Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Objectives

This systematic review was conducted to evaluate the applicability of the envelope (E) protein in the diagnosis of arboviruses.

Methods

This review was performed in accordance with the PRISMA statement. Five databases were explored (PubMed, Web of Science, Scopus, EMBASE, and IEDB). The inclusion and exclusion criteria were applied to study eligibility. After data extraction, the risk of bias and evidence certainty were evaluated according to QUADAS and GRADE assessments, respectively.

Results

A total of 11 studies were included in the review. ELISA was the most frequently utilized technique, with two studies employing it for antigen detection and nine for antibodies. The E protein was used as a whole protein, heterologous protein, and peptides. The diagnostic metrics were enhanced by optimizations on techniques, such as antibody capture, competitors, and nanosensors. Monoclonal antibodies showed improved specificity, including in co-infected samples. Seven studies demonstrated a minimal risk of bias, and the evidence certainty was considered moderate for dengue diagnosis.

Conclusion

The E protein was successfully employed in different immunological assays with large-scale strategies, enhancing the applicability potential for differential arboviruses’ diagnosis. Furthermore, both the antigen design and the implementation of innovative methodologies will have a substantial impact on the quality of the new tests. The PROSPERO protocol related to this work: CRD42021265243.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266348828241008214528
2025-10-18
2025-09-15
Loading full text...

Full text loading...

References

  1. BhattS. GethingP.W. BradyO.J. MessinaJ.P. FarlowA.W. MoyesC.L. DrakeJ.M. BrownsteinJ.S. HoenA.G. SankohO. The global distribution and burden of dengue.Nature496504507201310.1038/nature12060
    [Google Scholar]
  2. FaresR.C.G. SouzaK.P.R. AñezG. RiosM. Epidemiological scenario of dengue in Brazil.BioMed Res. Int.2015201511310.1155/2015/32187326413514
    [Google Scholar]
  3. PielnaaP. Al-SaadaweM. SaroA. DamaM.F. ZhouM. HuangY. HuangJ. XiaZ. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development.Virology2020543344210.1016/j.virol.2020.01.01532056845
    [Google Scholar]
  4. MarquezanM.C. VenturaC.V. SheffieldJ.S. GoldenW.C. OmiadzeR. BelfortR.Jr MayW. Ocular effects of Zika virus - A review.Surv. Ophthalmol.201863216617310.1016/j.survophthal.2017.06.00128623165
    [Google Scholar]
  5. OladapoO.T. SouzaJ.P. De MucioB. de LeónR.G.P. PereaW. GülmezogluA.M. WHO Guideline Development Group WHO interim guidance on pregnancy management in the context of Zika virus infection.Lancet Glob. Health201648e510e51110.1016/S2214‑109X(16)30098‑527211476
    [Google Scholar]
  6. QuirkE.J. GheorgheA. HauckK. A systematic examination of international funding flows for Ebola virus and Zika virus outbreaks 2014–2019: Donors, recipients and funding purposes.BMJ Glob. Health202164e00392310.1136/bmjgh‑2020‑00392333849897
    [Google Scholar]
  7. ZanottoPMA LeiteLCC The challenges imposed by dengue, zika, and chikungunya to Brazil.Front. Immunol.20189196410.3389/fimmu.2018.01964
    [Google Scholar]
