Skip to content
2000
image of Combined UPLC-Q-TOF-MS/MS and Network Pharmacology to Analyze the Potential Mechanism of Jieyu Fuwei Powder for Functional Dyspepsia Treatment

Abstract

Background

Jieyu Fuwei Powder (JFP) is a modified prescription of traditional Chinede medicine used to treat functional dyspepsia (FD). However, its components and how it works are still unknown. Identifying the active ingredients of JFP and understanding its therapeutic mechanism for FD were the objectives of the study.

Methods

The compounds present in JFP were analyzed using the UPLC-Q-TOF-MS/MS technique. Potential targets for compounds and diseases were obtained from Swiss Target Prediction and GeneCards databases. A PPI network was created using the STRING database to identify key targets. The Metascape database was utilized for conducting GO and KEGG pathway enrichment analyses. Molecular docking identified active compound-target interactions, validated by FD zebrafish models.

Results

In total, 65 compounds were identified from JFP and the key active ingredients were Tangeretin, Obovatol, Magnolignan C, Magnolol, Randaiol, Magnolignan A, Luteolin, and Naringenin. The PPI network was constructed, identifying five core targets: SRC, STAT3, PIK3R1, PIK3CA, and MAPK3. JFP primarily regulates anti-depression, promotes gastrointestinal peristalsis, and influences inflammation, according to the enrichment analysis of GO and KEGG pathways. The molecular docking results indicated a strong binding affinity between these five targets and their corresponding compounds. Therefore, the MAPK and PI3K-Akt signaling pathways are important in JFP's effects on FD pathology. Experiments using the zebrafish model confirmed that JFP and its main components could enhance gastrointestinal motility, thus demonstrating the effectiveness of the network pharmacology screening strategy.

Conclusion

The study revealed the active ingredients and mechanisms of JFP in treating FD, supporting its clinical application.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266349490250324204830
2025-04-11
2025-09-13
Loading full text...

Full text loading...

References

  1. Sayuk G.S. Gyawali C.P. Functional dyspepsia: Diagnostic and therapeutic approaches. Drugs 2020 80 13 1319 1336 10.1007/s40265‑020‑01362‑4 32691294
    [Google Scholar]
  2. Oikawa T. Ito G. Koyama H. Hanawa T. Prokinetic effect of a Kampo medicine, Hange-koboku-to (Banxia-houpo-tang), on patients with functional dyspepsia. Phytomedicine 2005 12 10 730 734 10.1016/j.phymed.2005.03.001 16323291
    [Google Scholar]
  3. Lacy B.E. Chase R.C. Cangemi D.J. The treatment of functional dyspepsia: Present and future. Expert Rev. Gastroenterol. Hepatol. 2023 17 1 9 20 10.1080/17474124.2023.2162877 36588474
    [Google Scholar]
  4. Lee H. Jung H.K. Huh K.C. Current status of functional dyspepsia in Korea. Korean J. Intern. Med. 2014 29 2 156 165 10.3904/kjim.2014.29.2.156 24648796
    [Google Scholar]
  5. Chu M.H.K. Wu I.X.Y. Ho R.S.T. Wong C.H.L. Zhang A.L. Zhang Y. Wu J.C.Y. Chung V.C.H. Chinese herbal medicine for functional dyspepsia: Systematic review of systematic reviews. Therap. Adv. Gastroenterol. 2018 11 1756284818785573 10.1177/1756284818785573 30034530
    [Google Scholar]
  6. Miwa H. Nagahara A. Asakawa A. Arai M. Oshima T. Kasugai K. Kamada K. Suzuki H. Tanaka F. Tominaga K. Futagami S. Hojo M. Mihara H. Higuchi K. Kusano M. Arisawa T. Kato M. Joh T. Mochida S. Enomoto N. Shimosegawa T. Koike K. Evidence-based clinical practice guidelines for functional dyspepsia 2021. J. Gastroenterol. 2022 57 2 47 61 10.1007/s00535‑021‑01843‑7 35061057
