Skip to content
2000
image of Optimization, Preparation, and Cytotoxic Potential of Pyrus communis Extract Loaded Ethosomes on Skin Cancer Cell Lines

Abstract

Background

Skin cancer is one of the most prevalent cancers globally and is considered a serious public health problem associated with high death rates. The current therapeutic regimes for skin cancer are limited by their low bioavailability, generation of resistance, or adverse side effects. Many fruit extract-based nutraceuticals hold potential as topical treatment methods. (Pear) fruit extract is a rich source of cholinergic acid, presently used as therapy for various skin diseases. Thus, it qualifies as a promising candidate for skin cancer treatment.

Objective

The objective of the study is to evaluate the cytotoxicity of extract entrapped in ethosomes.

Methods

In this study, fruit extract was formulated in ethosomes using the hot method and optimized using central composite design. The optimized ethosomes were characterized for particle size distribution, zeta potential, entrapment efficiency, morphology, and particle stability.

Results

Preliminary phytochemical screening results suggest that PCHE contains a significant amount of phenolic compounds compared to other extracts (PCEA and PCAE). The presence of these phenolic compounds contributes to the strong antioxidant and cytotoxic effects of PCHE, which are observed in a dose-dependent manner. Analysis through GC-MS has identified chlorogenic acid, arbutin, ursolic acid, quercetin, and epicatechin are present in PCHE. Based on the initial testing of the extracts, PCHE was chosen for the preparation of ethosomes. The optimized ethosomes were found to have a particle size of 699 nm and a zeta potential of -16.07. Transmission Electron Microscopy illustrated a closed, spherically symmetrical structure of the ethosomes. Additionally, the Franz diffusion cell analysis for percutaneous absorption using egg membrane indicated a steady-state flux of the drug from the ethosomes. The formulation's cytotoxicity potential was assessed using the epidermoid carcinoma cell line (A431) through the MTT assay. The results show that the ethosome formulations exhibit cytotoxic activity better than PCHE extract. 1

Conclusion

In sum, the result of this study clearly points out that extract entrapped in ethosomes, prepared by hot method, displayed a cytotoxic potential against skin cancer cell lines. This ethosomal formulation can be harnessed for skin cancer therapy through further mechanistic analysis and animal studies.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266349097250418135927
2025-05-02
2025-09-13
Loading full text...

Full text loading...

