Skip to content
2000
Volume 25, Issue 23
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

Jieyu Fuwei Powder (JFP) is a modified prescription of traditional Chinede medicine used to treat functional dyspepsia (FD). However, its components and how it works are still unknown. Identifying the active ingredients of JFP and understanding its therapeutic mechanism for FD were the objectives of the study.

Methods

The compounds present in JFP were analyzed using the UPLC-Q-TOF-MS/MS technique. Potential targets for compounds and diseases were obtained from Swiss Target Prediction and GeneCards databases. A PPI network was created using the STRING database to identify key targets. The Metascape database was utilized for conducting GO and KEGG pathway enrichment analyses. Molecular docking identified active compound-target interactions, validated by FD zebrafish models.

Results

In total, 65 compounds were identified from JFP and the key active ingredients were Tangeretin, Obovatol, Magnolignan C, Magnolol, Randaiol, Magnolignan A, Luteolin, and Naringenin. The PPI network was constructed, identifying five core targets: SRC, STAT3, PIK3R1, PIK3CA, and MAPK3. JFP primarily regulates anti-depression, promotes gastrointestinal peristalsis, and influences inflammation, according to the enrichment analysis of GO and KEGG pathways. The molecular docking results indicated a strong binding affinity between these five targets and their corresponding compounds. Therefore, the MAPK and PI3K-Akt signaling pathways are important in JFP's effects on FD pathology. Experiments using the zebrafish model confirmed that JFP and its main components could enhance gastrointestinal motility, thus demonstrating the effectiveness of the network pharmacology screening strategy.

Conclusion

The study revealed the active ingredients and mechanisms of JFP in treating FD, supporting its clinical application.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266349490250324204830
2025-04-11
2025-12-22
Loading full text...

Full text loading...

References

  1. SayukG.S. GyawaliC.P. Functional dyspepsia: Diagnostic and therapeutic approaches.Drugs202080131319133610.1007/s40265‑020‑01362‑4 32691294
    [Google Scholar]
  2. OikawaT. ItoG. KoyamaH. HanawaT. Prokinetic effect of a Kampo medicine, Hange-koboku-to (Banxia-houpo-tang), on patients with functional dyspepsia.Phytomedicine2005121073073410.1016/j.phymed.2005.03.001 16323291
    [Google Scholar]
  3. LacyB.E. ChaseR.C. CangemiD.J. The treatment of functional dyspepsia: Present and future.Expert Rev. Gastroenterol. Hepatol.202317192010.1080/17474124.2023.2162877 36588474
    [Google Scholar]
  4. LeeH. JungH.K. HuhK.C. Current status of functional dyspepsia in Korea.Korean J. Intern. Med.201429215616510.3904/kjim.2014.29.2.156 24648796
    [Google Scholar]
  5. ChuM.H.K. WuI.X.Y. HoR.S.T. WongC.H.L. ZhangA.L. ZhangY. WuJ.C.Y. ChungV.C.H. Chinese herbal medicine for functional dyspepsia: Systematic review of systematic reviews.Therap. Adv. Gastroenterol.201811175628481878557310.1177/1756284818785573 30034530
    [Google Scholar]
  6. MiwaH. NagaharaA. AsakawaA. AraiM. OshimaT. KasugaiK. KamadaK. SuzukiH. TanakaF. TominagaK. FutagamiS. HojoM. MiharaH. HiguchiK. KusanoM. ArisawaT. KatoM. JohT. MochidaS. EnomotoN. ShimosegawaT. KoikeK. Evidence-based clinical practice guidelines for functional dyspepsia 2021.J. Gastroenterol.2022572476110.1007/s00535‑021‑01843‑7 35061057
