Skip to content
2000
image of Transforming Breast Cancer Therapy: The Pivotal Role of Nanoparticles

Abstract

Introduction

Globally, breast cancer (BC) affects a greater number of women than any other kind of cancer, and it is the second leading cause of death after lung cancer. The current standard of care for cancer treatment is the surgical excision of the malignant tumor followed by adjuvant therapy with chemotherapy or radiation. Regrettably, the side effects of radiation and chemotherapy frequently cause harm to healthy tissues and organs, hence limiting the effectiveness of these treatments in addressing BC. Recently, various nanoparticles (NPs) have been discovered and manufactured with the capacity to selectively target cancerous cells while minimizing harm to normal cells or organs. As a result, the utilization of NPs-mediated targeted drug delivery systems (DDS) has emerged as a promising method for treating BC.

Objective

The primary aim of this review was to provide a concise overview of the function of different nanoparticles in the specific delivery of anticancer medications to eradicate breast cancer.

Methods

The present review paper performed a literature inspection using several search engines such as PubMed, Google Scholar, and Science Direct.

Results

In addition to their ability to selectively target tumor cells and minimize side effects, nanoparticles (NPs) possess other distinctive characteristics that make them highly desirable for cancer treatment. These include low toxicity, excellent compatibility, ease of preparation, high photoluminescence for bioimaging, and the capacity to efficiently load drugs due to their adjustable surface functionalities.

Conclusion

This study provides a comprehensive examination of recent therapeutic studies that utilize various nanoparticle-mediated drug delivery systems as alternatives to established therapy techniques for breast cancer. This study will elucidate the importance of nanoparticle-mediated drug delivery systems (DDS) and provide a roadmap for identifying the optimal approach for future targeted drug delivery, specifically for the treatment of breast cancer.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266354524250424162638
2025-05-06
2025-09-02
Loading full text...

Full text loading...

References

  1. Łukasiewicz S. Czeczelewski M. Forma A. Baj J. Sitarz R. Stanisławek A. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—An updated review. Cancers 2021 13 17 4287 10.3390/cancers13174287 34503097
    [Google Scholar]
  2. Arnold M. Morgan E. Rumgay H. Mafra A. Singh D. Laversanne M. Vignat J. Gralow J.R. Cardoso F. Siesling S. Soerjomataram I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022 66 15 23 10.1016/j.breast.2022.08.010 36084384
    [Google Scholar]
  3. Dongsar T.T. Dongsar T.S. Abourehab M.A.S. Gupta N. Kesharwani P. Emerging application of magnetic nanoparticles for breast cancer therapy. Eur. Polym. J. 2023 187 111898 10.1016/j.eurpolymj.2023.111898
    [Google Scholar]
  4. Dheyab M.A. Aziz A.A. Khaniabadi P.M. Jameel M.S. Oladzadabbasabadi N. Rahman A.A. Braim F.S. Mehrdel B. Gold nanoparticles-based photothermal therapy for breast cancer. Photodiagn. Photodyn. Ther. 2023 42 103312 10.1016/j.pdpdt.2023.103312 36731732
    [Google Scholar]
  5. Zeng Y. Liao D. Kong X. Huang Q. Zhong M. Liu J. Nezamzadeh-Ejhieh A. Pan Y. Song H. Current status and prospect of ZIF-based materials for breast cancer treatment. Colloids Surf. B Biointerfaces 2023 232 113612 10.1016/j.colsurfb.2023.113612 37898043
    [Google Scholar]
  6. Jain Singhai N. Maheshwari R. Khatri K. New insights in aptamer-targeted nanoliposomes for the treatment of breast cancer. J. Drug Deliv. Sci. Technol. 2023 87 104880 10.1016/j.jddst.2023.104880
    [Google Scholar]
  7. Hurtado M.D. Tama E. D’Andre S. Shufelt C.L. The relation between excess adiposity and breast cancer in women: Clinical implications and management. Crit. Rev. Oncol. Hematol. 2024 193 104213 10.1016/j.critrevonc.2023.104213 38008197
    [Google Scholar]
  8. Lan H.R. Chen M. Yao S.Y. Chen J.X. Jin K.T. Novel immunotherapies for breast cancer: Focus on 2023 findings. Int. Immunopharmacol. 2024 128 111549 10.1016/j.intimp.2024.111549 38266449
    [Google Scholar]
  9. Müller V. Bartsch R. Lin N.U. Montemurro F. Pegram M.D. Tolaney S.M. Epidemiology, clinical outcomes, and unmet needs of patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases: A systematic literature review. Cancer Treat. Rev. 2023 115 102527 10.1016/j.ctrv.2023.102527 36893691
    [Google Scholar]
  10. Kunkler I. The evolving role of whole breast hypofractionation in older patients with early breast cancer. Semin. Radiat. Oncol. 2022 32 2 155 158 10.1016/j.semradonc.2021.11.006 35307117
    [Google Scholar]
  11. Hanna K. Mayden K. Chemotherapy treatment considerations in metastatic breast cancer. J. Adv. Pract. Oncol. 2021 12 Suppl. 2 6 12 34113474
    [Google Scholar]
  12. Akanda M. Mithu M.D.S.H. Douroumis D. Solid lipid nanoparticles: An effective lipid-based technology for cancer treatment. J. Drug Deliv. Sci. Technol. 2023 86 104709 10.1016/j.jddst.2023.104709
    [Google Scholar]
  13. Nagpal D. Verma R. Mittal V. Jeandet P. Kaushik D. Targeted therapies against breast cancer: Clinical perspectives, obstacles and new opportunities. J. Drug Deliv. Sci. Technol. 2023 89 105049 10.1016/j.jddst.2023.105049
    [Google Scholar]
  14. Moghaddam F.D. Heidari G. Zare E.N. Djatoubai E. Paiva-Santos A.C. Bertani F.R. Wu A. Carbohydrate polymer-based nanocomposites for breast cancer treatment. Carbohydr. Polym. 2023 304 120510 10.1016/j.carbpol.2022.120510 36641174
    [Google Scholar]
  15. Neetika Sharma M. Thakur P. Gaur P. Rani G.M. Rustagi S. Talreja R.K. Chaudhary V. Cancer treatment and toxicity outlook of nanoparticles. Environ. Res. 2023 237 Pt 1 116870 10.1016/j.envres.2023.116870 37567383
    [Google Scholar]
  16. Fan R. Tao X. Zhai X. Zhu Y. Li Y. Chen Y. Dong D. Yang S. Lv L. Application of aptamer-drug delivery system in the therapy of breast cancer. Biomed. Pharmacother. 2023 161 114444 10.1016/j.biopha.2023.114444 36857912
    [Google Scholar]
  17. Alshareeda A.T. Nur Khatijah M.Z. Al-Sowayan B.S. Nanotechnology: A revolutionary approach to prevent breast cancer recurrence. Asian J. Surg. 2023 46 1 13 17 10.1016/j.asjsur.2022.03.002 35361551
    [Google Scholar]
  18. Nitheesh Y. Pradhan R. Hejmady S. Taliyan R. Singhvi G. Alexander A. Kesharwani P. Dubey S.K. Surface engineered nanocarriers for the management of breast cancer. Mater. Sci. Eng. C 2021 130 112441 10.1016/j.msec.2021.112441 34702526
    [Google Scholar]
  19. Pankotai-Bodó G. Oláh-Németh O. Sükösd F. Pankotai T. Routine molecular applications and recent advances in breast cancer diagnostics. J. Biotechnol. 2024 380 20 28 10.1016/j.jbiotec.2023.12.005 38122830
    [Google Scholar]
