Skip to content
2000
Volume 25, Issue 24
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Introduction

Alzheimer's disease (AD) is a prominent neurodegenerative ailment characterized by the constraints of conventional therapies stemming from insufficient medication transport to the brain. This review examines the function of polymeric nanocarriers (PNCs) in improving therapeutic efficacy for Alzheimer's disease treatment.

Methods

We analyze the principal obstacles to Alzheimer's disease drug delivery: the blood-brain barrier, the blood-cerebrospinal fluid barrier, and multidrug resistance proteins. The review examines three categories of PNCs: polymeric nanoparticles, polymeric micelles, and dendrimers, and their capacity to surmount these obstacles. Literature investigations used search engines like PubMed, Google Scholar, and ScienceDirect.

Results

PNCs exhibit superior drug delivery better biocompatibility, regulated release, and targeted delivery mechanisms. Recent studies demonstrate the effective delivery of several pharmaceuticals, including rivastigmine and galantamine, resulting in enhanced cognitive outcomes in Alzheimer's disease models. Patent research indicates an increase in innovation for PNC-based Alzheimer's disease treatments.

Conclusion

Despite ongoing hurdles in biocompatibility and scalability, PNCs exhibit significant potential to transform Alzheimer's disease treatment by improving medication delivery across biological barriers. Current investigations in nanotechnology and combinatorial medicines indicate a favorable outlook for PNC-based medicinal strategies.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266347890250409153450
2025-04-21
2025-12-09
Loading full text...

Full text loading...

References

  1. MonteiroA.R. BarbosaD.J. RemiãoF. SilvaR. Alzheimer’s disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs.Biochem. Pharmacol.202321111552210.1016/j.bcp.2023.11552236996971
    [Google Scholar]
  2. CiureaV.A. Covache-BusuiocR.A. MohanA.G. CostinH.P. VoicuV. Alzheimer’s disease: 120 years of research and progress.J. Med. Life202316217317710.25122/jml‑2022‑011136937482
    [Google Scholar]
  3. Rajah KumaranK. YunusaS. PerimalE. WahabH. MüllerC.P. HassanZ. Insights into the pathophysiology of Alzheimer’s disease and potential therapeutic targets: A current perspective.J. Alzheimers Dis.202391250753010.3233/JAD‑22066636502321
    [Google Scholar]
  4. ChengY. HeC.Y. TianD.Y. ChenS.H. RenJ.R. SunH.L. XuM.Y. TanC.R. FanD.Y. JianJ.M. SunP.Y. ZengG.H. ShenY.Y. ShiA.Y. JinW.S. BuX.L. LiuH.M. XuY.M. WangJ. WangY.J. Physiological β-amyloid clearance by the liver and its therapeutic potential for Alzheimer’s disease.Acta Neuropathol.2023145671773110.1007/s00401‑023‑02559‑z36964213
    [Google Scholar]
  5. GouillyD. RafiqM. NogueiraL. SalabertA.S. PayouxP. PéranP. ParienteJ. Beyond the amyloid cascade: An update of Alzheimer’s disease pathophysiology.Rev. Neurol.2023179881283010.1016/j.neurol.2022.12.00636906457
    [Google Scholar]
  6. SelfW.K. HoltzmanD.M. Emerging diagnostics and therapeutics for Alzheimer disease.Nat. Med.20232992187219910.1038/s41591‑023‑02505‑237667136
    [Google Scholar]
  7. Conti FilhoC.E. LossL.B. Marcolongo-PereiraC. RossoniJuniorJ.V. BarcelosR.M. Chiarelli-NetoO. SilvaB.S. Passamani AmbrosioR. CastroF.C.A.Q. TeixeiraS.F. MezzomoN.J. Advances in Alzheimer’s disease’s pharmacological treatment.Front. Pharmacol.202314110145210.3389/fphar.2023.110145236817126
    [Google Scholar]
  8. SaeedA. LopezO. CohenA. ReisS.E. Cardiovascular disease and Alzheimer’s disease: The heart–brain axis.J. Am. Heart Assoc.20231221e03078010.1161/JAHA.123.03078037929715
    [Google Scholar]