    [Google Scholar]
  7. ZhangX. ZhangH. HuangQ. SunJ. YaoR. WangJ. Effect of massa medicata fermentata on the gut microbiota of dyspepsia mice based on 16S rRNA technique.Evid. Based Complement. Alternat. Med.202020201764352810.1155/2020/7643528 33029172
    [Google Scholar]
  8. PiessevauxH. De WinterB. LouisE. MulsV. De LoozeD. PelckmansP. DeltenreM. UrbainD. TackJ. Dyspeptic symptoms in the general population: A factor and cluster analysis of symptom groupings.Neurogastroenterol. Motil.200921437838810.1111/j.1365‑2982.2009.01262.x 19222761
    [Google Scholar]
  9. TalleyN.J. FordA.C. Functional Dyspepsia.N. Engl. J. Med.2015373191853186310.1056/NEJMra1501505 26535514
    [Google Scholar]
  10. ChenS.L. A review of drug therapy for functional dyspepsia.J. Dig. Dis.2013141262362510.1111/1751‑2980.12094 23957752
    [Google Scholar]
  11. MönkemüllerK. MalfertheinerP. Drug treatment of functional dyspepsia.World J. Gastroenterol.200612172694270010.3748/wjg.v12.i17.2694 16718755
    [Google Scholar]
  12. JoungJ.Y. ChoiS.H. SonC.G. Interstitial cells of Cajal: Potential targets for functional dyspepsia treatment using medicinal natural products.Evid. Based Complement. Alternat. Med.202120211910.1155/2021/9952691 34306162
    [Google Scholar]
  13. SongY. YinD. ZhangZ. ChiL. Research progress of treatment of functional dyspepsia with traditional Chinese medicine compound based on cell signal pathway.Front. Pharmacol.202313108923110.3389/fphar.2022.1089231 36699059
    [Google Scholar]
  14. DengS.M. ChiuA.F. WuS.C. HuangY.C. HuangS.C. ChenS.Y. TsaiM.Y. Association between cancer-related fatigue and traditional Chinese medicine body constitution in female patients with breast cancer.J. Tradit. Complement. Med.2021111626710.1016/j.jtcme.2020.08.005 33511063
    [Google Scholar]
  15. LuoY. FangQ. LaiY. LeiH. ZhangD. NiuH. WangR. SongC. Polysaccharides from the leaves of Polygonatum sibiricum Red. regulate the gut microbiota and affect the production of short-chain fatty acids in mice.AMB Express20221213510.1186/s13568‑022‑01376‑z 35312878
    [Google Scholar]
  16. ZhangS. ChenW. WangY. WuJ. XuL. YuY. TianJ. XuR. FangZ. JiangL. LuoY. LiY. Chinese herbal prescription Fu‐Zheng‐Qu‐Xie prevents recurrence and metastasis of postoperative early‐stage lung Adenocarcinoma: A prospective cohort study followed with potential mechanism exploration.Oxid. Med. Cell. Longev.202120211667382810.1155/2021/6673828 34055197
    [Google Scholar]
  17. YaoW. YangH. DingG. Mechanisms of Qi-blood circulation and Qi deficiency syndrome in view of blood and interstitial fluid circulation.J. Tradit. Chin. Med.201333453854410.1016/S0254‑6272(13)60162‑4 24187879
    [Google Scholar]
  18. FanY. ZhaoQ. WeiY. WangH. GaY. ZhangY. HaoZ. Pingwei san ameliorates spleen deficiency-induced diarrhea through intestinal barrier protection and gut microbiota modulation.Antioxidants20231251122
    [Google Scholar]
  19. LeeM.C. ParkJ.R. ShimJ.H. AhnT.S. KimB.J. Effects of traditional Chinese herbal medicine Shengmai-san and Pyungwi-san on gastrointestinal motility in mice.JKMOR2015152687410.15429/jkomor.2015.15.2.68
    [Google Scholar]