  20. Famta P. Shah S. Khatri D.K. Guru S.K. Singh S.B. Srivastava S. Enigmatic role of exosomes in breast cancer progression and therapy. Life Sci. 2022 289 120210 10.1016/j.lfs.2021.120210 34875250
    [Google Scholar]
  21. Cowell C.F. Weigelt B. Sakr R.A. Ng C.K.Y. Hicks J. King T.A. Reis-Filho J.S. Progression from ductal carcinoma in situ to invasive breast cancer: Revisited. Mol. Oncol. 2013 7 5 859 869 10.1016/j.molonc.2013.07.005 23890733
    [Google Scholar]
  22. Poelhekken K. Lin Y. Greuter M.J.W. van der Vegt B. Dorrius M. de Bock G.H. The natural history of ductal carcinoma in situ (DCIS) in simulation models: A systematic review. Breast 2023 71 74 81 10.1016/j.breast.2023.07.012 37541171
    [Google Scholar]
  23. Farante G. Toesca A. Magnoni F. Lissidini G. Vila J. Mastropasqua M. Viale G. Penco S. Cassano E. Lazzeroni M. Bonanni B. Leonardi M.C. Ripoll-Orts F. Curigliano G. Orecchia R. Galimberti V. Veronesi P. Advances and controversies in management of breast ductal carcinoma in situ (DCIS). Eur. J. Surg. Oncol. 2022 48 4 736 741 10.1016/j.ejso.2021.10.030 34772587
    [Google Scholar]
  24. Badve S.S. Gökmen-Polar Y. Ductal carcinoma in situ of breast: Update 2019. Pathology 2019 51 6 563 569 10.1016/j.pathol.2019.07.005 31472981
    [Google Scholar]
  25. Sokolova A. Lakhani S.R. Lobular carcinoma in situ: Diagnostic criteria and molecular correlates. Mod. Pathol. 2021 34 Suppl. 1 8 14 10.1038/s41379‑020‑00689‑3 33024303
    [Google Scholar]
  26. Brock J. Lobular carcinoma in situ – A pragmatic approach to the controversies. Human Pathology Reports 2022 27 300589 10.1016/j.hpr.2022.300589
    [Google Scholar]
  27. Wilson N. Ironside A. Diana A. Oikonomidou O. Lobular breast cancer: A review. Front. Oncol. 2021 10 591399 10.3389/fonc.2020.591399 33520704
    [Google Scholar]
  28. Qu Y. Qin S. Yang Z. Li Z. Liang Q. Long T. Wang W. Zeng D. Zhao Q. Dai Z. Ni Q. Zhao F. Kim W. Hou J. Targeting the DNA repair pathway for breast cancer therapy: Beyond the molecular subtypes. Biomed. Pharmacother. 2023 169 115877 10.1016/j.biopha.2023.115877 37951025
    [Google Scholar]
  29. Cui S. Liu W. Wang W. Miao K. Guan X. Advances in the diagnosis and prognosis of minimal residual lesions of breast cancer. Pathol. Res. Pract. 2023 245 154428 10.1016/j.prp.2023.154428 37028109
    [Google Scholar]
  30. Yu T.Y. Zhang G. Chai X.X. Ren L. Yin D.C. Zhang C.Y. Recent progress on the effect of extracellular matrix on occurrence and progression of breast cancer. Life Sci. 2023 332 122084 10.1016/j.lfs.2023.122084 37716504
    [Google Scholar]
  31. Semenza G.L. Molecular mechanisms mediating metastasis of hypoxic breast cancer cells. Trends Mol. Med. 2012 18 9 534 543 10.1016/j.molmed.2012.08.001 22921864
    [Google Scholar]
  32. Tamayo-Angorrilla M. López de Andrés J. Jiménez G. Marchal J.A. The biomimetic extracellular matrix: A therapeutic tool for breast cancer research. Transl. Res. 2022 247 117 136 10.1016/j.trsl.2021.11.008 34844003
    [Google Scholar]
  33. Giussani M. Merlino G. Cappelletti V. Tagliabue E. Daidone M.G. Tumor-extracellular matrix interactions: Identification of tools associated with breast cancer progression. Semin. Cancer Biol. 2015 35 3 10 10.1016/j.semcancer.2015.09.012 26416466
    [Google Scholar]
  34. Fabiano E. Zhang J. Reinhart-King C.A. Tissue density in the progression of breast cancer: Bedside to bench and back again. Curr. Opin. Biomed. Eng. 2022 22 100383 10.1016/j.cobme.2022.100383 35463199
    [Google Scholar]
  35. Hill B.S. Sarnella A. D’Avino G. Zannetti A. Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer. Semin. Cancer Biol. 2020 60 202 213 10.1016/j.semcancer.2019.07.028 31377307
    [Google Scholar]
  36. Breast Cancer a Case study. Available from: https://u.osu.edu/breastcancercasestudy2019/pathophysiology-description/
  37. Moar K. Pant A. Saini V. Pandey M. Maurya P.K. Potential diagnostic and prognostic biomarkers for breast cancer: A compiled review. Pathol. Res. Pract. 2023 251 154893 10.1016/j.prp.2023.154893 37918101
    [Google Scholar]
  38. Abdul Wahab M.R. Palaniyandi T. Viswanathan S. Baskar G. Surendran H. Gangadharan S.G.D. Sugumaran A. Sivaji A. Kaliamoorthy S. Kumarasamy S. Biomarker-specific biosensors revolutionise breast cancer diagnosis. Clin. Chim. Acta 2024 555 117792 10.1016/j.cca.2024.117792 38266968
    [Google Scholar]
  39. Krystel-Whittemore M. Tan P.H. Wen H.Y. Predictive and prognostic biomarkers in breast tumours. Pathology 2024 56 2 186 191 10.1016/j.pathol.2023.10.014 38212230
    [Google Scholar]
  40. Bottosso M. Mosele F. Michiels S. Cournède P.H. Dogan S. Labaki C. André F. Moving toward precision medicine to predict drug sensitivity in patients with metastatic breast cancer. ESMO Open 2024 9 3 102247 10.1016/j.esmoop.2024.102247 38401248
    [Google Scholar]
  41. Drago J.Z. Ferraro E. Abuhadra N. Modi S. Beyond HER2: Targeting the ErbB receptor family in breast cancer. Cancer Treat. Rev. 2022 109 102436 10.1016/j.ctrv.2022.102436 35870237
    [Google Scholar]
  42. Ghauri M.A. Raza A. Hayat U. Atif N. Iqbal H.M.N. Bilal M. Mechanistic insights expatiating the biological role and regulatory implications of estrogen and HER2 in breast cancer metastasis. Biochim. Biophys. Acta, Gen. Subj. 2022 1866 5 130113 10.1016/j.bbagen.2022.130113 35202768
    [Google Scholar]
  43. Seale K.N. Tkaczuk K.H.R. Circulating biomarkers in breast cancer. Clin. Breast Cancer 2022 22 3 e319 e331 10.1016/j.clbc.2021.09.006 34756687
    [Google Scholar]
  44. Skala M.C. Ayuso J.M. Burkard M.E. Deming D.A. Breast cancer immunotherapy: Current biomarkers and the potential of in vitro assays. Curr. Opin. Biomed. Eng. 2022 21 100348 10.1016/j.cobme.2021.100348 34901585
    [Google Scholar]
  45. Ulaner G.A. Fowler A.M. Clark A.S. Linden H. Estrogen receptor-targeted and progesterone receptor-targeted PET for patients with breast cancer. PET Clin. 2023 18 4 531 542 10.1016/j.cpet.2023.04.008 37270377
    [Google Scholar]
  46. Ferro A. Generali D. Caffo O. Caldara A. De Lisi D. Dipasquale M. Lorenzi M. Monteverdi S. Fedele P. Ciribilli Y. Oral selective estrogen receptor degraders (SERDs): The new emperors in breast cancer clinical practice? Semin. Oncol. 2023 50 3-5 90 101 10.1053/j.seminoncol.2023.08.002 37673696
    [Google Scholar]
  47. Hou Y. Peng Y. Li Z. Update on prognostic and predictive biomarkers of breast cancer. Semin. Diagn. Pathol. 2022 39 5 322 332 10.1053/j.semdp.2022.06.015 35752515
    [Google Scholar]
  48. Blakely B. Shin S. Jin K. Overview of the therapeutic strategies for ER positive breast cancer. Biochem. Pharmacol. 2023 212 115552 10.1016/j.bcp.2023.115552 37068524
    [Google Scholar]
  49. Rodrigues-Ferreira S. Nahmias C. Predictive biomarkers for personalized medicine in breast cancer. Cancer Lett. 2022 545 215828 10.1016/j.canlet.2022.215828 35853538
    [Google Scholar]
  50. Lin JY Ye JY Chen JG Lin ST Lin S Cai SQ Prediction of receptor status in radiomics: Recent advances in breast cancer research. Acad. Radiol. 2023 S1076-6332 23 00687-6