  9. GroblerC. van TongerenM. GettemansJ. KellD.B. PretoriusE. Alzheimer’s disease: A systems view provides a unifying explanation of its development.J. Alzheimers Dis.2023911437010.3233/JAD‑22072036442193
    [Google Scholar]
  10. HaleemA. JavaidM. SinghR.P. RabS. SumanR. Applications of nanotechnology in medical field: a brief review.Global Health Journal202372707710.1016/j.glohj.2023.02.008
    [Google Scholar]
  11. SinghA. AnsariV.A. MahmoodT. AhsanF. WasimR. MaheshwariS. ShariqM. ParveenS. ShamimA. Emerging nanotechnology for the treatment of Alzheimer’s disease.CNS Neurol. Disord. Drug Targets202423668769610.2174/187152732266623050123281537138478
    [Google Scholar]
  12. SongN. SunS. ChenK. WangY. WangH. MengJ. GuoM. ZhangX.D. ZhangR. Emerging nanotechnology for Alzheimer’s disease: From detection to treatment.J. Control. Release202336039241710.1016/j.jconrel.2023.07.00437414222
    [Google Scholar]
  13. LiuX. YuanM. LiL. ZhangJ. HuangX. DuJ. TuZ. WuH. Research progress of nanocarriers for the treatment of Alzheimer’s disease.Curr. Pharm. Des.20232929511510.2174/138161282966622121611491236529920
    [Google Scholar]
  14. AnsariM.A. TripathiT. VenkidasamyB. MonzianiA. RajakumarG. AlomaryM.N. Multifunctional nanocarriers for Alzheimer’s disease: Befriending the barriers.Mol. Neurobiol.202360114837966683
    [Google Scholar]
  15. PatabendigeA. JanigroD. The role of the blood–brain barrier during neurological disease and infection.Biochem. Soc. Trans.202351261362610.1042/BST2022083036929707
    [Google Scholar]
  16. TeixeiraM.I. LopesC.M. AmaralM.H. CostaP.C. Surface-modified lipid nanocarriers for crossing the blood-brain barrier (BBB): A current overview of active targeting in brain diseases.Colloids Surf. B Biointerfaces202322111299910.1016/j.colsurfb.2022.11299936368148
    [Google Scholar]
  17. SongY.H. DeR. LeeK.T. Emerging strategies to fabricate polymeric nanocarriers for enhanced drug delivery across blood-brain barrier: An overview.Adv. Colloid Interface Sci.202332010300810.1016/j.cis.2023.10300837776736
    [Google Scholar]
  18. DubeT. ChibhS. MishraJ. PandaJ.J. Receptor targeted polymeric nanostructures capable of navigating across the blood-brain barrier for effective delivery of neural therapeutics.ACS Chem. Neurosci.20178102105211710.1021/acschemneuro.7b0020728768412
    [Google Scholar]
  19. NagriS. RiceO. ChenY. Nanomedicine strategies for central nervous system (CNS) diseases.Front. Biomater. Sci.20232121538410.3389/fbiom.2023.121538438938851
    [Google Scholar]
  20. GuptaU. SultanaS. Pegylated nanoparticles for brain targeting- opportunities and challenges.Curr. Nanomed.202313319920910.2174/2468187313666230904150849
    [Google Scholar]
  21. GreigN.H. UnnisaA. KamalM. Nanotechnology-based gene therapy as a credible tool in the treatment of Alzheimer’s disease.Neural Regen. Res.202318102127213310.4103/1673‑5374.36909637056119
    [Google Scholar]
  22. ChorawalaM.R. ShahA.C. PandyaA.J. KothariN.R. PrajapatiB.G. Symptoms and conventional treatments of Alzheimer’s disease.In: Alzheimer’s Disease and Advanced Drug Delivery Strategies.Cambridge, MassachusettsAcademic Press2024133210.1016/B978‑0‑443‑13205‑6.00009‑1
    [Google Scholar]
  23. NazamN. FarhanaA. ShaikhS. Recent Advances in Alzheimer’s Disease in Relation to Cholinesterase Inhibitors and NMDA Receptor Antagonists.In: Autism Spectrum Disorder and Alzheimer’s Disease.Springer2022135151
    [Google Scholar]
  24. JavedB. JavedA. KowC.S. HasanS.S. Pharmacological and non-pharmacological treatment options for sleep disturbances in Alzheimer’s disease.Expert Rev. Neurother.202323650151410.1080/14737175.2023.221431637267149
    [Google Scholar]