  20. QiankunL. LanfangM. XiaojuanD. YunxiaL. YuanY. JingjingL. JunhongL. LongdeW. HongfangL. Pingwei capsules improve gastrointestinal motility in rats with functional dyspepsia.J. Tradit. Chin. Med.2018381435310.1016/j.jtcm.2018.01.008 32185950
    [Google Scholar]
  21. KimS-y. YoonS-h. A selective effect of combined treatment of electroacupuncture at Zusanli (ST36), manual acupuncture, and pyengwi-san in function dyspepsia patients with pyloric valve disturbance and hypoactivity of gastric vagus nerve.JKOIM2009301191199
    [Google Scholar]
  22. LeeB. AhnE.K. YangC. Herbal medicine prescriptions for functional dyspepsia: A nationwide population-based study in Korea Evid. Based Complement Alternat.Med20222022330642010.1155/2022/3306420
    [Google Scholar]
  23. XiaoL. LiY. Randomized controlled trial of modified banxia houpo decoction in treating functional dyspepsia patients with psychological factors.Chung Kuo Chung Hsi I Chieh Ho Tsa Chih2013333298302 23713238
    [Google Scholar]
  24. WenY. ZhanY. ChenT. LiJ. LongQ. ZhengF. TangS. TangX. Total flavonoids of aurantii fructus immaturus regulate miR-5100 to improve constipation by targeting Fzd2 to alleviate calcium balance and autophagy in interstitial cells of Cajal.Mol. Neurobiol.20246185882590010.1007/s12035‑024‑03958‑3 38244148
    [Google Scholar]
  25. WangL. WuF. HongY. ShenL. ZhaoL. LinX. Research progress in the treatment of slow transit constipation by traditional Chinese medicine.J. Ethnopharmacol.202229011507510.1016/j.jep.2022.115075 35134487
    [Google Scholar]
  26. ChenS.Y. ZhouQ.Y.J. ChenL. LiaoX. LiR. XieT. The Aurantii Fructus Immaturus flavonoid extract alleviates inflammation and modulate gut microbiota in DSS-induced colitis mice.Front. Nutr.20229101389910.3389/fnut.2022.1013899 36276817
    [Google Scholar]
  27. XieT. LinJ. LinD. ZhangD. XuX. ZhuN. LinJ. In vitro and in vivo antibacterial studies of volatile oil from Atractylodis Rhizoma against Staphylococcus pseudintermedius and multidrug resistant Staphylococcus pseudintermedius strains from canine pyoderma.J. Ethnopharmacol.2024319Pt 311732610.1016/j.jep.2023.117326 37879504
    [Google Scholar]
  28. ChenL. YangJ. ZhaoS.J. LiT.S. JiaoR.Q. KongL.D. Atractylodis rhizoma water extract attenuates fructose-induced glomerular injury in rats through anti-oxidation to inhibit TRPC6/p-CaMK4 signaling.Phytomedicine20219115364310.1016/j.phymed.2021.153643 34325092
    [Google Scholar]
  29. XieQ. ChenJ. YangH. LiangJ. MaR. GuoJ. ZengX. A comprehensive review of coptidis rhizoma and magnoliae officinalis cortex drug pair and their chemical composition, pharmacological effects and pharmacokinetics analysis.Drug Des. Devel. Ther.2024184413442610.2147/DDDT.S477381 39372674
    [Google Scholar]
  30. LuoH. WuH. YuX. ZhangX. LuY. FanJ. TangL. WangZ. A review of the phytochemistry and pharmacological activities of Magnoliae officinalis cortex.J. Ethnopharmacol.201923641244210.1016/j.jep.2019.02.041 30818008
    [Google Scholar]
  31. LinQ. WangC. JiaZ. XiongH. XueX. LiuM. XuX. QuW. LiX. UPLC-HDMS-based on serum metabolomics reveals the toxicity of arecae semen.J. Ethnopharmacol.202024711222310.1016/j.jep.2019.112223 31553926
    [Google Scholar]
  32. ZhangF. YangP. HeQ. DongX. ZhangS. Is gastrointestinal motility related to alkaloids of Charred Semen Arecae?J. Ethnopharmacol.202025711282510.1016/j.jep.2020.112825 32320728