    [Google Scholar]
  7. Zhang X. Zhang H. Huang Q. Sun J. Yao R. Wang J. Effect of massa medicata fermentata on the gut microbiota of dyspepsia mice based on 16S rRNA technique. Evid. Based Complement. Alternat. Med. 2020 2020 1 7643528 10.1155/2020/7643528 33029172
    [Google Scholar]
  8. Piessevaux H. De Winter B. Louis E. Muls V. De Looze D. Pelckmans P. Deltenre M. Urbain D. Tack J. Dyspeptic symptoms in the general population: A factor and cluster analysis of symptom groupings. Neurogastroenterol. Motil. 2009 21 4 378 388 10.1111/j.1365‑2982.2009.01262.x 19222761
    [Google Scholar]
  9. Talley N.J. Ford A.C. Functional Dyspepsia. N. Engl. J. Med. 2015 373 19 1853 1863 10.1056/NEJMra1501505 26535514
    [Google Scholar]
  10. Chen S.L. A review of drug therapy for functional dyspepsia. J. Dig. Dis. 2013 14 12 623 625 10.1111/1751‑2980.12094 23957752
    [Google Scholar]
  11. Mönkemüller K. Malfertheiner P. Drug treatment of functional dyspepsia. World J. Gastroenterol. 2006 12 17 2694 2700 10.3748/wjg.v12.i17.2694 16718755
    [Google Scholar]
  12. Joung J.Y. Choi S.H. Son C.G. Interstitial cells of Cajal: Potential targets for functional dyspepsia treatment using medicinal natural products. Evid. Based Complement. Alternat. Med. 2021 2021 1 9 10.1155/2021/9952691 34306162
    [Google Scholar]
  13. Song Y. Yin D. Zhang Z. Chi L. Research progress of treatment of functional dyspepsia with traditional Chinese medicine compound based on cell signal pathway. Front. Pharmacol. 2023 13 1089231 10.3389/fphar.2022.1089231 36699059
    [Google Scholar]
  14. Deng S.M. Chiu A.F. Wu S.C. Huang Y.C. Huang S.C. Chen S.Y. Tsai M.Y. Association between cancer-related fatigue and traditional Chinese medicine body constitution in female patients with breast cancer. J. Tradit. Complement. Med. 2021 11 1 62 67 10.1016/j.jtcme.2020.08.005 33511063
    [Google Scholar]
  15. Luo Y. Fang Q. Lai Y. Lei H. Zhang D. Niu H. Wang R. Song C. Polysaccharides from the leaves of Polygonatum sibiricum Red. regulate the gut microbiota and affect the production of short-chain fatty acids in mice. AMB Express 2022 12 1 35 10.1186/s13568‑022‑01376‑z 35312878
    [Google Scholar]
  16. Zhang S. Chen W. Wang Y. Wu J. Xu L. Yu Y. Tian J. Xu R. Fang Z. Jiang L. Luo Y. Li Y. Chinese herbal prescription Fu‐Zheng‐Qu‐Xie prevents recurrence and metastasis of postoperative early‐stage lung Adenocarcinoma: A prospective cohort study followed with potential mechanism exploration. Oxid. Med. Cell. Longev. 2021 2021 1 6673828 10.1155/2021/6673828 34055197
    [Google Scholar]
  17. Yao W. Yang H. Ding G. Mechanisms of Qi-blood circulation and Qi deficiency syndrome in view of blood and interstitial fluid circulation. J. Tradit. Chin. Med. 2013 33 4 538 544 10.1016/S0254‑6272(13)60162‑4 24187879
    [Google Scholar]
  18. Fan Y. Zhao Q. Wei Y. Wang H. Ga Y. Zhang Y. Hao Z. Pingwei san ameliorates spleen deficiency-induced diarrhea through intestinal barrier protection and gut microbiota modulation. Antioxidants 2023 12 5 1122
    [Google Scholar]
  19. Lee M.C. Park J.R. Shim J.H. Ahn T.S. Kim B.J. Effects of traditional Chinese herbal medicine Shengmai-san and Pyungwi-san on gastrointestinal motility in mice. JKMOR 2015 15 2 68 74 10.15429/jkomor.2015.15.2.68
    [Google Scholar]