    [Google Scholar]
  51. Jagannathan G. White M.J. Xian R.R. Emens L.A. Cimino-Mathews A. A new landscape of testing and therapeutics in metastatic breast cancer. Clin. Lab. Med. 2023 43 2 299 321 10.1016/j.cll.2023.03.004 37169447
    [Google Scholar]
  52. Bakhtar O. Pathology of breast cancer. Surg. Clin. North Am. 2023 103 1 1 15 10.1016/j.suc.2022.08.001 36410343
    [Google Scholar]
  53. Venetis K. Invernizzi M. Sajjadi E. Curigliano G. Fusco N. Cellular immunotherapy in breast cancer: The quest for consistent biomarkers. Cancer Treat. Rev. 2020 90 102089 10.1016/j.ctrv.2020.102089 32889360
    [Google Scholar]
  54. Spring L.M. Wander S.A. Andre F. Moy B. Turner N.C. Bardia A. Cyclin-dependent kinase 4 and 6 inhibitors for hormone receptor-positive breast cancer: Past, present, and future. Lancet 2020 395 10226 817 827 10.1016/S0140‑6736(20)30165‑3 32145796
    [Google Scholar]
  55. Pandey P. Khan F. Choi M. Singh S.K. Kang H.N. Park M.N. Ko S.G. Sahu S.K. Mazumder R. Kim B. Review deciphering potent therapeutic approaches targeting Notch signaling pathway in breast cancer. Biomed. Pharmacother. 2023 164 114938 10.1016/j.biopha.2023.114938 37267635
    [Google Scholar]
  56. Liu H. Ma L. Lin J. Cao B. Qu D. Luo C. Huang W. Han L. Xu H. Wu Z. Xu R. Zhang D. Advances in molecular mechanisms of drugs affecting abnormal glycosylation and metastasis of breast cancer. Pharmacol. Res. 2020 155 104738 10.1016/j.phrs.2020.104738 32151681
    [Google Scholar]
  57. Ross D.S. Pareja F. Molecular pathology of breast tumors. Surg. Pathol. Clin. 2021 14 3 455 471 10.1016/j.path.2021.05.009 34373096
    [Google Scholar]
  58. Biancolella M. Testa B. Baghernajad Salehi L. D’Apice M.R. Novelli G. Genetics and genomics of breast cancer: Update and translational perspectives. Semin. Cancer Biol. 2021 72 27 35 10.1016/j.semcancer.2020.03.013 32259642
    [Google Scholar]
  59. Juríková M. Danihel Ľ. Polák Š. Varga I. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochem. 2016 118 5 544 552 10.1016/j.acthis.2016.05.002 27246286
    [Google Scholar]
  60. Pathmanathan N. Balleine R.L. Ki67 and proliferation in breast cancer. J. Clin. Pathol. 2013 66 6 512 516 10.1136/jclinpath‑2012‑201085 23436927
    [Google Scholar]
  61. Kontzoglou K. Palla V. Karaolanis G. Karaiskos I. Alexiou I. Pateras I. Konstantoudakis K. Stamatakos M. Correlation between Ki67 and breast cancer prognosis. Oncology 2013 84 4 219 225 10.1159/000346475 23364275
    [Google Scholar]
  62. Tagde P. Kulkarni G.T. Mishra D.K. Kesharwani P. Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. J. Drug Deliv. Sci. Technol. 2020 56 101613 10.1016/j.jddst.2020.101613
    [Google Scholar]
  63. Laws A. Kantor O. King T.A. Surgical management of the axilla for breast cancer. Hematol. Oncol. Clin. North Am. 2023 37 1 51 77 10.1016/j.hoc.2022.08.005 36435614
    [Google Scholar]
  64. Marin C Weiss A Gooch JC Updates in the surgical management of benign and high-risk breast lesions. Clin. Breast Cancer 2023 S1526-8209(23)00312-9 10.1016/j.clbc.2023.12.008
    [Google Scholar]
  65. Solmunde E. Falstie-Jensen A.M. Lorenzen E.L. Ewertz M. Reinertsen K.V. Dekkers O.M. Cronin-Fenton D.P. Breast cancer, breast cancer-directed radiation therapy and risk of hypothyroidism: A systematic review and meta-analysis. Breast 2023 68 216 224 10.1016/j.breast.2023.02.008 36868138
    [Google Scholar]
  66. Verma S Young S Boldt G Blanchette P Lock M Helou J Raphael J. Immunotherapy and radiation therapy sequencing in breast cancer: A systematic review. Int. J. Radiat. Oncol. Biol. Phys. 2024 S0360-3016(24)00006-3 10.1016/j.ijrobp.2024.01.001
    [Google Scholar]
  67. Langeh U. Kumar V. Ahuja P. Singh C. Singh A. An update on breast cancer chemotherapy-associated toxicity and their management approaches. Health Sci. Rev. 2023 9 100119 10.1016/j.hsr.2023.100119
    [Google Scholar]
  68. Famta P. Shah S. Jain N. Kumar K.C. Bagasariya D. Khatri D.K. Raghuvanshi R.S. Singh S.B. Srivastava S. Tumor-promoting aftermath post-chemotherapy: A focus on breast cancer. Life Sci. 2022 310 121125 10.1016/j.lfs.2022.121125 36306868
    [Google Scholar]
  69. Prihantono Faruk M. Breast cancer resistance to chemotherapy: When should we suspect it and how can we prevent it? Ann. Med. Surg. 2021 70 102793 10.1016/j.amsu.2021.102793 34691411
    [Google Scholar]
  70. Claessens A.K.M. Ibragimova K.I.E. Geurts S.M.E. Bos M.E.M.M. Erdkamp F.L.G. Tjan-Heijnen V.C.G. The role of chemotherapy in treatment of advanced breast cancer: An overview for clinical practice. Crit. Rev. Oncol. Hematol. 2020 153 102988 10.1016/j.critrevonc.2020.102988 32599374
    [Google Scholar]
  71. Barzaman K. Karami J. Zarei Z. Hosseinzadeh A. Kazemi M.H. Moradi-Kalbolandi S. Safari E. Farahmand L. Breast cancer: Biology, biomarkers, and treatments. Int. Immunopharmacol. 2020 84 106535 10.1016/j.intimp.2020.106535 32361569
    [Google Scholar]
  72. Greenwalt I. Zaza N. Das S. Li B.D. Precision medicine and targeted therapies in breast cancer. Surg. Oncol. Clin. N. Am. 2020 29 1 51 62 10.1016/j.soc.2019.08.004 31757313
    [Google Scholar]
  73. Etan T. Amir E. Tibau A. Yerushalmi R. Moore A. Shepshelovich D. Goldvaser H. National comprehensive cancer network recommendations for drugs without US food and drug administration approval in metastatic breast cancer: A cross-sectional study. Cancer Treat. Rev. 2020 91 102113 10.1016/j.ctrv.2020.102113 33128993
    [Google Scholar]
  74. Barzaman K. Moradi-Kalbolandi S. Hosseinzadeh A. Kazemi M.H. Khorramdelazad H. Safari E. Farahmand L. Breast cancer immunotherapy: Current and novel approaches. Int. Immunopharmacol. 2021 98 107886 10.1016/j.intimp.2021.107886 34153663
    [Google Scholar]
  75. Franzoi M.A. Romano E. Piccart M. Immunotherapy for early breast cancer: Too soon, too superficial, or just right? Ann. Oncol. 2021 32 3 323 336 10.1016/j.annonc.2020.11.022 33307202
    [Google Scholar]
  76. Santa-Maria C.A. Dunn S.A. Ho A.Y. Immunotherapy combined with radiation therapy in breast cancer: A rapidly evolving landscape. Semin. Radiat. Oncol. 2022 32 3 291 297 10.1016/j.semradonc.2022.01.001 35688527
    [Google Scholar]
  77. Esteva F.J. Hubbard-Lucey V.M. Tang J. Pusztai L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol. 2019 20 3 e175 e186 10.1016/S1470‑2045(19)30026‑9 30842061
    [Google Scholar]
  78. Chiradoni Thungappa S. Maksud T. Raut N. Nagarkar R. Batra U. Kumar S. Parmar D. Comparison of the efficacy, safety, pharmacokinetic and immunogenicity of UJVIRA (ZRC-3256, Trastuzumab emtansine) with the kadcyla (Trastuzumab emtansine) in the treatment of HER2-positive metastatic breast cancer: A randomized, open-label, multicenter study in India. Clin. Breast Cancer 2022 22 4 300 307 10.1016/j.clbc.2021.11.006 34955432
    [Google Scholar]