    [Google Scholar]
  33. LiQ. JiangS. WangQ. SunJ. WangZ. WangX. ShiX. MuY. WeiL. YangC. Structural characterisation and anti-colon cancer activity of an arabinogalactan RSA-1 from Raphani semen.Carbohydr. Polym.202434212241710.1016/j.carbpol.2024.122417 39048243
    [Google Scholar]
  34. SongS. QiuR. JinX. ZhouZ. YanJ. OuQ. LiuX. LiW. MaoY. YaoW. LuT. Mechanism exploration of ancient pharmaceutic processing (Paozhi) improving the gastroprotective efficacy of Aucklandiae Radix.J. Ethnopharmacol.202228711491110.1016/j.jep.2021.114911 34902533
    [Google Scholar]
  35. ZhuangK. XiaQ. ZhangS. MaharajanK. LiuK. ZhangY. A comprehensive chemical and pharmacological review of three confusable Chinese herbal medicine—Aucklandiae radix, Vladimiriae radix, and Inulae radix.Phytother. Res.202135126655668910.1002/ptr.7250 34431559
    [Google Scholar]
  36. ChenY. MiaoZ. ShengX. LiX. MaJ. XuX. LiH. KangA. Sesquiterpene lactones-rich fraction from Aucklandia lappa Decne. alleviates dextran sulfate sodium induced ulcerative colitis through co-regulating MAPK and Nrf2/Hmox-1 signaling pathway.J. Ethnopharmacol.202229511540110.1016/j.jep.2022.115401 35623504
    [Google Scholar]
  37. WangF. ZhangS. ZhangJ. YuanF. Systematic review of ethnomedicine, phytochemistry, and pharmacology of Cyperi Rhizoma.Front. Pharmacol.20221396590210.3389/fphar.2022.965902 36278199
    [Google Scholar]
  38. LiuP. ShangE. ZhuY. QianD. DuanJ. Volatile component interaction effects on compatibility of Cyperi Rhizoma and Angelicae Sinensis Radix or Chuanxiong Rhizoma by UPLC-MS/MS and response surface analysis.J. Pharm. Biomed. Anal.201816013514310.1016/j.jpba.2018.07.060 30086506
    [Google Scholar]
  39. GeQ. ZhouS.S. XieN.N. KongM. XuJ.D. ZhuH. ZhouJ. LiS.L. ShenH. Impact of sulfur-fumigation on carbohydrate components of Atractylodis Macrocephalae Rhizoma.J. Pharm. Biomed. Anal.202322511521710.1016/j.jpba.2022.115217 36592540
    [Google Scholar]
  40. XuW. FangS. WangY. ZhangT. HuS. Molecular mechanisms associated with macrophage activation by Rhizoma Atractylodis Macrocephalae polysaccharides.Int. J. Biol. Macromol.202014761662810.1016/j.ijbiomac.2020.01.081 31931060
    [Google Scholar]
  41. JiangJ. HuangD. LiY. GanZ. LiH. LiX. BianK. KeY. Heart protection by herb formula BanXia BaiZhu TianMa decoction in spontaneously hypertensive rats.Evid. Based Complement. Alternat. Med.2019201911010.1155/2019/5612929 31827552
    [Google Scholar]
  42. TaoX. LiuH. XiaJ. ZengP. WangH. XieY. WangC. ChengY. LiJ. ZhangX. ZhangP. ChenS. YuH. WuH. Processed product (Pinelliae Rhizoma Praeparatum) of Pinellia ternata (Thunb.) Breit. Alleviates the allergic airway inflammation of cold phlegm via regulation of PKC/EGFR/MAPK/PI3K-AKT signaling pathway.J. Ethnopharmacol.202229511544910.1016/j.jep.2022.115449 35688257
    [Google Scholar]
  43. JiW. YangY. LiK. JiY. TianZ. DaiH. ChenA. GeF. Journal of Nanjing University of Traditional Chinese Medicine2023398783787
    [Google Scholar]
  44. TianZ. Treatment of 90 cases of functional Dyspepsia with Jieyu Fuwei powder.J Nanjing Univ Tradit Chin Med.2006226391392
    [Google Scholar]
