from Uncaria tomentosa bark. J. Ethnopharmacol. 2012 143 3 801 804 10.1016/j.jep.2012.07.015 22846434
    [Google Scholar]
  35. García Prado E. García Gimenez M.D. De la Puerta Vázquez R. Espartero Sánchez J.L. Sáenz Rodríguez M.T. Antiproliferative effects of mitraphylline, a pentacyclic oxindole alkaloid of Uncaria tomentosa on human glioma and neuroblastoma cell lines. Phytomedicine 2007 14 4 280 284 10.1016/j.phymed.2006.12.023 17296291
    [Google Scholar]
  36. Montserrat-de la Paz S. Fernandez-Arche A. de la Puerta R. Quilez A.M. Muriana F.J.G. Garcia-Gimenez M.D. Bermudez B. Mitraphylline inhibits lipopolysaccharide-mediated activation of primary human neutrophils. Phytomedicine 2016 23 2 141 148 10.1016/j.phymed.2015.12.015 26926175
    [Google Scholar]
  37. Tang W. McCormick A. Li J. Masson E. Clinical pharmacokinetics and pharmacodynamics of cediranib. Clin. Pharmacokinet. 2017 56 7 689 702 10.1007/s40262‑016‑0488‑y 27943222
    [Google Scholar]
  38. LoRusso P. Shields A.F. Gadgeel S. Vaishampayan U. Guthrie T. Puchalski T. Xu J. Liu Q. Cediranib in combination with various anticancer regimens: Results of a phase I multi-cohort study. Invest. New Drugs 2011 29 6 1395 1405 10.1007/s10637‑010‑9484‑5 20607586
    [Google Scholar]
  39. Dietrich J. Wang D. Batchelor T.T. Cediranib: profile of a novel anti-angiogenic agent in patients with glioblastoma. Expert Opin. Investig. Drugs 2009 18 10 1549 1557 10.1517/13543780903183528 19671039
    [Google Scholar]
  40. Garnock-Jones K.P. Panobinostat: First global approval. Drugs 2015 75 6 695 704 10.1007/s40265‑015‑0388‑8 25837990
    [Google Scholar]
  41. Laubach J.P. Moreau P. San-Miguel J.F. Richardson P.G. Panobinostat for the treatment of multiple myeloma. Clin. Cancer Res. 2015 21 21 4767 4773 10.1158/1078‑0432.CCR‑15‑0530 26362997
    [Google Scholar]
  42. Samaraweera L. Adomako A. Rodriguez-Gabin A. McDaid H.M. A novel indication for panobinostat as a senolytic drug in NSCLC and HNSCC. Sci. Rep. 2017 7 1 1900 10.1038/s41598‑017‑01964‑1 28507307
    [Google Scholar]
  43. Arends T.J.H. Alfred Witjes J. Apaziquone for nonmuscle invasive bladder cancer. Urol. Clin. North Am. 2020 47 1 73 82 10.1016/j.ucl.2019.09.009 31757302
    [Google Scholar]
  44. Yutkin V. Chin J. Apaziquone as an intravesical therapeutic agent for urothelial non-muscle-invasive bladder cancer. Expert Opin. Investig. Drugs 2012 21 2 251 260 10.1517/13543784.2012.646081 22188461
    [Google Scholar]
  45. Lee C.R. Plosker G.L. McTavish D. Tropisetron. Drugs 1993 46 5 925 943 10.2165/00003495‑199346050‑00009 7507039
    [Google Scholar]
  46. de Bruijn K.M. Tropisetron. Drugs 1992 43 Suppl. 3 11 22 10.2165/00003495‑199200433‑00005 1380428
    [Google Scholar]
  47. Fereshteh S. Kalhor H. Sepehr A. Rahimi H. Zafari M. Ahangari Cohan R. Badmasti F. Rational design of inhibitors against LpxA protein of Acinetobacter baumannii using a virtual screening method. J. Indian Chem. Soc. 2022 99 2 100319 10.1016/j.jics.2021.100319
    [Google Scholar]
  48. Vlieghe P. Lisowski V. Martinez J. Khrestchatisky M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today 2010 15 1-2 40 56 10.1016/j.drudis.2009.10.009 19879957
    [Google Scholar]
  49. Lee K.I. Kim M.J. Koh H. Lee J.I. Namkoong S. Oh W.K. Park J. The anti-hypertensive drug reserpine induces neuronal cell death through inhibition of autophagic flux. Biochem. Biophys. Res. Commun. 2015 462 4 402 408 10.1016/j.bbrc.2015.04.145 25976674
