
Full text loading...
Skin cancer is one of the most prevalent cancers globally and is considered a serious public health problem associated with high death rates. The current therapeutic regimes for skin cancer are limited by their low bioavailability, generation of resistance, or adverse side effects. Many fruit extract-based nutraceuticals hold potential as topical treatment methods. Pyrus communis (Pear) fruit extract is a rich source of cholinergic acid, presently used as therapy for various skin diseases. Thus, it qualifies as a promising candidate for skin cancer treatment.
The objective of the study is to evaluate the cytotoxicity of Pyrus communis extract entrapped in ethosomes.
In this study, Pyrus communis fruit extract was formulated in ethosomes using the hot method and optimized using central composite design. The optimized ethosomes were characterized in vitro for particle size distribution, zeta potential, entrapment efficiency, morphology, and particle stability.
Preliminary phytochemical screening results suggest that PCHE contains a significant amount of phenolic compounds compared to other extracts (PCEA and PCAE). The presence of these phenolic compounds contributes to the strong antioxidant and cytotoxic effects of PCHE, which are observed in a dose-dependent manner. Analysis through GC-MS has identified chlorogenic acid, arbutin, ursolic acid, quercetin, and epicatechin are present in PCHE. Based on the initial testing of the extracts, PCHE was chosen for the preparation of ethosomes. The optimized ethosomes were found to have a particle size of 699 nm and a zeta potential of -16.07. Transmission Electron Microscopy illustrated a closed, spherically symmetrical structure of the ethosomes. Additionally, the Franz diffusion cell analysis for percutaneous absorption using egg membrane indicated a steady-state flux of the drug from the ethosomes. The formulation's cytotoxicity potential was assessed using the epidermoid carcinoma cell line (A431) through the MTT assay. The results show that the ethosome formulations exhibit cytotoxic activity better than PCHE extract. 1
In sum, the result of this study clearly points out that Pyrus communis extract entrapped in ethosomes, prepared by hot method, displayed a cytotoxic potential against skin cancer cell lines. This ethosomal formulation can be harnessed for skin cancer therapy through further mechanistic analysis and animal studies.