  79. Cucciniello L. Garufi G. Di Rienzo R. Martinelli C. Pavone G. Giuliano M. Arpino G. Montemurro F. Del Mastro L. De Laurentiis M. Puglisi F. Estrogen deprivation effects of endocrine therapy in breast cancer patients: Incidence, management and outcome. Cancer Treat. Rev. 2023 120 102624 10.1016/j.ctrv.2023.102624 37751658
    [Google Scholar]
  80. Corti C. De Angelis C. Bianchini G. Malorni L. Giuliano M. Hamilton E. Jeselsohn R. Jhaveri K. Curigliano G. Criscitiello C. Novel endocrine therapies: What is next in estrogen receptor positive, HER2 negative breast cancer? Cancer Treat. Rev. 2023 117 102569 10.1016/j.ctrv.2023.102569 37146385
    [Google Scholar]
  81. Davezac M. Meneur C. Buscato M. Zahreddine R. Arnal J.F. Dalenc F. Lenfant F. Fontaine C. The beneficial effects of tamoxifen on arteries: A key player for cardiovascular health of breast cancer patient. Biochem. Pharmacol. 2023 214 115677 10.1016/j.bcp.2023.115677 37419371
    [Google Scholar]
  82. Battisti N.M.L. Smith I.E. Preventing late recurrence in hormone receptor-positive early breast cancer: A review. Eur. J. Cancer 2022 172 53 64 10.1016/j.ejca.2022.05.028 35753212
    [Google Scholar]
  83. Aggarwal S. Verma S.S. Aggarwal S. Gupta S.C. Drug repurposing for breast cancer therapy: Old weapon for new battle. Semin. Cancer Biol. 2021 68 8 20 10.1016/j.semcancer.2019.09.012 31550502
    [Google Scholar]
  84. Grogan Fleege N.M. Cobain E.F. Breast cancer management in 2021: A primer for the obstetrics and gynecology. Best Pract. Res. Clin. Obstet. Gynaecol. 2022 82 30 45 10.1016/j.bpobgyn.2022.02.004 35307285
    [Google Scholar]
  85. Roy A.P. Mitra S. Sarkar S. Sahu R. Nandi G. Karunakaran G. Dua T.K. Paul P. Biofabrication of ecofriendly copper oxide nanoparticles and their applications in breast cancer therapy. Inorg. Chem. Commun. 2023 111917
    [Google Scholar]
  86. Gupta A. Nishchaya K. Saha M. Naik G.A.R.R. Yadav S. Srivastava S. Roy A.A. Moorkoth S. Mutalik S. Dhas N. Recent advancements in nanoconstructs for the theranostics applications for triple negative breast cancer. J. Drug Deliv. Sci. Technol. 2024 93 105401 10.1016/j.jddst.2024.105401
    [Google Scholar]
  87. Nag S. Mitra O. Tripathi G. Adur I. Mohanto S. Nama M. Samanta S. Gowda B.H.J. Subramaniyan V. Sundararajan V. Kumarasamy V. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives. Photodiagn. Photodyn. Ther. 2024 45 103959 10.1016/j.pdpdt.2023.103959 38228257
    [Google Scholar]
  88. Jiang Y. Jiang Z. Wang M. Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv. Drug Deliv. Rev. 2022 180 114034 10.1016/j.addr.2021.114034 34736986
    [Google Scholar]
  89. Saavedra C. Gion M. Cortés J. Llombart-Cussac A. Top advances of the year: Breast cancer. Cancer 2023 129 12 1791 1794 10.1002/cncr.34752 37014257
    [Google Scholar]
  90. Schlam I. Chavez-MacGregor M. Best of the year: Advanced breast cancer in 2023. Breast 2024 74 103677 10.1016/j.breast.2024.103677 38401422
    [Google Scholar]
  91. Goyal P.K. Khurana S. Mittal A. Hydrogel-bound cytotoxic drug delivery system for breast cancer. Health Sci. Rev. 2023 9 100140 10.1016/j.hsr.2023.100140
    [Google Scholar]
  92. Ferrari P. Nicolini A. Carpi A. Targeted therapies of metastatic breast cancer: Relationships with cancer stem cells. Biomed. Pharmacother. 2013 67 6 543 555 10.1016/j.biopha.2013.03.006 23643355
    [Google Scholar]
  93. Samia S. Sandeep Chary P. Khan O. Kumar Mehra N. Recent trends and advances in novel formulations as an armament in Bcl-2/Bax targeted breast cancer. Int. J. Pharm. 2024 653 123889 10.1016/j.ijpharm.2024.123889 38346605
    [Google Scholar]
  94. Panthi V.K. Bashyal S. Paudel K.R. Docetaxel-loaded nanoformulations delivery for breast cancer management: Challenges, recent advances, and future perspectives. J. Drug Deliv. Sci. Technol. 2023 ••• 105314
    [Google Scholar]
  95. Li T. Ashrafizadeh M. Shang Y. Nuri Ertas Y. Orive G. Chitosan-functionalized bioplatforms and hydrogels in breast cancer: immunotherapy, phototherapy and clinical perspectives. Drug Discov. Today 2024 29 1 103851 10.1016/j.drudis.2023.103851 38092146
    [Google Scholar]
  96. Zhang H. Li Y. Targeting the breast tumor microenvironment by plant-derived products and their nanoformulations. J. Drug Deliv. Sci. Technol. 2024 93 105432 10.1016/j.jddst.2024.105432
    [Google Scholar]
  97. Shazleen Ibrahim I. Starlin Chellathurai M. Mahmood S. Hakim Azmi A. Harun N. Ulul Ilmie Ahmad Nazri M. Muzamir Mahat M. Mohamed Sofian Z. Engineered liposomes mediated approach for targeted colorectal cancer drug Delivery: A review. Int. J. Pharm. 2024 651 123735 10.1016/j.ijpharm.2023.123735 38142874
    [Google Scholar]
  98. Khan M.S. Jaswanth Gowda B.H. Almalki W.H. Singh T. Sahebkar A. Kesharwani P. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment. Drug Discov. Today 2024 29 1 103819 10.1016/j.drudis.2023.103819 37940034
    [Google Scholar]
  99. Zhou H. Yu C.Y. Wei H. Liposome-based nanomedicine for immune checkpoint blocking therapy and combinatory cancer therapy. Int. J. Pharm. 2024 652 123818 10.1016/j.ijpharm.2024.123818 38253269
    [Google Scholar]
  100. Raza F. Evans L. Motallebi M. Zafar H. Pereira-Silva M. Saleem K. Peixoto D. Rahdar A. Sharifi E. Veiga F. Hoskins C. Paiva-Santos A.C. Liposome-based diagnostic and therapeutic applications for pancreatic cancer. Acta Biomater. 2023 157 1 23 10.1016/j.actbio.2022.12.013 36521673
    [Google Scholar]
  101. Singh A. Maheshwari S. Kumar R. Yadav J.P. Kumari R. Telmisartan-loaded liposomes: An innovative weapon against breast cancer. Int. Pharm. 2024
    [Google Scholar]
  102. Elbeltagi S. Alfassam H.E. Saeedi A.M. Eldin Z.E. Ibrahim E.M.M. Abdel shakor A. Abd El-Aal M. A novel quercetin-loaded NiFe2O4@Liposomes hybrid biocompatible as a potential chemotherapy/hyperthermia agent and cytotoxic effects on breast cancer cells. J. Drug Deliv. Sci. Technol. 2024 91 105203 10.1016/j.jddst.2023.105203
    [Google Scholar]
  103. Duarte J.A. Gomes E.R. De Barros A.L.B. Leite E.A. Co-encapsulation of simvastatin and doxorubicin into pH-sensitive liposomes enhances antitumoral activity in breast cancer cell lines. Pharmaceutics 2023 15 2 369 10.3390/pharmaceutics15020369 36839690
    [Google Scholar]
  104. Gunasekaran K. Vasamsetti B.M.K. Thangavelu P. Natesan K. Mujyambere B. Sundaram V. Jayaraj R. Kim Y.J. Samiappan S. Choi J.W. Cytotoxic effects of nanoliposomal cisplatin and diallyl disulfide on breast cancer and lung cancer cell lines. Biomedicines 2023 11 4 1021 10.3390/biomedicines11041021 37189638
    [Google Scholar]
  105. Meng L. Ren J. Liu Z. Zhao Y. Hyaluronic acid-coated shikonin liposomes for the treatment of triple-negative breast cancer via targeting tumor cells and amplification of oxidative stress. J. Drug Deliv. Sci. Technol. 2022 70 103193 10.1016/j.jddst.2022.103193
    [Google Scholar]
  106. Liang Z. Du L. Zhang E. Zhao Y. Wang W. Ma P. Dai M. Zhao Q. Xu H. Zhang S. Zhen Y. Targeted-delivery of siRNA via a polypeptide-modified liposome for the treatment of gp96 over-expressed breast cancer. Mater. Sci. Eng. C 2021 121 111847 10.1016/j.msec.2020.111847 33579510