  25. GuoM.H. VaishnaviS.N. Clinical management in Alzheimer’s disease in the era of disease-modifying therapies.Curr. Treat. Options Neurol.202325512113310.1007/s11940‑023‑00750‑x
    [Google Scholar]
  26. LiX. JiM. ZhangH. LiuZ. ChaiY. ChengQ. YangY. CordatoD. GaoJ. Non-drug therapies for Alzheimer’s disease: A review.Neurol. Ther.2023121397210.1007/s40120‑022‑00416‑x36376734
    [Google Scholar]
  27. VaradharajanA. DavisA.D. GhoshA. JagtapT. XavierA. MenonA.J. RoyD. GandhiS. GregorT. Guidelines for pharmacotherapy in Alzheimer’s disease – A primer on FDA-approved drugs.J. Neurosci. Rural Pract.202314456657310.25259/JNRP_356_202338059250
    [Google Scholar]
  28. BuckA. RezaeiK. QuaziA. GoldmeierG. SilverglateB. GrossbergG.T. The donepezil transdermal system for the treatment of patients with mild, moderate, or severe Alzheimer’s disease: A critical review.Expert Rev. Neurother.202424660761410.1080/14737175.2024.235598138785454
    [Google Scholar]
  29. PanghalA. FloraS.J.S. Nanotechnology in the diagnostic and therapy for Alzheimer’s disease.Biochim. Biophys. Acta, Gen. Subj.20241868313055910.1016/j.bbagen.2024.13055938191034
    [Google Scholar]
  30. TiwariV. TiwariA. SharmaA. KumarM. KaushikD. SagadevanS. An optimistic approach to nanotechnology in Alzheimer’s disease management: An overview.J. Drug Deliv. Sci. Technol.20238610472210.1016/j.jddst.2023.104722
    [Google Scholar]
  31. DigheS. JogS. MominM. SawarkarS. OmriA. Intranasal drug delivery by nanotechnology: Advances in and challenges for Alzheimer’s disease management.Pharmaceutics20231615810.3390/pharmaceutics1601005838258068
    [Google Scholar]
  32. KumarA. SudevanS. T. NairA. S. SinghA. K. KumarS. JoseJ. BehlT. MangalathillamS. MathewB. KimH. Current and future nano-carrier-based approaches in the treatment of Alzheimer’s disease.Brain Sci.202313221310.3390/brainsci1302021336831756
    [Google Scholar]
  33. LuZ.G. ShenJ. YangJ. WangJ.W. ZhaoR.C. ZhangT.L. GuoJ. ZhangX. Nucleic acid drug vectors for diagnosis and treatment of brain diseases.Signal Transduct. Target. Ther.2023813910.1038/s41392‑022‑01298‑z36650130
    [Google Scholar]
  34. MiaoY.B. ZhaoW. RenchiG. GongY. ShiY. Customizing delivery nano-vehicles for precise brain tumor therapy.J. Nanobiotechnology20232113210.1186/s12951‑023‑01775‑936707835
    [Google Scholar]
  35. KhareP. EdgecombS.X. HamadaniC.M. TannerE.E.L. S ManickamD. Lipid nanoparticle-mediated drug delivery to the brain.Adv. Drug Deliv. Rev.202319711486110.1016/j.addr.2023.11486137150326
    [Google Scholar]
  36. SanapS.N. BisenA.C. KedarA. AgrawalS. BhattaR.S. Recent update on pharmacokinetics and drug metabolism in CNS-based drug discovery.Curr. Pharm. Des.202329201602161610.2174/138161282966623070712141537424342
    [Google Scholar]
  37. TianM. MaZ. YangG.Z. Micro/nanosystems for controllable drug delivery to the brain.Innovation20245110054810.1016/j.xinn.2023.10054838161522
    [Google Scholar]
  38. HuttunenK.M. Improving drug delivery to the brain: The prodrug approach.Expert Opin. Drug Deliv.2024215683693Epub ahead of print10.1080/17425247.2024.235518038738934
    [Google Scholar]
  39. PardridgeW.M. Receptor-mediated drug delivery of bispecific therapeutic antibodies through the blood-brain barrier.Frontiers in Drug Delivery20233122781610.3389/fddev.2023.122781637583474
    [Google Scholar]
  40. MineiroR. AlbuquerqueT. NevesA.R. SantosC.R.A. CostaD. QuintelaT. The role of biological rhythms in new drug formulations to cross the brain barriers.Int. J. Mol. Sci.202324161254110.3390/ijms24161254137628722
    [Google Scholar]
  41. Nguyen-ThiP.T. HoT.T. NguyenT.T. VoG.V. Nanotechnology-based drug delivery for Alzheimer’s and Parkinson’s diseases.Curr. Drug Deliv.202421791793110.2174/156720182066623070711340537424345
    [Google Scholar]