    [Google Scholar]
  50. Metzger R.R. Brown J.M. Sandoval V. Rau K.S. Elwan M.A. Miller G.W. Hanson G.R. Fleckenstein A.E. Inhibitory effect of reserpine on dopamine transporter function. Eur. J. Pharmacol. 2002 456 1-3 39 43 10.1016/S0014‑2999(02)02647‑X 12450567
    [Google Scholar]
  51. Todd P.A. Fitton A. Perindopril. Drugs 1991 42 1 90 114 10.2165/00003495‑199142010‑00006 1718688
    [Google Scholar]
  52. Alfakih K. Hall A. S. Perindopril. Expert Opin. Pharmacother. 2006 7 1 63 71 10.1517/14656566.7.1.63 16370923
    [Google Scholar]
  53. Aellig W.H. Clinical pharmacology of pindolol. Am. Heart J. 1982 104 2 346 356 10.1016/0002‑8703(82)90125‑9 6125094
    [Google Scholar]
  54. Artigas F. Adell A. Celada P. Pindolol augmentation of antidepressant response. Curr. Drug Targets 2006 7 2 139 147 10.2174/138945006775515446 16475955
    [Google Scholar]
  55. Morin D. Zini R. Ledewyn S. Colonna J.P. Czajka M. Tillement J.P. Binedaline binding to plasma proteins and red blood cells in humans. J. Pharm. Sci. 1985 74 7 727 730 10.1002/jps.2600740706 4032243
    [Google Scholar]
  56. Morin D. Zini R. Urien S. Tillement J.P. Pharmacological profile of binedaline, a new antidepressant drug. J. Pharmacol. Exp. Ther. 1989 249 1 288 296 2540319
    [Google Scholar]
  57. Triggle D.J. Dictionary of pharmacological agents. London Chapman & Hall 1997
    [Google Scholar]
  58. Blier P. de Montigny C. Tardif D. Effects of the two antidepressant drugs mianserin and indalpine on the serotonergic system: Single-cell studies in the rat. Psychopharmacology (Berl.) 1984 84 2 242 249 10.1007/BF00427453 6438684
    [Google Scholar]
  59. Uzan A. Kabouche M. Rataud J. le Fur G. Pharmacological evidence of a possible tryptaminergic regulation of opiate receptors by using indalpine, a selective 5-HT uptake inhibitor. Neuropharmacology. 1980 19 11 1075 1079
    [Google Scholar]
  60. Tam S. W. Worcel M. Wyllie M. Yohimbine: A clinical review. Pharmacol. Ther. 2001 91 3 215 243 10.1016/S0163‑7258(01)00156‑5
    [Google Scholar]
  61. Ernst E. Pittler M.H. Yohimbine for erectile dysfunction: A systematic review and meta-analysis of randomized clinical trials. J. Urol. 1998 159 2 433 436 10.1016/S0022‑5347(01)63942‑9 9649257
    [Google Scholar]
  62. Lucas S. The pharmacology of indomethacin. Headache 2016 56 2 436 446 10.1111/head.12769 26865183
    [Google Scholar]
  63. Harman R.E. Meisinger M.A. Davis G.E. Kuehl F.A. Jr The metabolites of indomethacin, a new anti-inflammatory drug. J. Pharmacol. Exp. Ther. 1964 143 2 215 220 14163995
    [Google Scholar]
  64. Adkins J.C. Brogden R.N. Zafirlukast. Drugs 1998 55 1 121 144 10.2165/00003495‑199855010‑00008 9463793
    [Google Scholar]
  65. Dekhuijzen P.N.R. Koopmans P.P. Pharmacokinetic profile of zafirlukast. Clin. Pharmacokinet. 2002 41 2 105 114 10.2165/00003088‑200241020‑00003 11888331
    [Google Scholar]
  66. Maj J. Kotodziejczyk K. Rogóż Z. Skuza G. Roxindole, a potential antidepressant I. Effect on the dopamine system. J. Neural Transm. 1996 103 5 627 641 10.1007/BF01273159 8811507
    [Google Scholar]
  67. Bennasar M.L. Solé D. Roca T. Valldosera M. Exploratory studies toward a total synthesis of pericine (subincanadine E). Tetrahedron 2015 71 15 2246 2254 10.1016/j.tet.2015.02.074
    [Google Scholar]
  68. Everett R.M. Descotes G. Nephrotoxicity of pravadoline maleate (WIN 48098-6) in dogs: Evidence of maleic acid-induced acute tubular necrosis. Fundam Appl Toxicol 1993 21 1 59 65 10.1006/faat.1993.1072