  8. TomaselloD. SchlagenhaufP. Chikungunya and dengue autochthonous cases in Europe, 2007–2012.Travel Med. Infect. Dis.201311527428410.1016/j.tmaid.2013.07.00623962447
    [Google Scholar]
  9. NaddafM. Dengue is spreading in Europe: How worried should we be?Nature202310.1038/d41586‑023‑03407‑637907794
    [Google Scholar]
  10. AliF. ChorsiyaA. AnjumV. KhasimbiS. AliA. A systematic review on phytochemicals for the treatment of dengue.Phytother. Res.20213541782181610.1002/ptr.691733118251
    [Google Scholar]
  11. AliF. Chapter 14 - Regulatory perspectives of nanomaterials for theranostic application.Nanotheranostics for Treatment and Diagnosis of Infectious DiseasesAcademic Press373384202210.1016/B978‑0‑323‑91201‑3.00008‑6
    [Google Scholar]
  12. AliF. AnjumV. ChauhanG. AliA. AhamadJ. Recent evidence-based treatments for COVID-19: A review.Antiinfect. Agents2023211243810.2174/2211352520666220510140802
    [Google Scholar]
  13. RückertC Weger-LucarelliJ Garcia-LunaSM YoungM.C. ByasA.D. MurrietaR.A. FauverJ.R. EbelG.D. Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes.Nat. Commun.201781541210.1038/ncomms15412
    [Google Scholar]
  14. World Health OrganizationEstablishing Syndromic Surveillance and Event-Based Surveillance Systems for Zika, Dengue and Other Arboviral Diseases.World Health OrganizationEastern Mediterranean2020
    [Google Scholar]
  15. OidtmanR.J. EspañaG. PerkinsT.A. Co-circulation and misdiagnosis led to underestimation of the 2015–2017 Zika epidemic in the Americas.PLoS Negl. Trop. Dis.2021153e000920810.1371/journal.pntd.000920833647014
    [Google Scholar]
  16. KerkhofK. Falconi-AgapitoF. Van EsbroeckM. TalledoM. AriënK.K. Reliable serological diagnostic tests for arboviruses: Feasible or utopia?Trends Microbiol.202028427629210.1016/j.tim.2019.11.00531864844
    [Google Scholar]
  17. BalmasedaA. ZambranaJ.V. ColladoD. GarcíaN. SaboríoS. ElizondoD. MercadoJ.C. GonzalezK. CerpasC. NuñezA. CortiD. WaggonerJ.J. KuanG. Burger-CalderonR. HarrisE. Comparison of four serological methods and two reverse transcription-PCR assays for diagnosis and surveillance of Zika virus infection.J. Clin. Microbiol.2018563e01785-1710.1128/JCM.01785‑1729305550
    [Google Scholar]
  18. ShuklaS. HongS.Y. ChungS.H. KimM. Rapid detection strategies for the global threat of zika virus: Current state, new hypotheses, and limitations.Front. Microbiol.20167OCT168510.3389/fmicb.2016.0168527822207
    [Google Scholar]
  19. LindenbachB.D. ThielH.J. RiceC.M. Flaviviridae: The viruses and their replication.FFundamental Virology5th edPhiladelphiaLippincott Williams & Wilkins2007
    [Google Scholar]
  20. HondaE.R. ZanchiF. RiosK. LiraE. DeusileneVieira da SilvaL.H.P. De PaulaS.O. Design and heterologous expression of dengue virus envelope protein (E) peptides and their use for serological diagnosis.J. Virol. Methods20121861-2556110.1016/j.jviromet.2012.08.00622981980
    [Google Scholar]
  21. HapugodaM.D. BatraG. AbeyewickremeW. SwaminathanS. KhannaN. Single antigen detects both immunoglobulin M (IgM) and IgG antibodies elicited by all four dengue virus serotypes.Clin. Vaccine Immunol.200714111505151410.1128/CVI.00145‑0717898184
    [Google Scholar]