References

  1. Altemimi A Lakhssassi N Baharlouei A Watson DG Lightfoot DA Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017 6 4 42 10.3390/plants6040042
    [Google Scholar]
  2. Tow R. Hanoun S. Andresen B. Shahid A. Wang J. Kelly K.M. Meyskens F.L. Jr Huang Y. Recent advances in clinical research for skin cancer chemoprevention. Cancers 2023 15 15 3819 10.3390/cancers15153819 37568635
    [Google Scholar]
  3. Ciążyńska M Kamińska-Winciorek G Lange D The incidence and clinical analysis of non-melanoma skin cancer. Sci Rep. 2021 11 1 15705 10.1038/s41598‑021‑94435‑7
    [Google Scholar]
  4. Ali K. Shaikh Z.A. Khan A.A. Laghari A.A. Multiclass skin cancer classification using EfficientNets – A first step towards preventing skin cancer. Neuroscience Informatics 2022 2 4 100034 10.1016/j.neuri.2021.100034
    [Google Scholar]
  5. Zeng L. Gowda B.H.J. Ahmed M.G. Abourehab M.A.S. Chen Z.S. Zhang C. Li J. Kesharwani P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol. Cancer 2023 22 1 10 10.1186/s12943‑022‑01708‑4 36635761
    [Google Scholar]
  6. Dave V Bhardwaj N Gupta N Tak K Herbal ethosomal gel containing luliconazole for productive relevance in the field of biomedicine. 3 Biotech 2020 10 3 97 10.1007/s13205‑020‑2083‑z
    [Google Scholar]
  7. Gupta N. Gupta G.D. Singh D. Localized topical drug delivery systems for skin cancer: Current approaches and future prospects. Frontiers in Nanotechnology 2022 4 1006628 10.3389/fnano.2022.1006628
    [Google Scholar]
  8. Simionca Mărcășan L.I. Pop R. Somsai P.A. Oltean I. Popa S. Sestras A.F. Militaru M. Botu M. Sestras R.E. Comparative evaluation of Pyrus species to identify possible resources of interest in pear breeding. Agronomy 2023 13 5 1264 10.3390/agronomy13051264
    [Google Scholar]
  9. Singh S. Verma R. Sharma H. Exploring the therapeutic potential and bioactive compounds in Pyrus species. Pharmacol. Res. Mod. Chin. Med. 2024 10 100342 10.1016/j.prmcm.2023.100342
    [Google Scholar]
  10. Gil-Martínez L. Mut-Salud N. Ruiz-García J.A. Falcón-Piñeiro A. Maijó-Ferré M. Baños A. De la Torre-Ramírez J.M. Guillamón E. Verardo V. Gómez-Caravaca A.M. Phytochemicals determination, and antioxidant, antimicrobial, anti-inflammatory and anticancer activities of blackberry fruits. Foods 2023 12 7 1505 10.3390/foods12071505 37048326
    [Google Scholar]
  11. Rosa A. Petretto G.L. Maldini M. Tirillini B. Chessa M. Pintore G. Sarais G. Chemical characterization, antioxidant and cytotoxic activity of hydroalcoholic extract from the albedo and flavedo of Citrus limon var. pompia Camarda. J. Food Meas. Charact. 2023 17 1 627 635 10.1007/s11694‑022‑01659‑w
    [Google Scholar]
  12. Qanash H. Yahya R. Bakri M.M. Bazaid A.S. Qanash S. Shater A.F. T M A. Anticancer, antioxidant, antiviral and antimicrobial activities of Kei Apple (Dovyalis caffra) fruit. Sci. Rep. 2022 12 1 5914 10.1038/s41598‑022‑09993‑1 35396383
    [Google Scholar]
  13. Dhakar R.C. Formulation development and evaluation of ethosome of stavudine. SSRN 2021 10.2139/ssrn.3774625
    [Google Scholar]
  14. Hallan SS Sguizzato M Mariani P Cortesi R Huang N Simelière F Marchetti N Drechsler M Ruzgas T Esposito E Design and characterization of ethosomes for transdermal delivery of caffeic acid. Pharmaceutics 2020 12 8 740 10.3390/pharmaceutics12080740
    [Google Scholar]
  15. Elankathirselvan K. Fathima H A. K P. Al-Ansari M.M. Synthesis and characterization of Pyrus communis fruit extract synthesized ZnO NPs and assessed their anti-diabetic and anti-microbial potential. Environ. Res. 2024 258 119450 10.1016/j.envres.2024.119450 38901812
    [Google Scholar]
  16. Didunyemi O.M. Olasehinde O.R. Hepatoprotective and antioxidant activities of polyphenolic extract of pyrus communis leaf in carbon tetrachloride–treated albino wistar rats. J. Trop. Life Sci. 2024 14 2 369 376 10.11594/jtls.14.02.16
    [Google Scholar]
  17. Mahmood ZA Mousa EF Adday ST Preparation and characterization of nano silver nitrate by Pyrus communis plant extract (peel and seeds) and biological activity study. Eurasian Chem. Commun. 2022 4 732 740 10.22034/ecc.2022.324117.1306