    [Google Scholar]
  69. Shattat G. Al-Qirim T. Sheikha G.A. Al-Hiari Y. Sweidan K. Al-Qirim R. Hikmat S. Hamadneh L. Al-kouz S. The Pharmacological effects of novel 5-fluoro- N -(9,10-dihydro-9,10-dioxoanthracen-8-yl)-1 H -indole-2-carboxamide derivatives on plasma lipid profile of Triton-WR-1339-induced Wistar rats. J. Enzyme Inhib. Med. Chem. 2013 28 4 863 869 10.3109/14756366.2012.692085 22651797
    [Google Scholar]
  70. Wan Y. Li Y. Yan C. Yan M. Tang Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem. 2019 183 183 111691 10.1016/j.ejmech.2019.111691 31536895
    [Google Scholar]
  71. Tan C. Yang S.J. Zhao D.H. Li J. Yin L.Q. Antihypertensive activity of indole and indazole analogues: A review. Arab. J. Chem. 2022 15 5 103756 10.1016/j.arabjc.2022.103756
    [Google Scholar]
  72. Prado N.J. Ramirez D. Mazzei L. Parra M. Casarotto M. Calvo J.P. Cuello carrión D. Ponce Zumino A.Z. Diez E.R. Camargo A. Manucha W. Anti-inflammatory, antioxidant, antihypertensive, and antiarrhythmic effect of indole-3-carbinol, a phytochemical derived from cruciferous vegetables. Heliyon 2022 8 2 e08989 10.1016/j.heliyon.2022.e08989 35243102
    [Google Scholar]
  73. Blaising J. Polyak S.J. Pécheur E.I. Arbidol as a broad-spectrum antiviral: An update. Antiviral Res. 2014 107 1 84 94 10.1016/j.antiviral.2014.04.006 24769245
    [Google Scholar]
  74. Dodick D.W. Martin V. Triptans and CNS side-effects. Cephalalgia 2004 24 6 417 424 10.1111/j.1468‑2982.2004.00694.x 15154851
    [Google Scholar]
  75. Kochanowska-Karamyan A.J. Hamann M.T. Marine indole alkaloids: Potential new drug leads for the control of depression and anxiety. Chem. Rev. 2010 110 8 4489 4497 10.1021/cr900211p 20380420
    [Google Scholar]
  76. Pesarico A.P. Birmann P.T. Pinto R. Padilha N.B. Lenardão E.J. Savegnago L. Short- and long-term repeated forced swim stress induce depressive-like phenotype in mice: Effectiveness of 3-[(4-Chlorophenyl)Selanyl]-1-Methyl-1H-Indole. Front. Behav. Neurosci. 2020 14 140 10.3389/fnbeh.2020.00140 33192355
    [Google Scholar]
  77. Kim T.H. Pae A.N. Translocator protein (TSPO) ligands for the diagnosis or treatment of neurodegenerative diseases: A patent review (2010–2015; part 1). Expert Opin. Ther. Pat. 2016 26 11 1325 1351 10.1080/13543776.2016.1230606 27607364
    [Google Scholar]
  78. Girdhar S. Girdhar A. Kumar Verma S. Lather V. Pandita D. Plant derived alkaloids in major neurodegenerative diseases: from animal models to clinical trials. J. Ayurved. Herb. Med. 2015 1 3 91 100 10.31254/jahm.2015.1307
    [Google Scholar]
  79. Shadab S. Rao G.S.N.K. Paliwal D. Yadav D. Alam A. Singh A. Sultana M.J. A comprehensive review of herbal medicines for the treatment of alzheimer’s disease. Curr. Tradit. Med. 2024 10 5 e080623217816 10.2174/2215083810666230608151821
    [Google Scholar]
  80. Shukla M. Govitrapong P. Boontem P. Reiter R.J. Satayavivad J. Mechanisms of melatonin in alleviating Alzheimer’s disease. Curr. Neuropharmacol. 2017 15 7 1010 1031 28294066
    [Google Scholar]
  81. Sahu R. Shah K. Misbah A. Paliwal D. Sharma N. Rani T. Recent advancement of benzofuran in treatment of Alzheimer’s disease. Indian J. Pharm. Sci. 2023 85 6 1539 1550
    [Google Scholar]
  82. Tipton K.F. Enzymology of monoamine oxidase. Cell Biochem. Funct. 1986 4 2 79 87 10.1002/cbf.290040202 3518979
    [Google Scholar]