  22. NguyenN.M. DuongB.T. AzamM. PhuongT.T. ParkH. ThuyP.T.B. YeoS.J. Diagnostic performance of dengue virus envelope domain III in acute dengue infection.Int. J. Mol. Sci.20192014346410.3390/ijms2014346431311082
    [Google Scholar]
  23. JorgeF.A. ThomazellaM.V. de Castro MoreiraD. LopesL.D.G. TeixeiraJ.J.V. BertoliniD.A. Evolutions and upcoming on Zika virus diagnosis through an outbreak: A systematic review.Rev. Med. Virol.2020303e210510.1002/rmv.210532232942
    [Google Scholar]
  24. DenisJ. AttoumaniS. GravierP. TenebrayB. GarnierA. BriolantS. de LavalF. ChastresV. GrardG. Leparc-GoffartI. CoutardB. BadautC. High specificity and sensitivity of Zika EDIII-based ELISA diagnosis highlighted by a large human reference panel.PLoS Negl. Trop. Dis.2019139e000774710.1371/journal.pntd.000774731539394
    [Google Scholar]
  25. EhmenC. Medialdea-CarreraR. BrownD. de FilippisA.M.B. de SequeiraP.C. NogueiraR.M.R. BrasilP. CalvetG.A. BlessmannJ. MallmannA.M. SievertsenJ. RackowA. Schmidt-ChanasitJ. EmmerichP. SchmitzH. DeschermeierC. MikaA. Accurate detection of Zika virus IgG using a novel immune complex binding ELISA.Trop. Med. Int. Health20212618910110.1111/tmi.1350533012038
    [Google Scholar]
  26. KimY.C. Lopez-CamachoC. NettleshipJ.E. RahmanN. HillM.L. Silva-ReyesL. Ortiz-MartinezG. Figueroa-AguilarG. MarM.A. Vivanco-CidH. RollierC.S. ZitzmannN. Viveros-SandovalM.E. OwensR.J. Reyes-SandovalA. Optimization of Zika virus envelope protein production for ELISA and correlation of antibody titers with virus neutralization in Mexican patients from an arbovirus endemic region.Virol. J.201815119310.1186/s12985‑018‑1104‑630587198
    [Google Scholar]
  27. ReddyA. BoschI. SalcedoN. HerreraB.B. de PuigH. NarváezC.F. Caicedo-BorreroD.M. LorenzanaI. ParhamL. GarcíaK. MercadoM. TurcaA.M.R. Villar-CentenoL.A. Gélvez-RamírezM. RíosN.A.G. HileyM. GarcíaD. DiamondM.S. GehrkeL. Development and validation of a rapid lateral flow E1/E2-antigen test and ELISA in patients infected with emerging Asian strain of chikungunya virus in the Americas.Viruses202012997110.3390/v1209097132882998
    [Google Scholar]
  28. PageM.J. McKenzieJ.E. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. Mayo-WilsonE. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. MoherD. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.BMJ2021372n7110.1136/bmj.n7133782057
    [Google Scholar]
  29. HigginsJ.P.T. ThomasJ. ChandlerJ. CumpstonM. LiT. PageM.J. WelchV.A. Cochrane Handbook for Systematic Reviews of Interventions.John Wiley & Sons201910.1002/9781119536604
    [Google Scholar]
  30. WhitingP.F. RutjesA.W. WestwoodM.E. MallettS. DeeksJ.J. ReitsmaJ.B. LeeflangM.M. SterneJ.A. BossuytP.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies.Ann. Intern. Med.2011155852953610.7326/0003‑4819‑155‑8‑201110180‑0000922007046
    [Google Scholar]
  31. SchünemannH. BrożekJ. GuyattG. OxmanA. GRADE Handbook. Grading of Recommendations Assessment, Development and EvaluationGrade Working Group2013
    [Google Scholar]
  32. AmrunS.N. YeeW.X. Abu BakarF. LeeB. KamY.W. LumF.M. TanJ.J.L. LimV.W.X. WatthanaworawitW. LingC. NostenF. ReniaL. LeoY.S. NgL.F.P. Novel differential linear B‐cell epitopes to identify Zika and dengue virus infections in patients.Clin. Transl. Immunology201987e106610.1002/cti2.106631372218