  42. ManimaranV. NivethaR.P. TamilanbanT. NarayananJ. VetriselvanS. FuloriaN.K. ChinniS.V. SekarM. FuloriaS. WongL.S. BiswasA. RamachawolranG. SelvarajS. Nanogels as novel drug nanocarriers for CNS drug delivery.Front. Mol. Biosci.202310123210910.3389/fmolb.2023.123210937621994
    [Google Scholar]
  43. LinT.S. WoonC.K. HuiW.K. AbasR. HaronM.H. DasS. Natural product-based nanomedicine: Recent advances and issues for the treatment of Alzheimer’s disease.Curr. Neuropharmacol.20222081498151810.2174/1570159X2066621121716354034923947
    [Google Scholar]
  44. PuranikN. YadavD. SongM. Advancements in the application of nanomedicine in Alzheimer’s disease: A therapeutic perspective.Int. J. Mol. Sci.202324181404410.3390/ijms24181404437762346
    [Google Scholar]
  45. AmulyaE. SikderA. VambhurkarG. ShahS. KhatriD.K. RaghuvanshiR.S. SinghS.B. SrivastavaS. Nanomedicine based strategies for oligonucleotide traversion across the blood–brain barrier.J. Control. Release202335455457110.1016/j.jconrel.2023.01.03136649742
    [Google Scholar]
  46. GuoZ.H. KhattakS. RaufM.A. AnsariM.A. AlomaryM.N. RazakS. YangC.Y. WuD.D. JiX.Y. Role of Nanomedicine-based therapeutics in the treatment of CNS disorders.Molecules2023283128310.3390/molecules2803128336770950
    [Google Scholar]
  47. Kazemi-LomedashtF. Hasannejad-AslB. PooresmaeilF. ChoupaniE. DabiriM. BehmardiA. FadaieM. FathiM. MoosaviS.A. TakamoliS. HematiE. NaeiV.Y. Nanoparticles as powerful tools for crossing the blood-brain barrier.CNS Neurol. Disord. Drug Targets2023221182610.2174/187152732166622022209265535196974
    [Google Scholar]
  48. AlajangiH.K. KaurM. SharmaA. RanaS. ThakurS. ChatterjeeM. SinglaN. JaiswalP.K. SinghG. BarnwalR.P. Blood–brain barrier: Emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders.Mol. Brain20221514910.1186/s13041‑022‑00937‑435650613
    [Google Scholar]
  49. ParvezS. KaushikM. AliM. AlamM.M. AliJ. TabassumH. KaushikP. Dodging blood brain barrier with “nano” warriors: Novel strategy against ischemic stroke.Theranostics202212268971910.7150/thno.6480634976208
    [Google Scholar]
  50. HershA.M. AlomariS. TylerB.M. Crossing the blood-brain barrier: Advances in nanoparticle technology for drug delivery in neuro-oncology.Int. J. Mol. Sci.2022238415310.3390/ijms2308415335456971
    [Google Scholar]
  51. Bazi AlahriM. Jibril IbrahimA. BaraniM. ArkabanH. ShadmanS.M. SalarpourS. ZarrintajP. JaberiJ. Turki JalilA. Management of brain cancer and neurodegenerative disorders with polymer-based nanoparticles as a biocompatible platform.Molecules202328284110.3390/molecules2802084136677899
    [Google Scholar]
  52. MishraA. KumarR. MishraJ. DuttaK. AhlawatP. KumarA. DhanasekaranS. GuptaA.K. SinhaS. BishiD.K. GuptaP.K. NayakS. Strategies facilitating the permeation of nanoparticles through blood-brain barrier: An insight towards the development of brain-targeted drug delivery system.J. Drug Deliv. Sci. Technol.20238610469410.1016/j.jddst.2023.104694
    [Google Scholar]
  53. WangL. ShiY. JiangJ. LiC. ZhangH. ZhangX. JiangT. WangL. WangY. FengL. Micro‐nanocarriers based drug delivery technology for blood‐brain barrier crossing and brain tumor targeting therapy.Small20221845220367810.1002/smll.20220367836103614
    [Google Scholar]
  54. TeleanuR.I. PredaM.D. NiculescuA.G. VladâcencoO. RaduC.I. GrumezescuA.M. TeleanuD.M. Current strategies to enhance delivery of drugs across the blood–brain barrier.Pharmaceutics202214598710.3390/pharmaceutics1405098735631573
    [Google Scholar]
  55. GhoraiS.M. DeepA. MagooD. GuptaC. GuptaN. Cell-penetrating and targeted peptides delivery systems as potential pharmaceutical carriers for enhanced delivery across the blood–brain barrier (BBB).Pharmaceutics2023157199910.3390/pharmaceutics1507199937514185