  83. Lane C.A. Hardy J. Schott J.M. Alzheimer’s disease. Eur. J. Neurol. 2018 25 1 59 70 10.1111/ene.13439 28872215
    [Google Scholar]
  84. Shih J.C. Thompson R.F. Monoamine oxidase in neuropsychiatry and behavior. Am. J. Hum. Genet. 1999 65 3 593 598 10.1086/302562 10441564
    [Google Scholar]
  85. Manzoor S. Hoda N. A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer’s disease agents: A review. Eur. J. Med. Chem. 2020 206 112787 10.1016/j.ejmech.2020.112787 32942081
    [Google Scholar]
  86. Thakur A. Sharma B. Parashar A. Sharma V. Kumar A. Mehta V. 2D-QSAR, molecular docking and MD simulation based virtual screening of the herbal molecules against Alzheimer’s disorder: An approach to predict CNS activity. J. Biomol. Struct. Dyn. 2024 42 1 148 162 10.1080/07391102.2023.2192805 36970779
    [Google Scholar]
  87. Ballard C. Gauthier S. Corbett A. Brayne C. Aarsland D. Jones E. Alzheimer’s disease. Lancet 2011 377 9770 1019 1031 10.1016/S0140‑6736(10)61349‑9 21371747
    [Google Scholar]
  88. Goedert M. Spillantini M.G. A century of Alzheimer’s disease. Science 2006 314 5800 777 781 10.1126/science.1132814 17082447
    [Google Scholar]
  89. Bush A.I. The metallobiology of Alzheimer’s disease. Trends Neurosci. 2003 26 4 207 214 10.1016/S0166‑2236(03)00067‑5 12689772
    [Google Scholar]
  90. Small G.W. Greenfield S. Current and future treatments for Alzheimer disease. Am. J. Geriatr. Psychiatry 2015 23 11 1101 1105 10.1016/j.jagp.2015.08.006 26614911
    [Google Scholar]
  91. Yiannopoulou K.G. Papageorgiou S.G. Current and future treatments in Alzheimer disease: An update. J. Cent. Nerv. Syst. Dis. 2020 12 10.1177/1179573520907397 32165850
    [Google Scholar]
  92. Denya I. Malan S.F. Enogieru A.B. Omoruyi S.I. Ekpo O.E. Kapp E. Zindo F.T. Joubert J. Design, synthesis and evaluation of indole derivatives as multifunctional agents against Alzheimer’s disease. MedChemComm 2018 9 2 357 370 10.1039/C7MD00569E 30108930
    [Google Scholar]
  93. Purgatorio R. Gambacorta N. Catto M. de Candia M. Pisani L. Espargaró A. Sabaté R. Cellamare S. Nicolotti O. Altomare C. Pharmacophore modeling and 3D-QSAR study of indole and isatin derivatives as antiamyloidogenic agents targeting Alzheimer’s disease. Molecules 2020 25 23 5773 10.3390/molecules25235773 33297547
    [Google Scholar]
  94. Chirkova Z.V. Kabanova M.V. Filimonov S.I. Abramov I.G. Petzer A. Engelbrecht I. Petzer J.P. Yu Suponitsky K. Veselovsky A.V. An investigation of the monoamine oxidase inhibition properties of pyrrolo[3,4‐ f ]indole‐5,7‐dione and indole‐5,6‐dicarbonitrile derivatives. Drug Dev. Res. 2018 79 2 81 93 10.1002/ddr.21425 29570223
    [Google Scholar]
  95. Shahid Nadeem M. Azam Khan J. Kazmi I. Rashid U. Design, Synthesis, and Bioevaluation of Indole Core Containing 2-Arylidine Derivatives of Thiazolopyrimidine as Multitarget Inhibitors of Cholinesterases and Monoamine Oxidase A/B for the Treatment of Alzheimer Disease. ACS Omega 2022 7 11 9369 9379 10.1021/acsomega.1c06344 35350344
    [Google Scholar]
  96. Rullo M. La Spada G. Miniero D.V. Gottinger A. Catto M. Delre P. Mastromarino M. Latronico T. Marchese S. Mangiatordi G.F. Binda C. Linusson A. Liuzzi G.M. Pisani L. Bioisosteric replacement based on 1,2,4-oxadiazoles in the discovery of 1H-indazole-bearing neuroprotective MAO B inhibitors. Eur. J. Med. Chem. 2023 255 115352 10.1016/j.ejmech.2023.115352 37178666
    [Google Scholar]