  20. Qiankun L. Lanfang M. Xiaojuan D. Yunxia L. Yuan Y. Jingjing L. Junhong L. Longde W. Hongfang L. Pingwei capsules improve gastrointestinal motility in rats with functional dyspepsia. J. Tradit. Chin. Med. 2018 38 1 43 53 10.1016/j.jtcm.2018.01.008 32185950
    [Google Scholar]
  21. Kim S-y. Yoon S-h. A selective effect of combined treatment of electroacupuncture at Zusanli (ST36), manual acupuncture, and pyengwi-san in function dyspepsia patients with pyloric valve disturbance and hypoactivity of gastric vagus nerve. JKOIM 2009 30 1 191 199
    [Google Scholar]
  22. Lee B. Ahn E. K. Yang C. Herbal medicine prescriptions for functional dyspepsia: A nationwide population-based study in Korea Evid. Based Complement Alternat. Med. 2022 2022 3306420 10.1155/2022/3306420
    [Google Scholar]
  23. Xiao L. Li Y. Randomized controlled trial of modified banxia houpo decoction in treating functional dyspepsia patients with psychological factors. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih 2013 33 3 298 302 23713238
    [Google Scholar]
  24. Wen Y. Zhan Y. Chen T. Li J. Long Q. Zheng F. Tang S. Tang X. Total flavonoids of aurantii fructus immaturus regulate miR-5100 to improve constipation by targeting Fzd2 to alleviate calcium balance and autophagy in interstitial cells of Cajal. Mol. Neurobiol. 2024 61 8 5882 5900 10.1007/s12035‑024‑03958‑3 38244148
    [Google Scholar]
  25. Wang L. Wu F. Hong Y. Shen L. Zhao L. Lin X. Research progress in the treatment of slow transit constipation by traditional Chinese medicine. J. Ethnopharmacol. 2022 290 115075 10.1016/j.jep.2022.115075 35134487
    [Google Scholar]
  26. Chen S.Y. Zhou Q.Y.J. Chen L. Liao X. Li R. Xie T. The Aurantii Fructus Immaturus flavonoid extract alleviates inflammation and modulate gut microbiota in DSS-induced colitis mice. Front. Nutr. 2022 9 1013899 10.3389/fnut.2022.1013899 36276817
    [Google Scholar]
  27. Xie T. Lin J. Lin D. Zhang D. Xu X. Zhu N. Lin J. In vitro and in vivo antibacterial studies of volatile oil from Atractylodis Rhizoma against Staphylococcus pseudintermedius and multidrug resistant Staphylococcus pseudintermedius strains from canine pyoderma. J. Ethnopharmacol. 2024 319 Pt 3 117326 10.1016/j.jep.2023.117326 37879504
    [Google Scholar]
  28. Chen L. Yang J. Zhao S.J. Li T.S. Jiao R.Q. Kong L.D. Atractylodis rhizoma water extract attenuates fructose-induced glomerular injury in rats through anti-oxidation to inhibit TRPC6/p-CaMK4 signaling. Phytomedicine 2021 91 153643 10.1016/j.phymed.2021.153643 34325092
    [Google Scholar]
  29. Xie Q. Chen J. Yang H. Liang J. Ma R. Guo J. Zeng X. A comprehensive review of coptidis rhizoma and magnoliae officinalis cortex drug pair and their chemical composition, pharmacological effects and pharmacokinetics analysis. Drug Des. Devel. Ther. 2024 18 4413 4426 10.2147/DDDT.S477381 39372674
    [Google Scholar]
  30. Luo H. Wu H. Yu X. Zhang X. Lu Y. Fan J. Tang L. Wang Z. A review of the phytochemistry and pharmacological activities of Magnoliae officinalis cortex. J. Ethnopharmacol. 2019 236 412 442 10.1016/j.jep.2019.02.041 30818008
    [Google Scholar]
  31. Lin Q. Wang C. Jia Z. Xiong H. Xue X. Liu M. Xu X. Qu W. Li X. UPLC-HDMS-based on serum metabolomics reveals the toxicity of arecae semen. J. Ethnopharmacol. 2020 247 112223 10.1016/j.jep.2019.112223 31553926
    [Google Scholar]
  32. Zhang F. Yang P. He Q. Dong X. Zhang S. Is gastrointestinal motility related to alkaloids of Charred Semen Arecae? J. Ethnopharmacol. 2020 257 112825 10.1016/j.jep.2020.112825 32320728