    [Google Scholar]
  18. Farooq M.A. Aquib M. Farooq A. Haleem Khan D. Joelle Maviah M.B. Sied Filli M. Kesse S. Boakye-Yiadom K.O. Mavlyanova R. Parveen A. Wang B. Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: An overview. Artif. Cells Nanomed. Biotechnol. 2019 47 1 1674 1692 10.1080/21691401.2019.1604535 31066300
    [Google Scholar]
  19. Islam SU Ahmed MB Ahsan H Update on the role of dietary phytochemicals in human skin cancer: New insights into molecular mechanisms. Antioxidants 2020 9 10 916 10.3390/antiox9100916
    [Google Scholar]
  20. Krishnan V. Mitragotri S. Nanoparticles for topical drug delivery: Potential for skin cancer treatment. Adv. Drug Deliv. Rev. 2020 153 87 108 10.1016/j.addr.2020.05.011 32497707
    [Google Scholar]
  21. Liu G Yang L Chen G A review on drug delivery system for tumor therapy. Front. Pharmacol. 2021 12 735446 10.3389/fphar.2021.735446
    [Google Scholar]
  22. Leiter U. Keim U. Garbe C. Epidemiology of skin cancer: Update 2019. Adv. Exp. Med. Biol. 2020 1268 123 139 10.1007/978‑3‑030‑46227‑7_6 32918216
    [Google Scholar]
  23. Jafari A. Daneshamouz S. Ghasemiyeh P. Mohammadi-Samani S. Ethosomes as dermal/transdermal drug delivery systems: Applications, preparation and characterization. J. Liposome Res. 2023 33 1 34 52 10.1080/08982104.2022.2085742 35695714
    [Google Scholar]
  24. Akhtar N. Akhtar N. Menaa F. Alharbi W. Alaryani F. Alqahtani A. Ahmad F. Fabrication of ethosomes containing tocopherol acetate to enhance transdermal permeation: In vitro and ex vivo characterizations. Gels 2022 8 6 335 10.3390/gels8060335 35735679
    [Google Scholar]
  25. Yao Y Zhou Y Liu L Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020 7 193 10.3389/fmolb.2020.00193
    [Google Scholar]
  26. Lu H. Tian Z. Cui Y. Liu Z. Ma X. Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr. Rev. Food Sci. Food Saf. 2020 19 6 3130 3158 10.1111/1541‑4337.12620 33337063
    [Google Scholar]
  27. Lukitasari M Nugroho DA Widodo N Chlorogenic acid: The conceivable chemosensitizer leading to cancer growth suppression. J. Evid. Based Integr. Med. 2018 23 2515690X18789628 10.1177/2515690X18789628
    [Google Scholar]
  28. Dubale S. Kebebe D. Zeynudin A. Abdissa N. Suleman S. Phytochemical screening and antimicrobial activity evaluation of selected medicinal plants in ethiopia. J. Exp. Pharmacol. 2023 15 51 62 10.2147/JEP.S379805 36789235
    [Google Scholar]
  29. Ndezo Bisso B. Njikang Epie Nkwelle R. Tchuenguem Tchuenteu R. Dzoyem J.P. Phytochemical screening, antioxidant, and antimicrobial activities of seven underinvestigated medicinal plants against microbial pathogens. Adv. Pharmacol. Pharm. Sci. 2022 2022 1 8 10.1155/2022/1998808 36263083
    [Google Scholar]
  30. Sari K.R.P. Ikawati Z. Danarti R. Hertiani T. Micro-titer plate assay for measurement of total phenolic and total flavonoid contents in medicinal plant extracts. Arab. J. Chem. 2023 16 9 105003 10.1016/j.arabjc.2023.105003
    [Google Scholar]
  31. Angelina M. Mardhiyah A. Dewi R.T. Fajriah S. Muthiah N. Ekapratiwi Y. Dewijanti I.D. Sukirno S. Jamilah J. Hartati S. Physicochemical and phytochemical standardization, and antibacterial evaluation of Cassia alata leaves from different locations in Indonesia. Pharmacia 2021 68 4 947 956 10.3897/pharmacia.68.e76835
    [Google Scholar]
  32. Baliyan S. Mukherjee R. Priyadarshini A. Vibhuti A. Gupta A. Pandey R.P. Chang C.M. Determination of antioxidants by dpph radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules 2022 27 4 1326 10.3390/molecules27041326 35209118
    [Google Scholar]
  33. Iordache A.M. Nechita C. Podea P. Șuvar N.S. Mesaroṣ C. Voica C. Bleiziffer R. Culea M. Comparative amino acid profile and antioxidant activity in sixteen plant extracts from Transylvania, Romania. Plants 2023 12 11 2183 10.3390/plants12112183 37299164
    [Google Scholar]
  34. Al-Musawi M.H. Ibrahim K.M. Albukhaty S. In vitro study of antioxidant, antibacterial, and cytotoxicity properties of Cordia myxa fruit extract. Iran. J. Microbiol. 2022 14 1 97 103 10.18502/ijm.v14i1.8810 35664718