  97. Kumar V. De P. Ojha P.K. Saha A. Roy K. A multi-layered variable selection strategy for QSAR modeling of butyrylcholinesterase inhibitors. Curr. Top. Med. Chem. 2020 a 20 18 1601 1627 10.2174/1568026620666200616142753 32543359
    [Google Scholar]
  98. Orhan I. Şener B. Choudhary M.I. Khalid A. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants. J. Ethnopharmacol. 2004 91 1 57 60 10.1016/j.jep.2003.11.016 15036468
    [Google Scholar]
  99. Kumar V. Saha A. Roy K. In silico modeling for dual inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes in Alzheimer’s disease. Comput. Biol. Chem. 2020 88 107355 10.1016/j.compbiolchem.2020.107355 32801088
    [Google Scholar]
  100. Samarelli F. Purgatorio R. Lopopolo G. Deruvo C. Catto M. Andresini M. Carrieri A. Nicolotti O. De Palma A. Miniero D.V. de Candia M. Altomare C.D. Novel 6-alkyl-bridged 4-arylalkylpiperazin-1-yl derivatives of azepino[4,3-b]indol-1(2H)-one as potent BChE-selective inhibitors showing protective effects against neurodegenerative insults. Eur. J. Med. Chem. 2024 270 270 116353 10.1016/j.ejmech.2024.116353 38579622
    [Google Scholar]
  101. Liu Y. Ma C. Li Y. Li M. Cui T. Zhao X. Li Z. Jia H. Wang H. Xiu X. Hu D. Zhang R. Wang N. Liu P. Yang H. Cheng M. Design, synthesis and biological evaluation of carbamate derivatives incorporating multifunctional carrier scaffolds as pseudo-irreversible cholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2024 265 265 116071 10.1016/j.ejmech.2023.116071 38157596
    [Google Scholar]
  102. Alım Z. Şirinzade H. Kılınç N. Dilek E. Süzen S. Assessing indole derivative molecules as dual acetylcholinesterase and butyrylcholinesterase inhibitors through In Vitro inhibition and molecular modelling studies. J. Mol. Struct. 2024 1311 138276 10.1016/j.molstruc.2024.138276
    [Google Scholar]
  103. Abdo Moustafa E. Abdelrasheed Allam H. Fouad M.A. El Kerdawy A.M. Nasser Eid El-Sayed N. Wagner C. Abdel-Aziz H.A. Abdel Fattah Ezzat M. Discovery of novel quinolin-2-one derivatives as potential GSK-3β inhibitors for treatment of Alzheimer’s disease: Pharmacophore-based design, preliminary SAR, in vitro and in vivos biological evaluation. Bioorg. Chem. 2024 146 146 107324 10.1016/j.bioorg.2024.107324 38569322
    [Google Scholar]
  104. Zaib S. Khan I. Ali H.S. Younas M.T. Ibrar A. Al-Odayni A.B. Al-Kahtani A.A. Design and discovery of anthranilamide derivatives as a potential treatment for neurodegenerative disorders via targeting cholinesterases and monoamine oxidases. Int. J. Biol. Macromol. 2024 272 Pt 1 132748 10.1016/j.ijbiomac.2024.132748 38821306
    [Google Scholar]
  105. Taha M. Rahim F. Uddin N. Khan I.U. Iqbal N. Anouar E.H. Salahuddin M. Farooq R.K. Gollapalli M. Khan K.M. Zafar A. Exploring indole-based-thiadiazole derivatives as potent acetylcholinesterase and butyrylcholinesterase enzyme inhibitors. Int. J. Biol. Macromol. 2021 188 1025 1036 10.1016/j.ijbiomac.2021.08.065 34390751
    [Google Scholar]
  106. Shaikh S. Pavale G. Dhavan P. Singh P. Uparkar J. Vaidya S.P. Jadhav B.L. Ramana M.M.V. Design, synthesis and evaluation of dihydropyranoindole derivatives as potential cholinesterase inhibitors against Alzheimer’s disease. Bioorg. Chem. 2021 110 104770 10.1016/j.bioorg.2021.104770 33667902
    [Google Scholar]
  107. Bon L. Banaś A. Dias I. Melo-Marques I. Cardoso S. M. Chaves S. Santos M. A. New multitarget rivastigmine–indole hybrids as potential drug candidates for Alzheimer’s disease. Pharmaceutics 2024 16 2 281 10.3390/pharmaceutics16020281 38399339