    [Google Scholar]
  33. Li Q. Jiang S. Wang Q. Sun J. Wang Z. Wang X. Shi X. Mu Y. Wei L. Yang C. Structural characterisation and anti-colon cancer activity of an arabinogalactan RSA-1 from Raphani semen. Carbohydr. Polym. 2024 342 122417 10.1016/j.carbpol.2024.122417 39048243
    [Google Scholar]
  34. Song S. Qiu R. Jin X. Zhou Z. Yan J. Ou Q. Liu X. Li W. Mao Y. Yao W. Lu T. Mechanism exploration of ancient pharmaceutic processing (Paozhi) improving the gastroprotective efficacy of Aucklandiae Radix. J. Ethnopharmacol. 2022 287 114911 10.1016/j.jep.2021.114911 34902533
    [Google Scholar]
  35. Zhuang K. Xia Q. Zhang S. Maharajan K. Liu K. Zhang Y. A comprehensive chemical and pharmacological review of three confusable Chinese herbal medicine—Aucklandiae radix, Vladimiriae radix, and Inulae radix. Phytother. Res. 2021 35 12 6655 6689 10.1002/ptr.7250 34431559
    [Google Scholar]
  36. Chen Y. Miao Z. Sheng X. Li X. Ma J. Xu X. Li H. Kang A. Sesquiterpene lactones-rich fraction from Aucklandia lappa Decne. alleviates dextran sulfate sodium induced ulcerative colitis through co-regulating MAPK and Nrf2/Hmox-1 signaling pathway. J. Ethnopharmacol. 2022 295 115401 10.1016/j.jep.2022.115401 35623504
    [Google Scholar]
  37. Wang F. Zhang S. Zhang J. Yuan F. Systematic review of ethnomedicine, phytochemistry, and pharmacology of Cyperi Rhizoma. Front. Pharmacol. 2022 13 965902 10.3389/fphar.2022.965902 36278199
    [Google Scholar]
  38. Liu P. Shang E. Zhu Y. Qian D. Duan J. Volatile component interaction effects on compatibility of Cyperi Rhizoma and Angelicae Sinensis Radix or Chuanxiong Rhizoma by UPLC-MS/MS and response surface analysis. J. Pharm. Biomed. Anal. 2018 160 135 143 10.1016/j.jpba.2018.07.060 30086506
    [Google Scholar]
  39. Ge Q. Zhou S.S. Xie N.N. Kong M. Xu J.D. Zhu H. Zhou J. Li S.L. Shen H. Impact of sulfur-fumigation on carbohydrate components of Atractylodis Macrocephalae Rhizoma. J. Pharm. Biomed. Anal. 2023 225 115217 10.1016/j.jpba.2022.115217 36592540
    [Google Scholar]
  40. Xu W. Fang S. Wang Y. Zhang T. Hu S. Molecular mechanisms associated with macrophage activation by Rhizoma Atractylodis Macrocephalae polysaccharides. Int. J. Biol. Macromol. 2020 147 616 628 10.1016/j.ijbiomac.2020.01.081 31931060
    [Google Scholar]
  41. Jiang J. Huang D. Li Y. Gan Z. Li H. Li X. Bian K. Ke Y. Heart protection by herb formula BanXia BaiZhu TianMa decoction in spontaneously hypertensive rats. Evid. Based Complement. Alternat. Med. 2019 2019 1 10 10.1155/2019/5612929 31827552
    [Google Scholar]
  42. Tao X. Liu H. Xia J. Zeng P. Wang H. Xie Y. Wang C. Cheng Y. Li J. Zhang X. Zhang P. Chen S. Yu H. Wu H. Processed product (Pinelliae Rhizoma Praeparatum) of Pinellia ternata (Thunb.) Breit. Alleviates the allergic airway inflammation of cold phlegm via regulation of PKC/EGFR/MAPK/PI3K-AKT signaling pathway. J. Ethnopharmacol. 2022 295 115449 10.1016/j.jep.2022.115449 35688257
    [Google Scholar]
  43. Ji W. Yang Y. Li K. Ji Y. Tian Z. Dai H. Chen A. Ge F. Clinical efficacy of Jieyu Fuwei powder combined with acupoint catgut embedding in the treatment of syndrome functional dyspepsia with liver and stomach disharmony and its impact on brain-gut peptides Journal of Nanjing University of Traditional Chinese Medicine 2023 39 8 783 787
    [Google Scholar]
  44. Tian Z. Treatment of 90 cases of functional Dyspepsia with Jieyu Fuwei powder. J Nanjing Univ Tradit Chin Med. 2006 22 6 391 392
    [Google Scholar]