  45. ChengF. LiW. Curative effect of Jieyu Fuwei powder combined with mosapride on functional dyspepsia and its influences on gastrointestinal motility, Serum Obestatin and NPSR1.Liaoning J Tradit Chin Med.202249128487
    [Google Scholar]
  46. ZhangY. LiW. WangY. FanY. WangQ. LiuC. JiangS. ShangE. DuanJ. Investigation of the material basis and mechanism of Lizhong decoction in ameliorating ulcerative colitis based on spectrum-effect relationship and network pharmacology.J. Ethnopharmacol.202432311766610.1016/j.jep.2023.117666 38159822
    [Google Scholar]
  47. ChenY. YuR. JiangL. ZhangQ. LiB. LiuH. XuG. A comprehensive and rapid quality evaluation method of traditional Chinese medicine decoction by integrating UPLC-QTOF-MS and UFLC-QQQ-MS and its application.Molecules201924237410.3390/molecules24020374 30669664
    [Google Scholar]
  48. LiuC. FanF. ZhongL. SuJ. ZhangY. TuY. Elucidating the material basis and potential mechanisms of Ershiwuwei Lvxue Pill acting on rheumatoid arthritis by UPLC-Q-TOF/MS and network pharmacology.PLoS One2022172e026246910.1371/journal.pone.0262469 35130279
    [Google Scholar]
  49. ChenK. DengY. ShangS. LiP. LiuL. ChenX. Network pharmacology-based investigation of the molecular mechanisms of the chinese herbal formula Shenyi in the treatment of diabetic nephropathy.Front. Med.2022989862410.3389/fmed.2022.898624 35755045
    [Google Scholar]
  50. WangW. XuL. ZhouL. WanS. JiangL. A network pharmacology approach to reveal the underlying mechanisms of rhizoma dioscoreae nipponicae in the treatment of Asthma.Evid. Based Complement. Alternat. Med.2022202211710.1155/2022/4749613 35399637
    [Google Scholar]
  51. LiX. TangQ. MengF. DuP. ChenW. INPUT: An intelligent network pharmacology platform unique for traditional Chinese medicine.Comput. Struct. Biotechnol. J.2022201345135110.1016/j.csbj.2022.03.006 35356545
    [Google Scholar]
  52. DudziakK. NowakM. SozoniukM. One host-multiple applications: Zebrafish (Danio rerio) as promising model for studying human cancers and pathogenic diseases.Int. J. Mol. Sci.202223181025510.3390/ijms231810255 36142160
    [Google Scholar]
  53. YamakawaN. VanbeselaereJ. ChangL.Y. YuS.Y. DucrocqL. Harduin-LepersA. KurataJ. Aoki-KinoshitaK.F. SatoC. KhooK.H. KitajimaK. GuerardelY. Systems glycomics of adult zebrafish identifies organ-specific sialylation and glycosylation patterns.Nat. Commun.201891464710.1038/s41467‑018‑06950‑3 30405127
    [Google Scholar]
  54. MaJ. SuY. XieJ. TaoL. ZhaoY. WangX. KuangZ. ShengX. KangA. AaJ. WangG. Chemometric-based analysis and bioassay guided identification of potent compounds with intestinal motility promoting effects from Dalitong Granules.J. Ethnopharmacol.2025337Pt 111877710.1016/j.jep.2024.118777 39236779
    [Google Scholar]
  55. ZhouP. ZhouR. MinY. AnL.P. WangF. DuQ.Y. Network pharmacology and molecular docking analysis on pharmacological mechanisms of Astragalus membranaceus in the treatment of gastric Ulcer.Evid. Based Complement. Alternat. Med.2022202211110.1155/2022/9007396 35140802
    [Google Scholar]
  56. FordA.C. MahadevaS. CarboneM.F. LacyB.E. TalleyN.J. Functional dyspepsia.Lancet2020396102631689170210.1016/S0140‑6736(20)30469‑4 33049222
    [Google Scholar]
  57. LuX. ZhengY. WenF. HuangW. ChenX. RuanS. GuS. HuY. TengY. ShuP. Study of the active ingredients and mechanism of Sparganii rhizoma in gastric cancer based on HPLC-Q-TOF–MS/MS and network pharmacology.Sci. Rep.2021111190510.1038/s41598‑021‑81485‑0 33479376