    [Google Scholar]
  56. Tincu IurciucC.E. AndrițoiuC.V. PopaM. OchiuzL. Recent advancements and strategies for overcoming the blood-brain barrier using albumin-based drug delivery systems to treat brain cancer, with a focus on glioblastoma.Polymers20231519396910.3390/polym1519396937836018
    [Google Scholar]
  57. EkhatorC. QureshiM.Q. ZuberiA.W. HussainM. SangroulaN. YerraS. DeviM. NaseemM.A. BellegardeS.B. PendyalaP.R. Advances and opportunities in nanoparticle drug delivery for central nervous system disorders: A review of current advances.Cureus2023158e4430210.7759/cureus.4430237649926
    [Google Scholar]
  58. HuttunenK.M. TerasakiT. UrttiA. MontaserA.B. UchidaY. Pharmacoproteomics of brain barrier transporters and substrate design for the brain targeted drug delivery.Pharm. Res.20223971363139210.1007/s11095‑022‑03193‑235257288
    [Google Scholar]
  59. SethiB. KumarV. MahatoK. CoulterD.W. MahatoR.I. Recent advances in drug delivery and targeting to the brain.J. Control. Release202235066868710.1016/j.jconrel.2022.08.05136057395
    [Google Scholar]
  60. RawalS.U. PatelB.M. PatelM.M. New drug delivery systems developed for brain targeting.Drugs202282774979210.1007/s40265‑022‑01717‑z35596879
    [Google Scholar]
  61. OuyangQ. MengY. ZhouW. TongJ. ChengZ. ZhuQ. New advances in brain-targeting nano-drug delivery systems for Alzheimer’s disease.J. Drug Target.2022301618110.1080/1061186X.2021.192705533983096
    [Google Scholar]
  62. PurisE. FrickerG. GyntherM. Targeting transporters for drug delivery to the brain: Can we do better?Pharm. Res.20223971415145510.1007/s11095‑022‑03241‑x35359241
    [Google Scholar]
  63. TaliyanR. KakotyV. SarathlalK.C. KharavtekarS.S. KarennanavarC.R. ChoudharyY.K. SinghviG. RiadiY. DubeyS.K. KesharwaniP. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer’s disease.J. Control. Release202234352855010.1016/j.jconrel.2022.01.04435114208
    [Google Scholar]
  64. PathakK MishraSK PorwalA Bahadur, S Nanocarriers for Alzheimer's disease: Research and patent update.J Appl Pharm Sci2021113001021
    [Google Scholar]
  65. NguyenT.T. NguyenT.T.D. NguyenT.K.O. VoT.K. VoV.G. Advances in developing therapeutic strategies for Alzheimer’s disease.Biomed. Pharmacother.202113911162310.1016/j.biopha.2021.11162333915504
    [Google Scholar]
  66. AwadR. AvitalA. SosnikA. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders.Acta Pharm. Sin. B20231351866188610.1016/j.apsb.2022.07.00337250152
    [Google Scholar]
  67. AlotaibiB.S. BuabeidM. IbrahimN.A. KharabaZ.J. IjazM. NoreenS. MurtazaG. Potential of nanocarrier-based drug delivery systems for brain targeting: A current review of literature.Int. J. Nanomedicine2021167517753310.2147/IJN.S33365734795481
    [Google Scholar]
  68. ShakeriS. AshrafizadehM. ZarrabiA. RoghanianR. AfsharE.G. PardakhtyA. MohammadinejadR. KumarA. ThakurV.K. Multifunctional polymeric nanoplatforms for brain diseases diagnosis, therapy and theranostics.Biomedicines2020811310.3390/biomedicines801001331941057
    [Google Scholar]
  69. AyubA. WettigS. An overview of nanotechnologies for drug delivery to the brain.Pharmaceutics202214222410.3390/pharmaceutics1402022435213957
    [Google Scholar]
  70. MadejM. KurowskaN. Strzalka-MrozikB. Polymeric nanoparticles—tools in a drug delivery system in selected cancer therapies.Appl. Sci.20221219947910.3390/app12199479
    [Google Scholar]
  71. TosiG. DuskeyJ.T. KreuterJ. Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier.Expert Opin. Drug Deliv.2020171233210.1080/17425247.2020.169854431774000
    [Google Scholar]
  72. CanoA. Sánchez-LópezE. EttchetoM. López-MachadoA. EspinaM. SoutoE.B. GalindoR. CaminsA. GarcíaM.L. TurowskiP. Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases.Nanomedicine202015121239126110.2217/nnm‑2019‑044332370600