    [Google Scholar]
  107. Boratto F.A. Lages E.B. Loures C.M.C. Sabino A.P. Malachias A. Townsend D.M. Branco De Barros A.L. Miranda Ferreira L.A. Amaral Leite E. Alpha-tocopheryl succinate and doxorubicin-loaded liposomes improve drug uptake and tumor accumulation in a murine breast tumor model. Biomed. Pharmacother. 2023 165 115034 10.1016/j.biopha.2023.115034 37356372
    [Google Scholar]
  108. Tseu G.Y.W. Kamaruzaman K.A. Development of a trilipid-based liposome system as a delivery vector for plasmid DNA in an MCF-7 cell line: Preparation, optimization, physical characterization and In Vitro cytotoxicity evaluation. OpenNano 2024 15 100196 10.1016/j.onano.2023.100196
    [Google Scholar]
  109. Luiz M.T. Dutra J.A.P. Ribeiro T.C. Carvalho G.C. Sábio R.M. Marchetti J.M. Chorilli M. Folic acid-modified curcumin-loaded liposomes for breast cancer therapy. Colloids Surf. A Physicochem. Eng. Asp. 2022 645 128935 10.1016/j.colsurfa.2022.128935
    [Google Scholar]
  110. Hu W. Qi Q. Hu H. Wang C. Zhang Q. Zhang Z. Zhao Y. Yu X. Guo M. Du S. Lu Y. Fe3O4 liposome for photothermal/chemo-synergistic inhibition of metastatic breast tumor. Colloids Surf. A Physicochem. Eng. Asp. 2022 634 127921 10.1016/j.colsurfa.2021.127921
    [Google Scholar]
  111. Bhardwaj H. Jangde R.K. Current updated review on preparation of polymeric nanoparticles for drug delivery and biomedical applications. Next Nanotechnology 2023 2 100013 10.1016/j.nxnano.2023.100013
    [Google Scholar]
  112. Singh S. Banerjee R. Pal K. Emerging trends in biodegradable polymer-metal nanoconjugates for cancer therapeutics. Eur. Polym. J. 2024 207 112835 10.1016/j.eurpolymj.2024.112835
    [Google Scholar]
  113. Pourmadadi M. Shaghaghi M. Arshad R. Kharaba Z. Maleki-baladi R. Rahdar A. Fathi-karkan S. Pandey S. Polymeric and non-polymeric oxaliplatin nanomedicine for cancer therapy: A comprehensive review. Eur. Polym. J. 2024 208 112870 10.1016/j.eurpolymj.2024.112870
    [Google Scholar]
  114. Rojas K. Verdugo-Molinares M.G. Vallejo-Cardona A.A. Use of encapsulating polymers of active compounds in the pharmaceutical and food industry. Food Chem. Adv. 2024 4 100619 10.1016/j.focha.2024.100619
    [Google Scholar]
  115. Hosseini S.M. Mohammadnejad J. Salamat S. Beiram Zadeh Z. Tanhaei M. Ramakrishna S. Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: A review. Mater. Today Chem. 2023 29 101400 10.1016/j.mtchem.2023.101400
    [Google Scholar]
  116. Li T. Wu M. Wei Q. Xu D. He X. Wang J. Wu J. Chen L. Conjugated polymer nanoparticles for tumor theranostics. Biomacromolecules 2023 24 5 1943 1979 10.1021/acs.biomac.2c01446 37083404
    [Google Scholar]
  117. Esmaeili Y. Dabiri A. Mashayekhi F. Rahimmanesh I. Bidram E. Karbasi S. Rafienia M. Javanmard S.H. Ertas Y.N. Zarrabi A. Shariati L. Smart co-delivery of plasmid DNA and doxorubicin using MCM-chitosan-PEG polymerization functionalized with MUC-1 aptamer against breast cancer. Biomed. Pharmacother. 2024 173 116465 10.1016/j.biopha.2024.116465 38507955
    [Google Scholar]
  118. He Y. de Araújo Júnior R.F. Cavalcante R.S. Yu Z. Schomann T. Gu Z. Eich C. Cruz L.J. Effective breast cancer therapy based on palmitic acid-loaded PLGA nanoparticles. Biomater. Adv. 2023 145 213270 10.1016/j.bioadv.2022.213270 36603405
    [Google Scholar]
  119. Lin X. Wang Q. Du S. Guan Y. Qiu J. Chen X. Yuan D. Chen T. Nanoparticles for co-delivery of paclitaxel and curcumin to overcome chemoresistance against breast cancer. J. Drug Deliv. Sci. Technol. 2023 79 104050 10.1016/j.jddst.2022.104050
    [Google Scholar]
  120. Almoustafa H.A. Alshawsh M.A. Al-Suede F.S.R. Alshehade S.A. Abdul Majid A.M.S. Chik Z. The chemotherapeutic efficacy of hyaluronic acid coated polymeric nanoparticles against breast cancer metastasis in female NCr-Nu/Nu nude mice. Polymers 2023 15 2 284 10.3390/polym15020284 36679166
    [Google Scholar]
  121. Li Y. Guo J. Gong X. Zhang H. Ma K. Sui Y. Chen B. Du Y. Chen T. Yang D. Li D. Inhibitory effects of platinum nanoparticles coated with polyethylene glycol and conjugated with Rutin on the MCF-7 breast cancer cell line. Arab. J. Chem. 2024 17 3 105567 10.1016/j.arabjc.2023.105567
    [Google Scholar]
  122. Pooja Y.S. Rajana N. Yadav R. Naraharisetti L.T. Godugu C. Mehra N.K. Design, development, and evaluation of CDK-4/6 inhibitor loaded 4-carboxy phenyl boronic acid conjugated pH-sensitive chitosan lecithin nanoparticles in the management of breast cancer. Int. J. Biol. Macromol. 2024 258 Pt 1 128821 10.1016/j.ijbiomac.2023.128821 38110163
    [Google Scholar]
  123. Saren B.N. Mahajan S. Aalhate M. Kumar R. Chatterjee E. Maji I. Gupta U. Guru S.K. Singh P.K. Fucoidan-mediated targeted delivery of dasatinib-loaded nanoparticles amplifies apoptosis and endows cytotoxic potential in triple-negative breast cancer. Colloids Surf. B Biointerfaces 2024 233 113631 10.1016/j.colsurfb.2023.113631 37979483
    [Google Scholar]
  124. Verma R. Singh V. Koch B. Kumar M. Evaluation of methotrexate encapsulated polymeric nanocarrier for breast cancer treatment. Colloids Surf. B Biointerfaces 2023 226 113308 10.1016/j.colsurfb.2023.113308 37088058
    [Google Scholar]
  125. Farzan M. Varshosaz J. Mirian M. Minaiyan M. Pezeshki A. Hyaluronic acid-conjugated gliadin nanoparticles for targeted delivery of usnic acid in breast cancer: An in vitro / in vivo translational study. J. Drug Deliv. Sci. Technol. 2023 84 104459 10.1016/j.jddst.2023.104459
    [Google Scholar]
  126. Xu X. Li Q. Dong W. Zhao G. Lu Y. Huang X. Liang X. Cinnamon cassia oil chitosan nanoparticles: Physicochemical properties and anti-breast cancer activity. Int. J. Biol. Macromol. 2023 224 1065 1078 10.1016/j.ijbiomac.2022.10.191 36367479
    [Google Scholar]
  127. Graván P. Aguilera-Garrido A. Marchal J.A. Navarro-Marchal S.A. Galisteo-González F. Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment. Adv. Colloid Interface Sci. 2023 314 102871 10.1016/j.cis.2023.102871 36958181
    [Google Scholar]
  128. Sheoran S. Arora S. Samsonraj R. Govindaiah P. vuree S. Lipid-based nanoparticles for treatment of cancer. Heliyon 2022 8 5 e09403 10.1016/j.heliyon.2022.e09403 35663739
    [Google Scholar]
  129. Nasirizadeh S. Malaekeh-Nikouei B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J. Drug Deliv. Sci. Technol. 2020 55 101458 10.1016/j.jddst.2019.101458
    [Google Scholar]
  130. Colaco V. Roy A.A. Naik G.A. Mondal A. Mutalik S. Dhas N. Advancement in lipid-based nanocomposites for theranostic applications in lung carcinoma treatment. OpenNano 2023 15 100199
    [Google Scholar]
  131. Parveen S. Gupta P. Kumar S. Banerjee M. Lipid polymer hybrid nanoparticles as potent vehicles for drug delivery in cancer therapeutics. Med. Drug Discov. 2023 20 100165 10.1016/j.medidd.2023.100165
    [Google Scholar]