    [Google Scholar]
  33. da SilvaA.N.M.R. NascimentoE.J.M. CordeiroM.T. GilL.H.V.G. AbathF.G.C. MontenegroS.M.L. MarquesE.T.A. Identification of continuous human B-cell epitopes in the envelope glycoprotein of dengue virus type 3 (DENV-3).PLoS One2009410e742510.1371/journal.pone.000742519826631
    [Google Scholar]
  34. GalulaJ.U. SalemG.M. DesturaR.V. RemenyiR. ChaoD.Y. Comparable accuracies of nonstructural protein 1- and envelope protein-based enzyme-linked immunosorbent assays in detecting anti-dengue immunoglobulin G antibodies.Diagnostics (Basel)202111574110.3390/diagnostics1105074133919324
    [Google Scholar]
  35. RockstrohA. BarzonL. KumbukgollaW. SuH.X. LizarazoE. Vincenti-GonzalezM.F. TamiA. OrnelasA.M.M. AguiarR.S. CadarD. Schmidt-ChanasitJ. UlbertS. Dengue virus IgM serotyping by ELISA with recombinant mutant envelope proteins.Emerg. Infect. Dis.20192511111111510.3201/eid2501.18060530387417
    [Google Scholar]
  36. VersianiA.F. MartinsE.M.N. AndradeL.M. CoxL. PereiraG.C. Barbosa-StancioliE.F. NogueiraM.L. LadeiraL.O. da FonsecaF.G. Nanosensors based on LSPR are able to serologically differentiate dengue from Zika infections.Sci. Rep.20201011130210.1038/s41598‑020‑68357‑932647259
    [Google Scholar]
  37. VersianiA.F. RochaR.P. MendesT.A.O. PereiraG.C. Coelho dos ReisJ.G.A. BartholomeuD.C. da FonsecaF.G. Identification of B-cell epitopes with potential to serologicaly discrimnate dengue from zika infections.Viruses20191111107910.3390/v1111107931752352
    [Google Scholar]
  38. JainJ. OkabayashiT. KaurN. NakayamaE. ShiodaT. GaindR. KurosuT. SunilS. Evaluation of an immunochromatography rapid diagnosis kit for detection of chikungunya virus antigen in India, a dengue-endemic country.Virol. J.20181518410.1186/s12985‑018‑1000‑029751761
    [Google Scholar]
  39. OkabayashiT. SasakiT. MasrinoulP. ChantawatN. YoksanS. NitatpattanaN. ChusriS. Morales VargasR.E. GrandadamM. BreyP.T. SoegijantoS. MulyantnoK.C. ChurrotinS. KotakiT. FayeO. FayeO. SowA. SallA.A. PuipromO. ChaichanaP. KurosuT. KatoS. KosakaM. RamasootaP. IkutaK. Detection of chikungunya virus antigen by a novel rapid immunochromatographic test.J. Clin. Microbiol.201553238238810.1128/JCM.02033‑1425411170
    [Google Scholar]
  40. PriyamvadaL. QuickeK.M. HudsonW.H. OnlamoonN. SewatanonJ. EdupugantiS. PattanapanyasatK. ChokephaibulkitK. MulliganM.J. WilsonP.C. AhmedR. SutharM.S. WrammertJ. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus.Proc. Natl. Acad. Sci. USA2016113287852785710.1073/pnas.160793111327354515
    [Google Scholar]
  41. ZhangX. JiaR. ShenH. WangM. YinZ. ChengA. Structures and functions of the envelope glycoprotein in flavivirus infections.Viruses201791133810.3390/v911033829137162
    [Google Scholar]
  42. LandK.J. BoerasD.I. ChenX.S. RamsayA.R. PeelingR.W. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes.Nat. Microbiol.201841465410.1038/s41564‑018‑0295‑330546093
    [Google Scholar]
  43. Rodriguez-MoralesA.J. Villamil-GómezW.E. Franco-ParedesC. The arboviral burden of disease caused by co-circulation and co-infection of dengue, chikungunya and Zika in the Americas.Travel Med. Infect. Dis.201614317717910.1016/j.tmaid.2016.05.00427224471
    [Google Scholar]