  45. Cheng F. Li W. Curative effect of Jieyu Fuwei powder combined with mosapride on functional dyspepsia and its influences on gastrointestinal motility, Serum Obestatin and NPSR1. Liaoning J Tradit Chin Med. 2022 49 12 84 87
    [Google Scholar]
  46. Zhang Y. Li W. Wang Y. Fan Y. Wang Q. Liu C. Jiang S. Shang E. Duan J. Investigation of the material basis and mechanism of Lizhong decoction in ameliorating ulcerative colitis based on spectrum-effect relationship and network pharmacology. J. Ethnopharmacol. 2024 323 117666 10.1016/j.jep.2023.117666 38159822
    [Google Scholar]
  47. Chen Y. Yu R. Jiang L. Zhang Q. Li B. Liu H. Xu G. A comprehensive and rapid quality evaluation method of traditional Chinese medicine decoction by integrating UPLC-QTOF-MS and UFLC-QQQ-MS and its application. Molecules 2019 24 2 374 10.3390/molecules24020374 30669664
    [Google Scholar]
  48. Liu C. Fan F. Zhong L. Su J. Zhang Y. Tu Y. Elucidating the material basis and potential mechanisms of Ershiwuwei Lvxue Pill acting on rheumatoid arthritis by UPLC-Q-TOF/MS and network pharmacology. PLoS One 2022 17 2 e0262469 10.1371/journal.pone.0262469 35130279
    [Google Scholar]
  49. Chen K. Deng Y. Shang S. Li P. Liu L. Chen X. Network pharmacology-based investigation of the molecular mechanisms of the chinese herbal formula Shenyi in the treatment of diabetic nephropathy. Front. Med. 2022 9 898624 10.3389/fmed.2022.898624 35755045
    [Google Scholar]
  50. Wang W. Xu L. Zhou L. Wan S. Jiang L. A network pharmacology approach to reveal the underlying mechanisms of rhizoma dioscoreae nipponicae in the treatment of Asthma. Evid. Based Complement. Alternat. Med. 2022 2022 1 17 10.1155/2022/4749613 35399637
    [Google Scholar]
  51. Li X. Tang Q. Meng F. Du P. Chen W. INPUT: An intelligent network pharmacology platform unique for traditional Chinese medicine. Comput. Struct. Biotechnol. J. 2022 20 1345 1351 10.1016/j.csbj.2022.03.006 35356545
    [Google Scholar]
  52. Dudziak K. Nowak M. Sozoniuk M. One host-multiple applications: Zebrafish (Danio rerio) as promising model for studying human cancers and pathogenic diseases. Int. J. Mol. Sci. 2022 23 18 10255 10.3390/ijms231810255 36142160
    [Google Scholar]
  53. Yamakawa N. Vanbeselaere J. Chang L.Y. Yu S.Y. Ducrocq L. Harduin-Lepers A. Kurata J. Aoki-Kinoshita K.F. Sato C. Khoo K.H. Kitajima K. Guerardel Y. Systems glycomics of adult zebrafish identifies organ-specific sialylation and glycosylation patterns. Nat. Commun. 2018 9 1 4647 10.1038/s41467‑018‑06950‑3 30405127
    [Google Scholar]
  54. Ma J. Su Y. Xie J. Tao L. Zhao Y. Wang X. Kuang Z. Sheng X. Kang A. Aa J. Wang G. Chemometric-based analysis and bioassay guided identification of potent compounds with intestinal motility promoting effects from Dalitong Granules. J. Ethnopharmacol. 2025 337 Pt 1 118777 10.1016/j.jep.2024.118777 39236779
    [Google Scholar]
  55. Zhou P. Zhou R. Min Y. An L.P. Wang F. Du Q.Y. Network pharmacology and molecular docking analysis on pharmacological mechanisms of Astragalus membranaceus in the treatment of gastric Ulcer. Evid. Based Complement. Alternat. Med. 2022 2022 1 11 10.1155/2022/9007396 35140802
    [Google Scholar]
  56. Ford A.C. Mahadeva S. Carbone M.F. Lacy B.E. Talley N.J. Functional dyspepsia. Lancet 2020 396 10263 1689 1702 10.1016/S0140‑6736(20)30469‑4 33049222
    [Google Scholar]