    [Google Scholar]
  73. RabhaB. BharadwajK.K. PatiS. ChoudhuryB.K. SarkarT. KariZ.A. EdinurH.A. BaishyaD. AtanaseL.I. Development of polymer-based nanoformulations for glioblastoma brain cancer therapy and diagnosis: An update.Polymers20211323411410.3390/polym1323411434883617
    [Google Scholar]
  74. RibovskiL. HamelmannN.M. PaulusseJ.M.J. Polymeric nanoparticles properties and brain delivery.Pharmaceutics20211312204510.3390/pharmaceutics1312204534959326
    [Google Scholar]
  75. ZhangW. MehtaA. TongZ. EsserL. VoelckerN.H. Development of polymeric nanoparticles for blood–brain barrier transfer—strategies and challenges.Adv. Sci.2021810200393710.1002/advs.20200393734026447
    [Google Scholar]
  76. RamanS. MahmoodS. HillesA.R. JavedM.N. AzmanaM. Al-JapairaiK.A.S. Polymeric nanoparticles for brain drug delivery - A review.Curr. Drug Metab.202021964966010.2174/138920022166620050807434832384025
    [Google Scholar]
  77. AlabrahimO.A.A. AzzazyH.M.E.S. Polymeric nanoparticles for dopamine and levodopa replacement in Parkinson’s disease.Nanoscale Adv.20224245233524410.1039/D2NA00524G36540116
    [Google Scholar]
  78. ZhaS. WongK.L. AllA.H. Intranasal delivery of functionalized polymeric nanomaterials to the brain.Adv. Healthc. Mater.20221111210261010.1002/adhm.20210261035166052
    [Google Scholar]
  79. ImamF. MukhopadhyayS. KothiyalP. AlshehriS. Saad AlharbiK. AfzalM. IqbalM. Rashid KhanM. Khalid AnwerM. Ahmed Hattab AlanaziA. Ghanem AlqahtaniA. Abdullah AlhamamahM. Formulation and characterization of polymeric nanoparticle of Rivastigmine for effective management of Alzheimer’s disease.Saudi Pharm. J.202432510204810.1016/j.jsps.2024.10204838585197
    [Google Scholar]
  80. Oliveira SilvaR. CounilH. RabanelJ.M. HaddadM. ZaouterC. Ben KhedherM.R. PattenS. RamassamyC. Donepezil-loaded nanocarriers for the treatment of Alzheimer’s disease: Superior efficacy of extracellular vesicles over polymeric nanoparticles.Int. J. Nanomedicine2024191077109610.2147/IJN.S44922738317848
    [Google Scholar]
  81. El-ASSALM.I. SamuelD. Optimization of rivastigmine chitosan nanoparticles for neurodegenerative Alzheimer; In vitro and ex vivo characterizations.Int. J. Pharm. Pharm. Sci.2022141172710.22159/ijpps.2022v14i1.43145
    [Google Scholar]
  82. AbbasH. SayedN.S.E. YoussefN.A.H.A. M E GaafarP. Mousa, M.R.; Fayez, A.M.; Elsheikh, M.A. Novel luteolin-loaded chitosan decorated nanoparticles for brain-targeting delivery in a Sporadic Alzheimer’s disease mouse model: Focus on antioxidant, anti-inflammatory, and amyloidogenic pathways.Pharmaceutics2022145100310.3390/pharmaceutics1405100335631589
    [Google Scholar]
  83. MusumeciT. Di BenedettoG. CarboneC. BonaccorsoA. AmatoG. Lo FaroM.J. BurgalettoC. PuglisiG. BernardiniR. CantarellaG. Intranasal administration of a trail neutralizing monoclonal antibody adsorbed in PLGA nanoparticles and NLC nanosystems: An in vivo study on a mouse model of Alzheimer’s disease.Biomedicines202210598510.3390/biomedicines1005098535625722
    [Google Scholar]
  84. SalehS.R. KhamissS.E. Aly MadhyS. KhattabS.N. ShetaE. ElnozahyF.Y. ThabetE.H. GhareebD.A. AwadD. El-bessoumyA.A. Biochemical investigation and in silico analysis of the therapeutic efficacy of Ipriflavone through Tet-1 Surface-Modified-PLGA nanoparticles in streptozotocin-induced Alzheimer’s like disease: Reduced oxidative damage and etiological dscripetors.Int. J. Pharm.202566912502110.1016/j.ijpharm.2024.12502139631714
    [Google Scholar]
  85. GeorgievaD. NikolovaD. VassilevaE. KostovaB. Chitosan-based nanoparticles for targeted nasal galantamine delivery as a promising tool in Alzheimer’s disease therapy.Pharmaceutics202315382910.3390/pharmaceutics1503082936986689