  44. FritzellC. RoussetD. AddeA. KazanjiM. Van KerkhoveM.D. FlamandC. Current challenges and implications for dengue, chikungunya and Zika seroprevalence studies worldwide: A scoping review.PLoS Negl. Trop. Dis.2018127e000653310.1371/journal.pntd.000653330011271
    [Google Scholar]
  45. RaafatN. BlacksellS.D. MaudeR.J. A review of dengue diagnostics and implications for surveillance and control.Trans. R. Soc. Trop. Med. Hyg.20191131165366010.1093/trstmh/trz06831365115
    [Google Scholar]
  46. LuoR. FongwenN. Kelly-CirinoC. HarrisE. Wilder-SmithA. PeelingR.W. Rapid diagnostic tests for determining dengue serostatus: A systematic review and key informant interviews.Clin. Microbiol. Infect.201925665966610.1016/j.cmi.2019.01.00230664935
    [Google Scholar]
  47. BorgesH.C.B.G. AdatiM.C. VigoD.C. MendonçaV.F.D. IssobeM.A. SantosF.B.D. ZamithH.P.D.S. Evaluation of rapid tests for dengue diagnosis in Brazil.Vigil. Sanit. Debate202191829010.22239/2317‑269x.01451
    [Google Scholar]
  48. FischerC. JoW.K. HaageV. Moreira-SotoA. de Oliveira FilhoE.F. DrexlerJ.F. Challenges towards serologic diagnostics of emerging arboviruses.Clin. Microbiol. Infect.20212791221122910.1016/j.cmi.2021.05.04734111589
    [Google Scholar]
  49. Andreata-SantosR. PereiraS.S. PereiraL.R. FélixA.C. RomanoC.M. FerreiraL.C.S. Specificity of NS1-based immunochromatographic tests for dengue virus with regard to the Zika virus protein.Int. J. Infect. Dis.20209527627810.1016/j.ijid.2020.04.01232289563
    [Google Scholar]
  50. ChávezJ.H. SilvaJ.R. AmarillaA.A. Moraes FigueiredoL.T. Domain III peptides from flavivirus envelope protein are useful antigens for serologic diagnosis and targets for immunization.Biologicals201038661361810.1016/j.biologicals.2010.07.00420817489
    [Google Scholar]
  51. RockstrohA. MogesB. BarzonL. SinigagliaA. PalùG. KumbukgollaW. Schmidt-ChanasitJ. SarnoM. BritesC. Moreira-SotoA. DrexlerJ.F. FerreiraO.C. UlbertS. Specific detection of dengue and Zika virus antibodies using envelope proteins with mutations in the conserved fusion loop.Emerg. Microbes Infect.2017611910.1038/emi.2017.8729116222
    [Google Scholar]
  52. VaughanK. GreenbaumJ. BlytheM. PetersB. SetteA. Meta-analysis of all immune epitope data in the Flavivirus genus: Inventory of current immune epitope data status in the context of virus immunity and immunopathology.Viral Immunol.201023325928410.1089/vim.2010.000620565291
    [Google Scholar]
  53. KamY.W. LeeW.W.L. SimarmataD. HarjantoS. TengT.S. TolouH. ChowA. LinR.T.P. LeoY.S. RéniaL. NgL.F.P. Longitudinal analysis of the human antibody response to Chikungunya virus infection: Implications for serodiagnosis and vaccine development.J. Virol.20128623130051301510.1128/JVI.01780‑1223015702
    [Google Scholar]
  54. Napoleão-PêgoP. CarneiroF.R.G. DuransA.M. GomesL.R. MorelC.M. ProvanceD.W.Jr De-SimoneS.G. Performance assessment of a multi-epitope chimeric antigen for the serological diagnosis of acute Mayaro fever.Sci. Rep.20211111537410.1038/s41598‑021‑94817‑x34321560
    [Google Scholar]
  55. Lopes-LuzL. JunqueiraI.C. da SilveiraL.A. de Melo PereiraB.R. da SilvaL.A. RibeiroB.M. NagataT. Dengue and Zika virus multi-epitope antigen expression in insect cells.Mol. Biol. Rep.202047107333734010.1007/s11033‑020‑05772‑132997310