  132. Dutta R.S. Elhassan G.O. Devi T.B. Bhattacharjee B. Singh M. Jana B.K. Sahu S. Mazumder B. Sahu R.K. Khan J. Enhanced efficacy of β-carotene loaded solid lipid nanoparticles optimized and developed via central composite design on breast cancer cell lines. Heliyon 2024 10 7 e28457 10.1016/j.heliyon.2024.e28457 38586388
    [Google Scholar]
  133. Aly S. El-Kamel A.H. Sheta E. El-Habashy S.E. Chondroitin/Lactoferrin-dual functionalized pterostilbene-solid lipid nanoparticles as targeted breast cancer therapy. Int. J. Pharm. 2023 642 123163 10.1016/j.ijpharm.2023.123163 37353100
    [Google Scholar]
  134. Granja A. Lima-Sousa R. Alves C.G. de Melo-Diogo D. Nunes C. Sousa C.T. Correia I.J. Reis S. Multifunctional targeted solid lipid nanoparticles for combined photothermal therapy and chemotherapy of breast cancer. Biomater. Adv. 2023 151 213443 10.1016/j.bioadv.2023.213443 37146526
    [Google Scholar]
  135. Aljuffali I.A. Anwer M.K. Ahmed M.M. Alalaiwe A. Aldawsari M.F. Fatima F. Jamil S. Development of gefitinib-loaded solid lipid nanoparticles for the treatment of breast cancer: Physicochemical evaluation, stability, and anticancer activity in breast cancer (MCF-7) cells. Pharmaceuticals 2023 16 11 1549 10.3390/ph16111549 38004415
    [Google Scholar]
  136. Emami A. Ghafouri H. Sariri R. Polyphyllin D-loaded solid lipid nanoparticles for breast cancer: Synthesis, characterization, in vitro, and in vivo studies. Int. J. Pharm. 2023 639 122976 10.1016/j.ijpharm.2023.122976 37088118
    [Google Scholar]
  137. Ahmadifard Z. Ahmeda A. Rasekhian M. Moradi S. Arkan E. Chitosan-coated magnetic solid lipid nanoparticles for controlled release of letrozole. J. Drug Deliv. Sci. Technol. 2020 57 101621 10.1016/j.jddst.2020.101621
    [Google Scholar]
  138. El-Menshawe S.F. Sayed O.M. Abou Taleb H.A. Saweris M.A. Zaher D.M. Omar H.A. The use of new quinazolinone derivative and doxorubicin loaded solid lipid nanoparticles in reversing drug resistance in experimental cancer cell lines: A systematic study. J. Drug Deliv. Sci. Technol. 2020 56 101569 10.1016/j.jddst.2020.101569
    [Google Scholar]
  139. Kaushik L. Srivastava S. Panjeta A. Chaudhari D. Ghadi R. Kuche K. Malik R. Preet S. Jain S. Raza K. Exploration of docetaxel palmitate and its solid lipid nanoparticles as a novel option for alleviating the rising concern of multi-drug resistance. Int. J. Pharm. 2020 578 119088 10.1016/j.ijpharm.2020.119088 32001291
    [Google Scholar]
  140. De A. Roychowdhury P. Bhuyan N.R. Ko Y.T. Singh S.K. Dua K. Kuppusamy G. Folic acid functionalized diallyl trisulfide–solid lipid nanoparticles for targeting triple negative breast cancer. Molecules 2023 28 3 1393 10.3390/molecules28031393 36771058
    [Google Scholar]
  141. Fathy Abd-Ellatef G.E. Gazzano E. Chirio D. Ragab Hamed A. Belisario D.C. Zuddas C. Peira E. Rolando B. Kopecka J. Assem Said Marie M. Sapino S. Ramadan Fahmy S. Gallarate M. Zaki Abdel-Hamid A-H. Riganti C. Curcumin-loaded solid lipid nanoparticles bypass p-glycoprotein mediated doxorubicin resistance in triple negative breast cancer cells. Pharmaceutics 2020 12 2 96 10.3390/pharmaceutics12020096 31991669
    [Google Scholar]
  142. Moammeri A. Chegeni M.M. Sahrayi H. Ghafelehbashi R. Memarzadeh F. Mansouri A. Akbarzadeh I. Abtahi M.S. Hejabi F. Ren Q. Current advances in niosomes applications for drug delivery and cancer treatment. Mater. Today Bio 2023 23 100837 10.1016/j.mtbio.2023.100837 37953758
    [Google Scholar]
  143. Bashkeran T. Kamaruddin A.H. Ngo T.X. Suda K. Umakoshi H. Watanabe N. Nadzir M.M. Niosomes in cancer treatment: A focus on curcumin encapsulation. Heliyon 2023 9 8 e18710 10.1016/j.heliyon.2023.e18710 37593605
    [Google Scholar]
  144. Aparajay P. Dev A. Functionalized niosomes as a smart delivery device in cancer and fungal infection. Eur. J. Pharm. Sci. 2022 168 106052 10.1016/j.ejps.2021.106052 34740786
    [Google Scholar]
  145. Masjedi M. Montahaei T. An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: Fabrication, characterization, pharmaceutical, and cosmetic applications. J. Drug Deliv. Sci. Technol. 2021 61 102234 10.1016/j.jddst.2020.102234
    [Google Scholar]
  146. Chen S. Hanning S. Falconer J. Locke M. Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm. 2019 144 18 39 10.1016/j.ejpb.2019.08.015 31446046
    [Google Scholar]
  147. Bhardwaj P. Tripathi P. Gupta R. Pandey S. Niosomes: A review on niosomal research in the last decade. J. Drug Deliv. Sci. Technol. 2020 56 101581 10.1016/j.jddst.2020.101581
    [Google Scholar]
  148. Khan S.U. Ullah M. Saeed S. Saleh E.A.M. Kassem A.F. Arbi F.M. Wahab A. Rehman M. ur Rehman K. Khan D. Zaman U. Khan K.A. Khan M.A. Lu K. Nanotherapeutic approaches for transdermal drug delivery systems and their biomedical applications. Eur. Polym. J. 2024 207 112819 10.1016/j.eurpolymj.2024.112819
    [Google Scholar]
  149. Saharkhiz S. Nasri N. Naderi N. Dini G. Ghalehshahi S.S. Firoozbakht F. Evaluating a targeted Palbociclib-Trastuzumab loaded smart niosome platform for treating HER2 positive breast cancer cells. Int. J. Pharm. X 2024 7 100237 10.1016/j.ijpx.2024.100237 38516198
    [Google Scholar]
  150. Fahmy S.A. Sedky N.K. Ramzy A. Abdelhady M.M.M. Alabrahim O.A.A. Shamma S.N. Azzazy H.M.E.S. Green extraction of essential oils from Pistacia lentiscus resins: Encapsulation into Niosomes showed improved preferential cytotoxic and apoptotic effects against breast and ovarian cancer cells. J. Drug Deliv. Sci. Technol. 2023 87 104820 10.1016/j.jddst.2023.104820
    [Google Scholar]
  151. Honarvari B. Karimifard S. Akhtari N. Mehrarya M. Moghaddam Z.S. Ansari M.J. Jalil A.T. Matencio A. Trotta F. Yeganeh F.E. Farasati Far B. Arki M.K. Naimi-Jamal M.R. Noorbazargan H. Lalami Z.A. Chiani M. Folate-targeted curcumin-loaded niosomes for site-specific delivery in breast cancer treatment: In silico and In vitro study. Molecules 2022 27 14 4634 10.3390/molecules27144634 35889513
    [Google Scholar]
  152. Akbarzadeh I. Shayan M. Bourbour M. Moghtaderi M. Noorbazargan H. Eshrati Yeganeh F. Saffar S. Tahriri M. Preparation, optimization and in-vitro evaluation of curcumin-loaded niosome@ calcium alginate nanocarrier as a new approach for breast cancer treatment. Biology 2021 10 3 173 10.3390/biology10030173 33652630
    [Google Scholar]
  153. Basheer H.A. Alhusban M.A. Zaid Alkilani A. Alshishani A. Elsalem L. Afarinkia K. Niosomal delivery of Celecoxib and Metformin for targeted breast cancer treatment. Cancers 2023 15 20 5004 10.3390/cancers15205004 37894371
    [Google Scholar]
  154. Sahrayi H. Hosseini E. Karimifard S. Khayam N. Meybodi S.M. Amiri S. Bourbour M. Farasati Far B. Akbarzadeh I. Bhia M. Hoskins C. Chaiyasut C. Co-delivery of letrozole and cyclophosphamide via folic acid-decorated nanoniosomes for breast cancer therapy: synergic effect, augmentation of cytotoxicity, and apoptosis gene expression. Pharmaceuticals 2021 15 1 6 10.3390/ph15010006 35056063
    [Google Scholar]
  155. Saharkhiz S. Zarepour A. Zarrabi A. Empowering cancer therapy: Comparing PEGylated and Non-PEGylated niosomes loaded with curcumin and doxorubicin on MCF-7 cell line. Bioengineering 2023 10 10 1159 10.3390/bioengineering10101159 37892889