    [Google Scholar]
  108. Gujral S.S. Shakeri A. Hejazi L. Rao P.P.N. Design, synthesis and structure-activity relationship studies of 3-phenylpyrazino[1,2-a]indol-1(2H)-ones as amyloid aggregation and cholinesterase inhibitors with antioxidant activity. Eur. J. Med. Chem. Rep. 2022 6 100075 10.1016/j.ejmcr.2022.100075
    [Google Scholar]
  109. Rodríguez-Lavado J. Gallardo-Garrido C. Mallea M. Bustos V. Osorio R. Hödar-Salazar M. Chung H. Araya-Maturana R. Lorca M. Pessoa-Mahana C.D. Mella-Raipán J. Saitz C. Jaque P. Reyes-Parada M. Iturriaga-Vásquez P. Pessoa-Mahana H. Synthesis, in vitro evaluation and molecular docking of a new class of indolylpropyl benzamidopiperazines as dual AChE and SERT ligands for Alzheimer’s disease. Eur. J. Med. Chem. 2020 198 112368 10.1016/j.ejmech.2020.112368 32388114
    [Google Scholar]
  110. Taha M. Alshamrani F.J. Rahim F. Anouar E.H. Uddin N. Chigurupati S. Almandil N.B. Farooq R.K. Iqbal N. Aldubayan M. Venugopal V. Khan K.M. Synthesis, characterization, biological evaluation, and kinetic study of indole base sulfonamide derivatives as acetylcholinesterase inhibitors in search of potent anti-Alzheimer agent. J. King Saud Univ. Sci. 2021 33 3 101401 10.1016/j.jksus.2021.101401
    [Google Scholar]
  111. Kanhed A.M. Patel D.V. Patel N.R. Sinha A. Thakor P.S. Patel K.B. Prajapati N.K. Patel K.V. Yadav M.R. Indoloquinoxaline derivatives as promising multi-functional anti-Alzheimer agents. J. Biomol. Struct. Dyn. 2022 40 6 2498 2515 10.1080/07391102.2020.1840441 33111617
    [Google Scholar]
  112. Nerella A. Jeripothula M. Design, synthesis and biological evaluation of novel deoxyvasicinone-indole as multi-target agents for Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2021 49 128212 10.1016/j.bmcl.2021.128212 34153471
    [Google Scholar]
  113. Purgatorio R. de Candia M. Catto M. Carrieri A. Pisani L. De Palma A. Toma M. Ivanova O.A. Voskressensky L.G. Altomare C.D. Investigating 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole as scaffold of butyrylcholinesterase-selective inhibitors with additional neuroprotective activities for Alzheimer’s disease. Eur. J. Med. Chem. 2019 177 177 414 424 10.1016/j.ejmech.2019.05.062 31158754
    [Google Scholar]
  114. Ismail M.M. Kamel M.M. Mohamed L.W. Faggal S.I. Synthesis of new indole derivatives structurally related to donepezil and their biological evaluation as acetylcholinesterase inhibitors. Molecules 2012 17 5 4811 4823 10.3390/molecules17054811 22534665
    [Google Scholar]
  115. Vrabec R. Maříková J. Ločárek M. Korábečný J. Hulcová D. Hošťálková A. Kuneš J. Chlebek J. Kučera T. Hrabinová M. Jun D. Soukup O. Andrisano V. Jenčo J. Šafratová M. Nováková L. Opletal L. Cahlíková L. Monoterpene indole alkaloids from Vinca minor L. (Apocynaceae): Identification of new structural scaffold for treatment of Alzheimer’s disease. Phytochemistry 2022 194 113017 10.1016/j.phytochem.2021.113017 34798410
    [Google Scholar]
  116. Hamulakova S. Kudlickova Z. Janovec L. Mezencev R. Deckner Z.J. Chernoff Y.O. Janockova J. Ihnatova V. Bzonek P. Novakova N. Hepnarova V. Hrabinova M. Jun D. Korabecny J. Soukup O. Kuca K. Design and synthesis of novel tacrine-indole hybrids as potential multitarget-directed ligands for the treatment of Alzheimer’s disease. Future Med. Chem. 2021 13 9 785 804 10.4155/fmc‑2020‑0184 33829876
    [Google Scholar]