  57. Lu X. Zheng Y. Wen F. Huang W. Chen X. Ruan S. Gu S. Hu Y. Teng Y. Shu P. Study of the active ingredients and mechanism of Sparganii rhizoma in gastric cancer based on HPLC-Q-TOF–MS/MS and network pharmacology. Sci. Rep. 2021 11 1 1905 10.1038/s41598‑021‑81485‑0 33479376
    [Google Scholar]
  58. Cheng L. Pan G. Zhang X. Wang J. Wang W. Zhang J. Wang H. Liang R. Sun X. Yindanxinnaotong, a Chinese compound medicine, synergistically attenuatesatherosclerosis progress. Sci. Rep. 2015 5 1 12333 10.1038/srep12333 26196108
    [Google Scholar]
  59. Ashrafizadeh M. Ahmadi Z. Mohammadinejad R. Ghasemipour Afshar E. Tangeretin: A mechanistic review of its pharmacological and therapeutic effects. J. Basic Clin. Physiol. Pharmacol. 2020 31 4 20190191 10.1515/jbcpp‑2019‑0191 32329752
    [Google Scholar]
  60. Lee Y.J. Lee Y.M. Lee C.K. Jung J.K. Han S.B. Hong J.T. Therapeutic applications of compounds in the Magnolia family. Pharmacol. Ther. 2011 130 2 157 176 10.1016/j.pharmthera.2011.01.010 21277893
    [Google Scholar]
  61. Wang X. Zhang C. Zheng M. Gao F. Zhang J. Liu F. Metabolomics analysis of L-Arginine induced gastrointestinal motility disorder in rats using UPLC-MS after Magnolol treatment. Front. Pharmacol. 2019 10 183 10.3389/fphar.2019.00183 30881305
    [Google Scholar]
  62. Huang L. Kim M.Y. Cho J.Y. Immunopharmacological activities of luteolin in chronic diseases. Int. J. Mol. Sci. 2023 24 3 2136 10.3390/ijms24032136 36768462
    [Google Scholar]
  63. Jang Y. Kim S.W. Oh J. Hong G.S. Seo E.K. Oh U. Shim W.S. Ghrelin receptor is activated by naringin and naringenin, constituents of a prokinetic agent Poncirus fructus. J. Ethnopharmacol. 2013 148 2 459 465 10.1016/j.jep.2013.04.039 23639361
    [Google Scholar]
  64. Pinho-Ribeiro F.A. Zarpelon A.C. Fattori V. Manchope M.F. Mizokami S.S. Casagrande R. Verri W.A. Jr Naringenin reduces inflammatory pain in mice. Neuropharmacology 2016 105 508 519 10.1016/j.neuropharm.2016.02.019 26907804
    [Google Scholar]
  65. Beeckmans D. Riethorst D. Augustijns P. Vanuytsel T. Farré R. Tack J. Vanheel H. Altered duodenal bile salt concentration and receptor expression in functional dyspepsia. United European Gastroenterol. J. 2018 6 9 1347 1355 10.1177/2050640618799120 30386607
    [Google Scholar]
  66. Yu C. Fu J. Guo L. Yu M. Yu D. Integrating metabolomics and network pharmacology to explore the protective effect of Ginsenoside Re against radiotherapy injury in mice. Evid. Based Complement. Alternat. Med. 2022 2022 1 16 10.1155/2022/5436979 35310032
    [Google Scholar]
  67. Liu R. Li T. Xu H. Yu G. Zhang T. Wang J. Sun Y. Bi Y. Feng X. Wu H. Zhang C. Sun Y. Systems biology strategy through integrating metabolomics and network pharmacology to reveal the mechanisms of Xiaopi Hewei Capsule improves functional dyspepsia. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2023 1226 123676 10.1016/j.jchromb.2023.123676 37329776
    [Google Scholar]
  68. Pan J. Wu J. Zhang S. Wang K. Ji G. Zhou W. Dang Y. Targeted metabolomics revealed the mechanisms underlying the role of Liansu capsule in ameliorating functional dyspepsia. J. Ethnopharmacol. 2024 321 117568 10.1016/j.jep.2023.117568 38092317
    [Google Scholar]
  69. He Y. Yang C. Wang P. Yang L. Wu H. Liu H. Qi M. Guo Z. Li J. Shi H. Wu X. Hu Z. Child compound Endothelium corneum attenuates gastrointestinal dysmotility through regulating the homeostasis of brain-gut-microbiota axis in functional dyspepsia rats. J. Ethnopharmacol. 2019 240 111953 10.1016/j.jep.2019.111953 31082513
    [Google Scholar]