    [Google Scholar]
  58. ChengL. PanG. ZhangX. WangJ. WangW. ZhangJ. WangH. LiangR. SunX. Yindanxinnaotong, a Chinese compound medicine, synergistically attenuatesatherosclerosis progress.Sci. Rep.2015511233310.1038/srep12333 26196108
    [Google Scholar]
  59. AshrafizadehM. AhmadiZ. MohammadinejadR. Ghasemipour AfsharE. Tangeretin: A mechanistic review of its pharmacological and therapeutic effects.J. Basic Clin. Physiol. Pharmacol.20203142019019110.1515/jbcpp‑2019‑0191 32329752
    [Google Scholar]
  60. LeeY.J. LeeY.M. LeeC.K. JungJ.K. HanS.B. HongJ.T. Therapeutic applications of compounds in the Magnolia family.Pharmacol. Ther.2011130215717610.1016/j.pharmthera.2011.01.010 21277893
    [Google Scholar]
  61. WangX. ZhangC. ZhengM. GaoF. ZhangJ. LiuF. Metabolomics analysis of L-Arginine induced gastrointestinal motility disorder in rats using UPLC-MS after Magnolol treatment.Front. Pharmacol.20191018310.3389/fphar.2019.00183 30881305
    [Google Scholar]
  62. HuangL. KimM.Y. ChoJ.Y. Immunopharmacological activities of luteolin in chronic diseases.Int. J. Mol. Sci.2023243213610.3390/ijms24032136 36768462
    [Google Scholar]
  63. JangY. KimS.W. OhJ. HongG.S. SeoE.K. OhU. ShimW.S. Ghrelin receptor is activated by naringin and naringenin, constituents of a prokinetic agent Poncirus fructus.J. Ethnopharmacol.2013148245946510.1016/j.jep.2013.04.039 23639361
    [Google Scholar]
  64. Pinho-RibeiroF.A. ZarpelonA.C. FattoriV. ManchopeM.F. MizokamiS.S. CasagrandeR. VerriW.A.Jr Naringenin reduces inflammatory pain in mice.Neuropharmacology201610550851910.1016/j.neuropharm.2016.02.019 26907804
    [Google Scholar]
  65. BeeckmansD. RiethorstD. AugustijnsP. VanuytselT. FarréR. TackJ. VanheelH. Altered duodenal bile salt concentration and receptor expression in functional dyspepsia.United European Gastroenterol. J.2018691347135510.1177/2050640618799120 30386607
    [Google Scholar]
  66. YuC. FuJ. GuoL. YuM. YuD. Integrating metabolomics and network pharmacology to explore the protective effect of Ginsenoside Re against radiotherapy injury in mice.Evid. Based Complement. Alternat. Med.2022202211610.1155/2022/5436979 35310032
    [Google Scholar]
  67. LiuR. LiT. XuH. YuG. ZhangT. WangJ. SunY. BiY. FengX. WuH. ZhangC. SunY. Systems biology strategy through integrating metabolomics and network pharmacology to reveal the mechanisms of Xiaopi Hewei Capsule improves functional dyspepsia.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2023122612367610.1016/j.jchromb.2023.123676 37329776
    [Google Scholar]
  68. PanJ. WuJ. ZhangS. WangK. JiG. ZhouW. DangY. Targeted metabolomics revealed the mechanisms underlying the role of Liansu capsule in ameliorating functional dyspepsia.J. Ethnopharmacol.202432111756810.1016/j.jep.2023.117568 38092317
    [Google Scholar]
  69. HeY. YangC. WangP. YangL. WuH. LiuH. QiM. GuoZ. LiJ. ShiH. WuX. HuZ. Child compound Endothelium corneum attenuates gastrointestinal dysmotility through regulating the homeostasis of brain-gut-microbiota axis in functional dyspepsia rats.J. Ethnopharmacol.201924011195310.1016/j.jep.2019.111953 31082513
    [Google Scholar]