  117. Lee S.H. Purgatorio R. Samarelli F. Catto M. Denora N. Morgese M.G. Tucci P. Trabace L. Kim H.W. Park H.S. Kim S.E. Lee B.C. de Candia M. Altomare C.D. Radiosynthesis and whole‐body distribution in mice of a 18 F‐labeled azepino[4,3‐ b ]indole‐1‐one derivative with multimodal activity for the treatment of Alzheimer’s disease. Arch. Pharm. 2024 357 3 2300491 10.1002/ardp.202300491 38158335
    [Google Scholar]
  118. Ullah H. Bibi U. Hussain A. Sarfraz M. Rahim F. Hayat S. Zada H. Khan F. Wadood A. Synthesis and molecular docking study of bis-indolylmethane thiourea derivatives as anti-alzheimer agents. Russ. J. Org. Chem. 2023 59 1 181 189 10.1134/S1070428023010207
    [Google Scholar]
  119. Mateev E. Kondeva-Burdina M. Georgieva M. Mateeva A. Valkova I. Tzankova V. Zlatkov A. Synthesis, biological evaluation, molecular docking and ADME studies of novel pyrrole-based schiff bases as dual acting MAO/AChE inhibitors. Sci. Pharm. 2024 92 2 18 10.3390/scipharm92020018
    [Google Scholar]
  120. Khan S. Iqbal S. Taha M. Rahim F. Shah M. Ullah H. Bahadur A. Alrbyawi H. Dera A.A. Alahmdi M.I. Pashameah R.A. Alzahrani E. Farouk A.E. Synthesis, in vitro biological evaluation and in silico molecular docking studies of indole based thiadiazole derivatives as dual inhibitor of acetylcholinesterase and butyrylchloinesterase. Molecules 2022 27 21 7368 10.3390/molecules27217368 36364195
    [Google Scholar]
  121. Akdemir A.O. Aslan S. Some new fractional order integral inequalities for logarithmically convex functions. 5th international conference on advances in natural & applied science chemistry 2023
    [Google Scholar]
  122. Ashrafian H. Zadeh E.H. Khan R.H. Review on Alzheimer’s disease: Inhibition of amyloid beta and tau tangle formation. Int. J. Biol. Macromol. 2021 167 382 394 10.1016/j.ijbiomac.2020.11.192 33278431
    [Google Scholar]
  123. Aisen P.S. Vellas B. Hampel H. Moving towards early clinical trials for amyloid-targeted therapy in Alzheimer’s disease. Nat. Rev. Drug Discov. 2013 12 4 324 10.1038/nrd3842‑c1 23493086
    [Google Scholar]
  124. Hampel H. Hardy J. Blennow K. Chen C. Perry G. Kim S.H. Villemagne V.L. Aisen P. Vendruscolo M. Iwatsubo T. Masters C.L. Cho M. Lannfelt L. Cummings J.L. Vergallo A. The amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatry 2021 26 10 5481 5503 10.1038/s41380‑021‑01249‑0 34456336
    [Google Scholar]
  125. Zhou L.C. Liang Y.F. Huang Y. Yang G.X. Zheng L.L. Sun J.M. Li Y. Zhu F.L. Qian H.W. Wang R. Ma L. Design, synthesis, and biological evaluation of diosgenin-indole derivatives as dual-functional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2021 219 113426 10.1016/j.ejmech.2021.113426 33848787
    [Google Scholar]
  126. Sreenivasachary N. Kroth H. Benderitter P. Hamel A. Varisco Y. Hickman D.T. Froestl W. Pfeifer A. Muhs A. Discovery and characterization of novel indole and 7-azaindole derivatives as inhibitors of β-amyloid-42 aggregation for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2017 27 6 1405 1411 10.1016/j.bmcl.2017.02.001 28216401
    [Google Scholar]
  127. Bowroju S. K. Mainali N. Ayyadevara S. Penthala N. R. Krishnamachari S. Kakraba S. Reis R. J. S. Crooks P. A. Design and synthesis of novel hybrid 8-hydroxy quinoline-indole derivatives as inhibitors of Aβ self-aggregation and metal chelation-induced Aβ aggregation. Molecules 2020 25 16 3610 10.3390/molecules25163610 32784464
    [Google Scholar]