    [Google Scholar]
  86. Funguetto-RibeiroA.C. NakamaK.A. PinzM.P. OliveiraR.L. SacramentoM. PereiraF.S.O. PintonS. WilhelmE.A. LucheseC. AlvesD. ÁvilaD.S. HaasS.E. Development and in vivo assessment of 4-Phenyltellanyl-7-chloroquinoline-loaded polymeric nanocapsules in Alzheimer’s disease models.Brain Sci.202313799910.3390/brainsci1307099937508931
    [Google Scholar]
  87. KushawahaS.K. AshawatM.S. SoniD. KumarP. Rimpi; Baldi, A. Aurothioglucose encapsulated nanoparticles fostered neuroprotection in streptozotocin-induced Alzheimer’s disease.Brain Res.2024183414890610.1016/j.brainres.2024.14890638570152
    [Google Scholar]
  88. YekelerH.B. GulerE. BeatoP.S. PriyaS. AbobakrF.K.M. DoganM. UnerB. KalaskarD.M. CamM.E. Design and in vitro evaluation of curcumin-loaded PLGA nanoparticle-embedded sodium alginate/gelatin 3D printed scaffolds for Alzheimer’s disease.Int. J. Biol. Macromol.2024268Pt 213184110.1016/j.ijbiomac.2024.13184138679260
    [Google Scholar]
  89. WilsonB. Mohamed AlobaidB.N. GeethaK.M. JenitaJ.L. Chitosan nanoparticles to enhance nasal absorption and brain targeting of sitagliptin to treat Alzheimer’s disease.J. Drug Deliv. Sci. Technol.20216110217610.1016/j.jddst.2020.102176
    [Google Scholar]
  90. DhasN. MehtaT. Intranasal delivery of chitosan decorated PLGA core/shell nanoparticles containing flavonoid to reduce oxidative stress in the treatment of Alzheimer’s disease.J. Drug Deliv. Sci. Technol.20216110224210.1016/j.jddst.2020.102242
    [Google Scholar]
  91. OmarS.H. OsmanR. MamdouhW. Abdel-BarH.M. AwadG.A.S. Bioinspired lipid-polysaccharide modified hybrid nanoparticles as a brain-targeted highly loaded carrier for a hydrophilic drug.Int. J. Biol. Macromol.2020165Pt A48349410.1016/j.ijbiomac.2020.09.17032987085
    [Google Scholar]
  92. NanakiS.G. SpyrouK. BekiariC. VenetiP. BaroudT.N. KaroutaN. GrivasI. PapadopoulosG.C. GournisD. BikiarisD.N. Hierarchical porous Carbon—PLLA and PLGA hybrid nanoparticles for intranasal delivery of galantamine for Alzheimer’s disease therapy.Pharmaceutics202012322710.3390/pharmaceutics1203022732143505
    [Google Scholar]
  93. PrakashkumarN. SivamaruthiB.S. ChaiyasutC. SuganthyN. Decoding the neuroprotective potential of methyl gallate-loaded starch nanoparticles against beta amyloid-induced oxidative stress-mediated apoptosis: An in vitro study.Pharmaceutics202113329910.3390/pharmaceutics1303029933668877
    [Google Scholar]
  94. BhanderiM. ShahJ. GorainB. NairA.B. JacobS. AsdaqS.M.B. FattepurS. AlamriA.S. AlsanieW.F. AlhomraniM. NagarajaS. AnwerM.K. Optimized rivastigmine nanoparticles coated with eudragit for intranasal application to brain delivery: Evaluation and nasal ciliotoxicity studies.Materials20211421629110.3390/ma1421629134771817
    [Google Scholar]
  95. KaurJ. GulatiM. KapoorB. JhaN.K. GuptaP.K. GuptaG. ChellappanD.K. DevkotaH.P. PrasherP. AnsariM.S. Aba AlkhaylF.F. ArshadM.F. MorrisA. ChoonaraY.E. AdamsJ. DuaK. SinghS.K. Advances in designing of polymeric micelles for biomedical application in brain related diseases.Chem. Biol. Interact.202236110996010.1016/j.cbi.2022.10996035533733
    [Google Scholar]
  96. ParasharP. KanoujiaJ. KishoreA. Progress in polymeric micelles as viable wagons for brain targeting.Curr. Pharm. Des.202329211612510.2174/138161282966622122310175336567302
    [Google Scholar]
  97. MajumderN.G. DasN. DasS.K. Polymeric micelles for anticancer drug delivery.Ther. Deliv.2020111061363510.4155/tde‑2020‑000832933425
    [Google Scholar]
  98. KaurP. RajputA. SinghD. SinghG. MehraA. KaurS. BediN. AroraS. The sojourn of polymeric micelles for effective brain drug delivery system.Curr. Drug Deliv.2024211657910.2174/156720182066623041308235237069713