    [Google Scholar]
  156. Maurer V. Altin S. Ag Seleci D. Zarinwall A. Temel B. Vogt P.M. Strauß S. Stahl F. Scheper T. Bucan V. Garnweitner G. In-vitro application of magnetic hybrid niosomes: Targeted sirna-delivery for enhanced breast cancer therapy. Pharmaceutics 2021 13 3 394 10.3390/pharmaceutics13030394 33809700
    [Google Scholar]
  157. Burrini N. D’Ambrosio M. Gentili M. Giaquinto R. Settimelli V. Luceri C. Cirri M. Francesconi O. Niosomes functionalized with a synthetic carbohydrate binding agent for mannose-targeted doxorubicin delivery. Pharmaceutics 2023 15 1 235 10.3390/pharmaceutics15010235 36678863
    [Google Scholar]
  158. Chaudhuri A. Ramesh K. Kumar D.N. Dehari D. Singh S. Kumar D. Agrawal A.K. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. J. Drug Deliv. Sci. Technol. 2022 77 103886 10.1016/j.jddst.2022.103886
    [Google Scholar]
  159. Rehman U. Abourehab M.A.S. Alexander A. Kesharwani P. Polymeric micelles assisted combinatorial therapy: Is it new hope for pancreatic cancer? Eur. Polym. J. 2023 184 111784 10.1016/j.eurpolymj.2022.111784
    [Google Scholar]
  160. Kaur J. Gulati M. Jha N.K. Disouza J. Patravale V. Dua K. Singh S.K. Recent advances in developing polymeric micelles for treating cancer: Breakthroughs and bottlenecks in their clinical translation. Drug Discov. Today 2022 27 5 1495 1512 10.1016/j.drudis.2022.02.005 35158056
    [Google Scholar]
  161. Ghosh B. Biswas S. Polymeric micelles in cancer therapy: State of the art. J. Control. Release 2021 332 127 147 10.1016/j.jconrel.2021.02.016 33609621
    [Google Scholar]
  162. Alavi M. Nokhodchi A. Micro- and nanoformulations of paclitaxel based on micelles, liposomes, cubosomes, and lipid nanoparticles: Recent advances and challenges. Drug Discov. Today 2022 27 2 576 584 10.1016/j.drudis.2021.10.007 34688912
    [Google Scholar]
  163. Dissanayake R. Towner R. Ahmed M. Metastatic breast Cancer: Review of emerging nanotherapeutics. Cancers 2023 15 11 2906 10.3390/cancers15112906 37296869
    [Google Scholar]
  164. Guzmán Rodríguez A. Sablón Carrazana M. Rodríguez Tanty C. Malessy M.J.A. Fuentes G. Cruz L.J. Smart polymeric micelles for anticancer hydrophobic drugs. Cancers 2022 15 1 4 10.3390/cancers15010004 36612002
    [Google Scholar]
  165. Shabani F. Karimi-Soflou R. Karkhaneh A. Folate-mediated targeting of carrageenan-cholesterol micelles for enhanced breast cancer treatment. Eur. Polym. J. 2024 208 112852 10.1016/j.eurpolymj.2024.112852
    [Google Scholar]
  166. Bobde Y. Patel T. Paul M. Biswas S. Ghosh B. PEGylated N-(2 hydroxypropyl) methacrylamide polymeric micelles as nanocarriers for the delivery of doxorubicin in breast cancer. Colloids Surf. B Biointerfaces 2021 204 111833 10.1016/j.colsurfb.2021.111833 34010799
    [Google Scholar]
  167. Yang D. Li Z. Zhang Y. Chen X. Liu M. Yang C. Design of dual-targeted pH-sensitive hybrid polymer micelles for breast cancer treatment: Three birds with one stone. Pharmaceutics 2023 15 6 1580 10.3390/pharmaceutics15061580 37376029
    [Google Scholar]
  168. Tang X. Kurban M. Hafiz I. Shen Q. Wang M. Preparation of hyaluronic acid-loaded Harmine polymeric micelles and in vitro effect anti-breast cancer. Eur. J. Pharm. Sci. 2023 183 106388 10.1016/j.ejps.2023.106388 36758771
    [Google Scholar]
  169. Zeng Y. Song G. Zhang S. Li S. Meng T. Yuan H. Hu F. GSH-responsive polymeric micelles for remodeling the tumor microenvironment to improve chemotherapy and inhibit metastasis in breast cancer. Biomacromolecules 2023 24 11 4731 4742 10.1021/acs.biomac.3c00523 37672635
    [Google Scholar]
  170. Sun J. Li M. Lin K. Liu Z. Wang Z. Wang W. Zhao Y. Zhen Y. Zhang S. Delivery of quercetin for breast cancer and targeting potentiation via hyaluronic nano-micelles. Int. J. Biol. Macromol. 2023 242 Pt 2 124736 10.1016/j.ijbiomac.2023.124736 37148944
    [Google Scholar]
  171. Yu J. Wang L. Ling Y. Xiao X. Gong J. Jin H. Xu J. Chen P. Xie X. Zhang L. Peptide-modified bioresponsive chondroitin sulfate micelles for targeted doxorubicin delivery in triple-negative breast cancer. Colloids Surf. B Biointerfaces 2023 227 113381 10.1016/j.colsurfb.2023.113381 37257299
    [Google Scholar]
  172. Rahmani A. Salmanipour S. Nami Y. Mousavi H.Z. Salehi R. pH-responsive star-shaped poly (ε-carprolactone)-co-poly maleic anhydride micelles for synergistic breast cancer combination chemotherapy. React. Funct. Polym. 2023 193 105773 10.1016/j.reactfunctpolym.2023.105773
    [Google Scholar]
  173. Nicoud M.B. Ospital I.A. Táquez Delgado M.A. Riedel J. Fuentes P. Bernabeu E. Rubinstein M.R. Lauretta P. Martínez Vivot R. Aguilar M.Á. Salgueiro M.J. Speisky D. Moretton M.A. Chiappetta D.A. Medina V.A. Nanomicellar formulations loaded with histamine and paclitaxel as a new strategy to improve chemotherapy for breast cancer. Int. J. Mol. Sci. 2023 24 4 3546 10.3390/ijms24043546 36834958
    [Google Scholar]
  174. Fatima M. Gupta G. Arora S. Alsayari A. Wahab S. Kesharwani P. Scouting the efficacy of targeted gold nanoparticles in the landscape of cancer therapy. Eur. Polym. J. 2024 209 112924 10.1016/j.eurpolymj.2024.112924
    [Google Scholar]
  175. Shang L. Zhou X. Zhang J. Shi Y. Zhong L. Metal nanoparticles for photodynamic therapy: A potential treatment for breast cancer. Molecules 2021 26 21 6532 10.3390/molecules26216532 34770941
    [Google Scholar]
  176. Akter Z. Khan F.Z. Khan M.A. Gold nanoparticles in triple-negative breast cancer therapeutics. Curr. Med. Chem. 2023 30 3 316 334 10.2174/0929867328666210902141257 34477507
    [Google Scholar]
  177. Liu X.Y. Wang J.Q. Ashby C.R. Jr Zeng L. Fan Y.F. Chen Z.S. Gold nanoparticles: Synthesis, physiochemical properties and therapeutic applications in cancer. Drug Discov. Today 2021 26 5 1284 1292 10.1016/j.drudis.2021.01.030 33549529
    [Google Scholar]
  178. Hammami I. Alabdallah N.M. jomaa A.A. kamoun M. Gold nanoparticles: Synthesis properties and applications. J. King Saud Univ. Sci. 2021 33 7 101560 10.1016/j.jksus.2021.101560
    [Google Scholar]
  179. Patil T. Gambhir R. Vibhute A. Tiwari A.P. Gold nanoparticles: synthesis methods, functionalization and biological applications. J. Cluster Sci. 2023 34 2 705 725 10.1007/s10876‑022‑02287‑6
    [Google Scholar]
  180. Chowdhury N.K. Choudhury R. Gogoi B. Chang C.M. Pandey R.P. Microbial synthesis of gold nanoparticles and their application. Curr. Drug Targets 2022 23 7 752 760 10.2174/1389450123666220128152408 35088666
    [Google Scholar]
  181. Milan J. Niemczyk K. Kus-Liśkiewicz M. Treasure on the Earth—gold nanoparticles and their biomedical applications. Materials 2022 15 9 3355 10.3390/ma15093355 35591689
    [Google Scholar]
  182. Musielak M. Boś-Liedke A. Piwocka O. Kowalska K. Markiewicz R. Szymkowiak B. Bakun P. Suchorska W.M. The role of functionalization and size of gold nanoparticles in the response of MCF-7 Breast cancer cells to ionizing radiation comparing 2D and 3D in vitro models. Pharmaceutics 2023 15 3 862 10.3390/pharmaceutics15030862 36986725