    [Google Scholar]
  35. Sohaib M. Al-Barakah F.N.I. Migdadi H.M. Husain F.M. Comparative study among Avicennia marina, Phragmites australis, and Moringa oleifera based ethanolic-extracts for their antimicrobial, antioxidant, and cytotoxic activities. Saudi J. Biol. Sci. 2022 29 1 111 122 10.1016/j.sjbs.2021.08.062 36105270
    [Google Scholar]
  36. Maxwell A. Priya S. Nanosized ethosomes-a promising vesicular drug carrier for transdermal drug delivery. Res. J. Pharm. Technol. 2019 12 2 876 880 10.5958/0974‑360X.2019.00150.1
    [Google Scholar]
  37. Sallustio V. Farruggia G. di Cagno M.P. Tzanova M.M. Marto J. Ribeiro H. Goncalves L.M. Mandrone M. Chiocchio I. Cerchiara T. Abruzzo A. Bigucci F. Luppi B. Design and characterization of an ethosomal gel encapsulating rosehip extract. Gels 2023 9 5 362 10.3390/gels9050362 37232954
    [Google Scholar]
  38. Mondal A Banerjee S Bose S Das PP Sandberg EN Atanasov AG Bishayee A Cancer preventive and therapeutic potential of banana and its bioactive constituents: A systematic, comprehensive, and mechanistic review. Front. Oncol. 2021 11 697143 10.3389/fonc.2021.697143
    [Google Scholar]
  39. Andleeb M. Shoaib Khan H.M. Daniyal M. Development, characterization and stability evaluation of topical gel loaded with ethosomes containing Achillea millefolium L. extract. Front. Pharmacol. 2021 12 603227 10.3389/fphar.2021.603227 33912036
    [Google Scholar]
  40. Sharma K. Pasricha V. Satpathy G. Gupta R. Evaluation of phytochemical and antioxidant activity of raw Pyrus communis (l), an underexploited fruit. J. Pharmacogn. Phytochem. 2015 3 46 50
    [Google Scholar]
  41. Suri R. Neupane Y.R. Kohli K. Jain G.K. Polyoliposomes: Novel polyol-modified lipidic nanovesicles for dermal and transdermal delivery of drugs. Nanotechnology 2020 31 35 355103 10.1088/1361‑6528/ab912d 32380490
    [Google Scholar]
  42. Touitou E. Dayan N. Levi-Schaffer F. Piliponsky A. Novel lipid vesicular system for enhanced delivery. J. Lipid Res. 1998 8 113
    [Google Scholar]
  43. Trinh H.T. Mohanan S. Radhakrishnan D. Tiburcius S. Yang J.H. Verrills N.M. Karakoti A. Vinu A. Silica-based nanomaterials as drug delivery tools for skin cancer (melanoma) treatment. Emergent Materials 2021 4 5 1067 1092 10.1007/s42247‑021‑00236‑z
    [Google Scholar]
  44. Km M. Siva Krishna G. Hari Keerthana P. Studies on development and evaluation of topical ethosomal gel embedded antifungal agent for athlete’s foot. RGUHS J. Pharm. Sci. 2023 13 2 12433670 10.26463/rjps.13_2_3
    [Google Scholar]
  45. Wadhwa R. Pandey P. Gupta G. Aggarwal T. Kumar N. Mehta M. Satija S. Gulati M. Madan J.R. Dureja H. Balusamy S.R. Perumalsamy H. Maurya P.K. Collet T. Tambuwala M.M. Hansbro P.M. Chellappan D.K. Dua K. Emerging complexity and the need for advanced drug delivery in targeting candida species. Curr. Top. Med. Chem. 2019 19 28 2593 2609 10.2174/1568026619666191026105308 31746290
    [Google Scholar]
  46. Adnan M. Akhter M.H. Afzal O. Altamimi A.S.A. Ahmad I. Alossaimi M.A. Jaremko M. Emwas A.H. Haider T. Haider M.F. Exploring nanocarriers as treatment modalities for skin cancer. Molecules 2023 28 15 5905 10.3390/molecules28155905 37570875
    [Google Scholar]
  47. Wang X.J. Chen J.Y. Fu L.Q. Yan M.J. Recent advances in natural therapeutic approaches for the treatment of cancer. J. Chemother. 2020 32 2 53 65 10.1080/1120009X.2019.1707417 31928332
    [Google Scholar]
  48. Yang D.D. Salciccioli J.D. Marshall D.C. Sheri A. Shalhoub J. Trends in malignant melanoma mortality in 31 countries from 1985 to 2015. Br. J. Dermatol. 2020 183 6 1056 1064 10.1111/bjd.19010 32133614
    [Google Scholar]
  49. Hyeraci M. Papanikolau E.S. Grimaldi M. Ricci F. Pallotta S. Monetta R. Minafò Y.A. Di Lella G. Galdo G. Abeni D. Fania L. Dellambra E. Systemic photoprotection in melanoma and non-melanoma skin cancer. Biomolecules 2023 13 7 1067 10.3390/biom13071067 37509103
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266349097250418135927
Loading
/content/journals/ctmc/10.2174/0115680266349097250418135927
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test