  70. Chen Y. Liu G. He F. Zhang L. Yang K. Yu H. Zhou J. Gan H. MicroRNA 375 modulates hyperglycemia-induced enteric glial cell apoptosis and Diabetes-induced gastrointestinal dysfunction by targeting Pdk1 and repressing PI3K/Akt pathway. Sci. Rep. 2018 8 1 12681 10.1038/s41598‑018‑30714‑0 30140011
    [Google Scholar]
  71. Yueping H. Qin Y. Xiali O. Yao L. Yajie L. Chang H. Rui H. Xin H. Hao W. Rui Z. Jinyi L. Baixiao Z. The mechanism study of Moxa combustion products on regulating vascular endothelial function in atherosclerotic mice. Evid. Based Complement. Alternat. Med. 2022 2022 1 12 10.1155/2022/1303978 36225192
    [Google Scholar]
  72. Lin P. Li B. Ye J. Shang F. Zhao H. Xie J. Yu X. Curcumin relieves mice gastric emptying dysfunction induced by L‑arginine and atropine through interstitial cells of Cajal. Exp. Ther. Med. 2021 21 6 548 10.3892/etm.2021.9980 33850520
    [Google Scholar]
  73. Huang X.L. Xu J. Zhang X.H. Qiu B.Y. Peng L. Zhang M. Gan H.T. PI3K/Akt signaling pathway is involved in the pathogenesis of ulcerative colitis. Inflamm. Res. 2011 60 8 727 734 10.1007/s00011‑011‑0325‑6 21442372
    [Google Scholar]
  74. Kang S.J. Park B. Shin C.M. Helicobacter pylori eradication therapy for functional Dyspepsia: A meta-analysis by region and H. pylori prevalence. J. Clin. Med. 2019 8 9 1324 10.3390/jcm8091324 31466299
    [Google Scholar]
  75. Ma X. You P. Xu Y. Ye X. Tu Y. Liu Y. Yang M. Liu D. Anti-Helicobacter pylori-associated gastritis effect of the ethyl acetate extract of Alpinia officinarum Hance through MAPK signaling pathway. J. Ethnopharmacol. 2020 260 113100 10.1016/j.jep.2020.113100 32531409
    [Google Scholar]
  76. Kuo J.R. Cheng Y.H. Chen Y.S. Chio C.C. Gean P.W. Involvement of extracellular signal regulated kinases in traumatic brain injury-induced depression in rodents. J. Neurotrauma 2013 30 14 1223 1231 10.1089/neu.2012.2689 23360216
    [Google Scholar]
  77. Min G.Y. Kim J.H. Kim T.I. Cho W.K. Yang J.H. Ma J.Y. Indigo Pulverata Levis (Chung-Dae, Persicaria tinctoria) alleviates atopic dermatitis-like inflammatory responses in vivo and in vitro. Int. J. Mol. Sci. 2022 23 1 553 10.3390/ijms23010553 35008979
    [Google Scholar]
  78. Esterita T. Dewi S. Suryatenggara F.G. Glenardi G. Association of functional dyspepsia with depression and anxiety: A systematic review. J. Gastrointestin. Liver Dis. 2021 30 2 259 266 10.15403/jgld‑3325 33951117
    [Google Scholar]
  79. Zhao W. Yang W. Zheng S. Hu Q. Qiu P. Huang X. Hong X. Lan F. A new bioinformatic insight into the associated proteins in psychiatric disorders. Springerplus 2016 5 1 1967 10.1186/s40064‑016‑3655‑6 27917343
    [Google Scholar]
  80. Oehlers S.H. Flores M.V. Okuda K.S. Hall C.J. Crosier K.E. Crosier P.S. A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents. Dev. Dyn. 2011 240 1 288 298 10.1002/dvdy.22519 21181946
    [Google Scholar]
  81. Smith C. The potential of zebrafish as drug discovery research tool in immune-mediated inflammatory disease. Inflammopharmacology 2024 32 4 2219 2233 10.1007/s10787‑024‑01511‑1 38926297
    [Google Scholar]
  82. Cai T. Dong Y. Feng Z. Cai B. Ameliorative effects of the mixed aqueous extract of Aurantii Fructus Immaturus and Magnoliae Officinalis Cortex on loperamide-induced STC mice. Heliyon 2024 10 13 e33705 10.1016/j.heliyon.2024.e33705 39040398
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266349490250324204830
Loading
/content/journals/ctmc/10.2174/0115680266349490250324204830
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test