    [Google Scholar]
  183. Lorenzana-Vázquez G. Pavel I. Meléndez E. Gold nanoparticles functionalized with 2-thiouracil for antiproliferative and photothermal therapies in breast cancer cells. Molecules 2023 28 11 4453 10.3390/molecules28114453 37298929
    [Google Scholar]
  184. Munderere R. Gulfam M. Ali I. Kim S.H. Vu T.T. Park S.H. Lim K.T. Redox-responsive gold nanoparticles coated with hyaluronic acid and folic acid for application in targeting anticancer therapy. Molecules 2024 29 7 1564 10.3390/molecules29071564 38611843
    [Google Scholar]
  185. Żelechowska-Matysiak K. Wawrowicz K. Wierzbicki M. Budlewski T. Bilewicz A. Majkowska-Pilip A. Doxorubicin- and trastuzumab-modified gold nanoparticles as potential multimodal agents for targeted therapy of HER2+ cancers. Molecules 2023 28 6 2451 10.3390/molecules28062451 36985421
    [Google Scholar]
  186. Farhana A. Alsrhani A. Nazam N. Ullah M.I. Khan Y.S. Rasheed Z. Gold nanoparticles inhibit PMA-induced MMP-9 expression via microRNA-204-5p upregulation and deactivation of NF-κBp65 in breast cancer cells. Biology 2023 12 6 777 10.3390/biology12060777 37372062
    [Google Scholar]
  187. Carrión-García P.Y. Sánchez-Domínguez C.N. Gallardo-Blanco H.L. Garza-Treviño E.N. Delgado-Balderas J.R. Roacho-Pérez J.A. Sánchez-Domínguez M. Aptamer-conjugated gold nanoparticles targeting human epidermal growth factor receptor 2 (HER2) for cancer theranostic, in vitro assays. Materials Proceedings 2023 14 1 25
    [Google Scholar]
  188. Foudah A.I. Alam A. Salkini M.A. Ross S.A. Kumar P. Aldawsari M.F. Alqarni M.H. Sweilam S.H. Synergistic combination of letrozole and berberine in ascorbic acid-stabilized AuNPs: A promising solution for breast cancer. Pharmaceuticals 2023 16 8 1099 10.3390/ph16081099 37631014
    [Google Scholar]
  189. Mokoena D. George B.P. Abrahamse H. Conjugation of hypericin to gold nanoparticles for enhancement of photodynamic therapy in MCF-7 breast cancer cells. Pharmaceutics 2022 14 10 2212 10.3390/pharmaceutics14102212 36297648
    [Google Scholar]
  190. Meher K. Paithankar H. Hosur R.V. Lopus M. Ashwagandha-polyphenols-functionalized gold nanoparticles facilitate apoptosis by perturbing microtubule assembly dynamics in breast cancer cells. J. Drug Deliv. Sci. Technol. 2022 70 103225 10.1016/j.jddst.2022.103225
    [Google Scholar]
  191. Pechyen C. Ponsanti K. Tangnorawich B. Ngernyuang N. Biogenic synthesis of gold nanoparticles mediated by Spondias dulcis (Anacardiaceae) peel extract and its cytotoxic activity in human breast cancer cell. Toxicol. Rep. 2022 9 1092 1098 10.1016/j.toxrep.2022.04.031 36518440
    [Google Scholar]
  192. Pérez-López A. Martín-Sabroso C. Torres-Suárez A.I. Aparicio-Blanco J. Timeline of translational formulation technologies for cancer therapy: Successes, failures, and lessons learned therefrom. Pharmaceutics 2020 12 11 1028 10.3390/pharmaceutics12111028 33126622
    [Google Scholar]
  193. Talluri S.V. Kuppusamy G. Karri V.V.S.R. Tummala S. Madhunapantula S.V. Lipid-based nanocarriers for breast cancer treatment – Comprehensive review. Drug Deliv. 2016 23 4 1291 1305 10.3109/10717544.2015.1092183 26430913
    [Google Scholar]
  194. Kahraman E. Güngör S. Özsoy Y. Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery. Ther. Deliv. 2017 8 11 967 985 10.4155/tde‑2017‑0075 29061106
    [Google Scholar]
  195. Mishra V. Nayak P. Singh M. Sriram P. Suttee A. Niosomes: potential nanocarriers for drug delivery. J Pharm Clin Res 2020 11 03 389 394
    [Google Scholar]
  196. Kulkarni S. Kumar S. Acharya S. Gold nanoparticles in cancer therapeutics and diagnostics. Cureus 2022 14 10 e30096 10.7759/cureus.30096 36381768
    [Google Scholar]
  197. Bayever E. Fitzgerald J.B. Kim J. Klinz S. Treatment of breast cancer with liposomal irinotecan. European Patent EP3229802A1 2017
  198. Kurzrock R. Li L. Mehta K. Aggarawal B.B. Helson L. Liposomal curcumin for treatment of diseases. US Patent US10004687B2 2018
  199. Hong Y. Tao X. Huabing C. Mia Z. Liang C. Yibin Y. Jialu Y. Jiali L. Yanhua Z. Platinum drug/photosensitizer-loaded protein nanoparticles and preparation method and application thereof. Chinese Patent CN111840549B 2022
  200. Yu H. Rong X. Yuxiang T. Zeliang W. Zhaozhao C. Nano drug delivery system co-encapsulating siRNA and hydrophobic drug, preparation method and application thereof. Chinese Patent CN113940920A 2022
  201. Guo P. Shu D. Shu Y. Li H. Haque F. miRNA for treatment of breast cancer. US Patent US11085044B2, 2021
  202. Desai N.P. Shiong P.S. Trieu V. Nanoparticle comprising rapamycin and albumin as anticancer agent. Canadian Patent CA2680207C, 2018
  203. Available from: https://clinicaltrials.gov/ (Accessed on 12 January 2024).
  204. Sainz V. Conniot J. Matos A.I. Peres C. Zupanǒiǒ E. Moura L. Silva L.C. Florindo H.F. Gaspar R.S. Regulatory aspects on nanomedicines. Biochem. Biophys. Res. Commun. 2015 468 3 504 510 10.1016/j.bbrc.2015.08.023 26260323
    [Google Scholar]
  205. Soares S. Sousa J. Pais A. Vitorino C. Nanomedicine: Principles, properties, and regulatory issues. Front Chem. 2018 6 360 10.3389/fchem.2018.00360 30177965
    [Google Scholar]
  206. Gaspar R.S. Florindo H.F. Silva L.C. Videira M.A. Corvo M.L. Martins B.F. Silva-Lima B. Regulatory aspects of oncologicals: Nanosystems main challenges. Nano-oncologicals: New targeting and delivery approaches Springer Cham 2014 425 452 10.1007/978‑3‑319‑08084‑0_15
    [Google Scholar]
  207. Tambe V. Maheshwari R. Chourasiya Y. Choudhury H. Gorain B. Tekade R.K. Clinical aspects and regulatory requirements for nanomedicines. Basic fundamentals of drug delivery. Academic Press 2019 733 752 10.1016/B978‑0‑12‑817909‑3.00018‑2
    [Google Scholar]
  208. Devasahayam S. Nanotechnology and nanomedicine in market: A global perspective on regulatory issues. Characterization and biology of nanomaterials for drug delivery. Elsevier 2019 477 522 10.1016/B978‑0‑12‑814031‑4.00017‑9
    [Google Scholar]
  209. Bregoli L. Movia D. Gavigan-Imedio J.D. Lysaght J. Reynolds J. Prina-Mello A. Nanomedicine applied to translational oncology: A future perspective on cancer treatment. Nanomedicine 2016 12 1 81 103 10.1016/j.nano.2015.08.006 26370707
    [Google Scholar]
  210. Fateh S.T. Fateh S.T. Salehi-Najafabadi A. Aref A.R. Commercial and regulatory challenges in cancer nanomedicine. Functionalized Nanomaterials for Cancer Research. Academic Press 2024 579 601 10.1016/B978‑0‑443‑15518‑5.00009‑4
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266354524250424162638
Loading
/content/journals/ctmc/10.2174/0115680266354524250424162638
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Breast cancer ; Nanoparticles ; Specific delivery ; Drug delivery systems ; Compatibility
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test