    [Google Scholar]
  56. MaldanerF.R. AragãoF.J.L. dos SantosF.B. FrancoO.L. da Rocha Queiroz LimaM. de Oliveira ResendeR. VasquesR.M. NagataT. Dengue virus tetra-epitope peptide expressed in lettuce chloroplasts for potential use in dengue diagnosis.Appl. Microbiol. Biotechnol.201397135721572910.1007/s00253‑013‑4918‑623615743
    [Google Scholar]
  57. CuzzubboA.J. EndyT.P. NisalakA. KalayanaroojS. VaughnD.W. OgataS.A. ClementsD.E. DevineP.L. Use of recombinant envelope proteins for serological diagnosis of Dengue virus infection in an immunochromatographic assay.Clin. Diagn. Lab. Immunol.2001861150115510.1128/CDLI.8.6.1150‑1155.200111687456
    [Google Scholar]
  58. MenR. WyattL. TokimatsuI. ArakakiS. ShameemG. ElkinsR. ChanockR. MossB. LaiC.J. Immunization of rhesus monkeys with a recombinant of modified vaccinia virus Ankara expressing a truncated envelope glycoprotein of dengue type 2 virus induced resistance to dengue type 2 virus challenge.Vaccine200018273113312210.1016/S0264‑410X(00)00121‑310856791
    [Google Scholar]
  59. ZhangB. PinskyB.A. AnantaJ.S. ZhaoS. ArulkumarS. WanH. SahooM.K. AbeynayakeJ. WaggonerJ.J. HopesC. TangM. DaiH. Diagnosis of Zika virus infection on a nanotechnology platform.Nat. Med.201723554855010.1038/nm.430228263312
    [Google Scholar]
  60. CamachoS.A. Sobral-FilhoR.G. AokiP.H.B. ConstantinoC.J.L. BroloA.G. Zika immunoassay based on surface-enhanced raman scattering nanoprobes.ACS Sens.20183358759410.1021/acssensors.7b0063929411598
    [Google Scholar]
  61. ChabierskiS. BarzonL. PapaA. NiedrigM. BramsonJ.L. RichnerJ.M. PalùG. DiamondM.S. UlbertS. Distinguishing West Nile virus infection using a recombinant envelope protein with mutations in the conserved fusion-loop.BMC Infect. Dis.201414124610.1186/1471‑2334‑14‑24624884467
    [Google Scholar]
  62. KatzelnickL.C. GreshL. HalloranM.E. MercadoJ.C. KuanG. GordonA. BalmasedaA. HarrisE. Antibody-dependent enhancement of severe dengue disease in humans.Science3586365201792993210.1126/science.aan6836
    [Google Scholar]
  63. BurchellJ. Taylor-PapadimitriouJ. Effect of modification of carbohydrate side chains on the reactivity of antibodies with core-protein epitopes of the MUC1 gene product.Epithelial Cell Biol.1993241551627505698
    [Google Scholar]
  64. LeeflangM.M.G. DeeksJ.J. GatsonisC. BossuytP.M.M. Systematic reviews of diagnostic test accuracy.Ann. Intern. Med.20081491288989710.7326/0003‑4819‑149‑12‑200812160‑0000819075208
    [Google Scholar]
  65. BossuytP.M. ReitsmaJ.B. BrunsD.E. GatsonisC.A. GlasziouP.P. IrwigL. LijmerJ.G. MoherD. RennieD. de VetH.C.W. KresselH.Y. RifaiN. GolubR.M. AltmanD.G. HooftL. KorevaarD.A. CohenJ.F. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies.Clin. Chem.201561121446145210.1373/clinchem.2015.24628026510957
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266348828241008214528
Loading
/content/journals/ctmc/10.2174/0115680266348828241008214528
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article. Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): Arbovirus; Diagnosis; Envelope protein; Serological; Systematic review; Viruses
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test