  70. ChenY. LiuG. HeF. ZhangL. YangK. YuH. ZhouJ. GanH. MicroRNA 375 modulates hyperglycemia-induced enteric glial cell apoptosis and Diabetes-induced gastrointestinal dysfunction by targeting Pdk1 and repressing PI3K/Akt pathway.Sci. Rep.2018811268110.1038/s41598‑018‑30714‑0 30140011
    [Google Scholar]
  71. YuepingH. QinY. XialiO. YaoL. YajieL. ChangH. RuiH. XinH. HaoW. RuiZ. JinyiL. BaixiaoZ. The mechanism study of Moxa combustion products on regulating vascular endothelial function in atherosclerotic mice.Evid. Based Complement. Alternat. Med.2022202211210.1155/2022/1303978 36225192
    [Google Scholar]
  72. LinP. LiB. YeJ. ShangF. ZhaoH. XieJ. YuX. Curcumin relieves mice gastric emptying dysfunction induced by L arginine and atropine through interstitial cells of Cajal.Exp. Ther. Med.202121654810.3892/etm.2021.9980 33850520
    [Google Scholar]
  73. HuangX.L. XuJ. ZhangX.H. QiuB.Y. PengL. ZhangM. GanH.T. PI3K/Akt signaling pathway is involved in the pathogenesis of ulcerative colitis.Inflamm. Res.201160872773410.1007/s00011‑011‑0325‑6 21442372
    [Google Scholar]
  74. KangS.J. ParkB. ShinC.M. Helicobacter pylori eradication therapy for functional Dyspepsia: A meta-analysis by region and H. pylori prevalence.J. Clin. Med.201989132410.3390/jcm8091324 31466299
    [Google Scholar]
  75. MaX. YouP. XuY. YeX. TuY. LiuY. YangM. LiuD. Anti-Helicobacter pylori-associated gastritis effect of the ethyl acetate extract of Alpinia officinarum Hance through MAPK signaling pathway.J. Ethnopharmacol.202026011310010.1016/j.jep.2020.113100 32531409
    [Google Scholar]
  76. KuoJ.R. ChengY.H. ChenY.S. ChioC.C. GeanP.W. Involvement of extracellular signal regulated kinases in traumatic brain injury-induced depression in rodents.J. Neurotrauma201330141223123110.1089/neu.2012.2689 23360216
    [Google Scholar]
  77. MinG.Y. KimJ.H. KimT.I. ChoW.K. YangJ.H. MaJ.Y. Indigo Pulverata Levis (Chung-Dae, Persicaria tinctoria) alleviates atopic dermatitis-like inflammatory responses in vivo and in vitro.Int. J. Mol. Sci.202223155310.3390/ijms23010553 35008979
    [Google Scholar]
  78. EsteritaT. DewiS. SuryatenggaraF.G. GlenardiG. Association of functional dyspepsia with depression and anxiety: A systematic review.J. Gastrointestin. Liver Dis.202130225926610.15403/jgld‑3325 33951117
    [Google Scholar]
  79. ZhaoW. YangW. ZhengS. HuQ. QiuP. HuangX. HongX. LanF. A new bioinformatic insight into the associated proteins in psychiatric disorders.Springerplus201651196710.1186/s40064‑016‑3655‑6 27917343
    [Google Scholar]
  80. OehlersS.H. FloresM.V. OkudaK.S. HallC.J. CrosierK.E. CrosierP.S. A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents.Dev. Dyn.2011240128829810.1002/dvdy.22519 21181946
    [Google Scholar]
  81. SmithC. The potential of zebrafish as drug discovery research tool in immune-mediated inflammatory disease.Inflammopharmacology20243242219223310.1007/s10787‑024‑01511‑1 38926297
    [Google Scholar]
  82. CaiT. DongY. FengZ. CaiB. Ameliorative effects of the mixed aqueous extract of Aurantii Fructus Immaturus and Magnoliae Officinalis Cortex on loperamide-induced STC mice.Heliyon20241013e3370510.1016/j.heliyon.2024.e33705 39040398
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266349490250324204830
Loading
/content/journals/ctmc/10.2174/0115680266349490250324204830
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test