  128. Laivut S. Moongkarndi P. Kitphati W. Rukthong P. Sathirakul K. Sripha K. Design, synthesis, and neuroprotective activity of phenoxyindole derivatives on antiamyloid beta (Aβ) aggregation, antiacetylcholinesterase, and antioxidant activities. Pharmaceuticals 2023 16 3 355 10.3390/ph16030355 36986454
    [Google Scholar]
  129. Krasnovskaya O. Spector D. Zlobin A. Pavlov K. Gorelkin P. Erofeev A. Beloglazkina E. Majouga A. Metals in imaging of alzheimer’s disease. Int. J. Mol. Sci. 2020 21 23 9190 10.3390/ijms21239190 33276505
    [Google Scholar]
  130. Yu L Scheunemann M. Deuther-Conrad W. Hiller A. Fischer S. Sorger D. Sabri O. Jia H. Steinbach J. Brust P. Liu B. Novel indole derivatives as potential imaging agents for Alzheimer’s disease. Bull. Korean Chem. Soc. 2010 31 1 177 180 10.5012/bkcs.2010.31.01.177
    [Google Scholar]
  131. Yang Y. Jia H. M. Liu B. L. (E)-5-styryl-1H-indole and (E)-6-styrylquinoline derivatives serve as probes for β-amyloid plaques. Molecules 2012 17 4 4252 4265 10.3390/molecules17044252 22491675
    [Google Scholar]
  132. Doens D. Valdés-Tresanco M. E. Vasquez V. Carreira M. B. de La Guardia Y. Stephens D. E. Nguyen V. D. Nguyen V. T. Gu J. Hegde M. L. Larionov O. v. Valiente P. A. Lleonart R. Fernández P. L. Hexahydropyrrolo[2,3- b ]indole compounds as potential therapeutics for alzheimer’s disease. ACS Chem. Neurosci. 2019 10 10 4250 4263 10.1021/acschemneuro.9b00297 31545596
    [Google Scholar]
  133. Cheng B. Lin Y. Kuang M. Fang S. Gu Q. Xu J. Wang L. Synthesis and anti-neuroinflammatory activity of lactone benzoyl hydrazine and 2-nitro-1-phenyl-1h-indole derivatives as p38α MAPK inhibitors. Chem. Biol. Drug Des. 2015 86 5 1121 1130 10.1111/cbdd.12581 25960125
    [Google Scholar]
  134. Ocak A. Agri A. Üniversitesi I.Ç. Some new fractional order integral inequalities for logarithmically convex functions. 5th INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL & APPLIED SCIENCE MATHEMATICS/STATISTICS Ağrı, Türkiye, September 2021.
    [Google Scholar]
  135. Chang K. H. Lin C. H. Chen H. C. Huang H. Y. Chen S. L. Lin T. H. Ramesh C. Huang C. C. Fung H. C. Wu Y. R. Huang H. J. Lee-Chen G. J. Hsieh-Li H. M. Yao C. F. The potential of indole/indolylquinoline compounds in tau misfolding reduction by enhancement of HSPB 1. CNS Neurosci. Ther. 2017 23 1 45 56 10.1111/cns.12592 27424519
    [Google Scholar]
  136. Tarazi H. Odeh R.A. Al-Qawasmeh R. Yousef I.A. Voelter W. Al-Tel T.H. Design, synthesis and SAR analysis of potent BACE1 inhibitors: Possible lead drug candidates for Alzheimer’s disease. Eur. J. Med. Chem. 2017 125 1213 1224 10.1016/j.ejmech.2016.11.021 27871037
    [Google Scholar]
  137. Gonzalez D. Arribas R. L. Viejo L. Lajarin-Cuesta R. de los Rios C. Substituent effect of N-benzylated gramine derivatives that prevent the PP2A inhibition and dissipate the neuronal Ca2+ overload, as a multitarget strategy for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. 2018 26 9 2551 2560 10.1016/j.bmc.2018.04.019 29656989
    [Google Scholar]
  138. Blokhina S. Sharapova A. Ol’khovich M. Ustinov A. Perlovich G. New derivatives of hydrogenated pyrido[4,3-b]indoles as potential neuroprotectors: Synthesis, biological testing and solubility in pharmaceutically relevant solvents. Saudi Pharm. J. 2018 26 6 801 809 10.1016/j.jsps.2018.04.003 30202220
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266358563250331175140
Loading
/content/journals/ctmc/10.2174/0115680266358563250331175140
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test