    [Google Scholar]
  99. RevdekarA. ShendeP. Block copolymers in Alzheimer’s disease therapy: A perceptive to revolutionize biomaterials.J. Control. Release202134027128110.1016/j.jconrel.2021.11.00734763003
    [Google Scholar]
  100. KottaS. AldawsariH.M. Badr-EldinS.M. NairA.B. YtK. Progress in polymeric micelles for drug delivery applications.Pharmaceutics2022148163610.3390/pharmaceutics1408163636015262
    [Google Scholar]
  101. AgrawalM. PrathyushaE. AhmedH. DubeyS.K. KesharwaniP. SinghviG. NaiduV.G.M. AlexanderA. Biomaterials in treatment of Alzheimer’s disease.Neurochem. Int.202114510500810.1016/j.neuint.2021.10500833684545
    [Google Scholar]
  102. GothwalA. LampteyR.N.L. SinghJ. Multifunctionalized cationic chitosan polymeric micelles polyplexed with pVGF for noninvasive delivery to the mouse brain through the intranasal route for developing therapeutics for Alzheimer’s disease.Mol. Pharm.20232063009301910.1021/acs.molpharmaceut.3c0003137093958
    [Google Scholar]
  103. YuY. HeS. KongL. ShiN. LiuY. ZangJ. GuoR. ZhangL. LiX. LiX. Brain-targeted multifunctional micelles delivering Oridonin and Phillyrin for synergistic therapy of Alzheimer’s disease.J. Drug Deliv. Sci. Technol.20238710479410.1016/j.jddst.2023.104794
    [Google Scholar]
  104. GianessiL. MaginiA. DominiciR. GiovagnoliS. DolcettaD. A stable micellar formulation of RAD001 for intracerebroventricular delivery and the treatment of Alzheimer’s disease and other neurological disorders.Int. J. Mol. Sci.202324241747810.3390/ijms24241747838139306
    [Google Scholar]
  105. İğdeliG. FritzenL. PietrzikC.U. TemelB.A. Preparation and characterization of poly(ethylene glycol)- b -poly(tert -butyl methacrylate) micelles as potential nanocarriers for donepezil.Pharm. Dev. Technol.202429101111112010.1080/10837450.2024.242383339474809
    [Google Scholar]
  106. XuS. YangP. QianK. LiY. GuoQ. WangP. MengR. WuJ. CaoJ. ChengY. XuM. ZhangQ. Modulating autophagic flux via ROS-responsive targeted micelles to restore neuronal proteostasis in Alzheimer’s disease.Bioact. Mater.20221130031610.1016/j.bioactmat.2021.09.01734977433
    [Google Scholar]
  107. ChibhabhaF. YangY. YingK. JiaF. ZhangQ. UllahS. LiangZ. XieM. LiF. Non-invasive optical imaging of retinal Aβ plaques using curcumin loaded polymeric micelles in APP swe/PS1 ΔE9 transgenic mice for the diagnosis of Alzheimer’s disease.J. Mater. Chem. B Mater. Biol. Med.20208337438745210.1039/D0TB01101K32662804
    [Google Scholar]
  108. ZhangB. GaoY. ZhangX. JiangJ. RenJ. WangS. HuH. ZhaoY. ChenL. ZhaoK. DaiF. Ultra-stable dextran conjugated prodrug micelles for oxidative stress and glycometabolic abnormality combination treatment of Alzheimer’s disease.Int. J. Biol. Macromol.202220343044410.1016/j.ijbiomac.2022.01.15435093435
    [Google Scholar]
  109. LampteyR.N.L. GothwalA. TrivediR. AroraS. SinghJ. Synthesis and characterization of fatty acid grafted chitosan polymeric micelles for improved gene delivery of VGF to the brain through intranasal route.Biomedicines202210249310.3390/biomedicines1002049335203704
    [Google Scholar]
  110. ZhenL. WeiQ. WangQ. ZhangH. Adu-FrimpongM. Kesse FirempongC. XuX. YuJ. Preparation and in vitro/in vivo evaluation of 6-Gingerol TPGS/PEG-PCL polymeric micelles.Pharm. Dev. Technol.20202511810.1080/10837450.2018.155823930557068
    [Google Scholar]
  111. MoreiraD.A. SantosS.D. LeiroV. PêgoA.P. Dendrimers and derivatives as multifunctional nanotherapeutics for Alzheimer’s disease.Pharmaceutics2023154105410.3390/pharmaceutics1504105437111540
    [Google Scholar]
  112. Pérez-CarriónM.D. PosadasI. Dendrimers in neurodegenerative diseases.Processes202311231910.3390/pr11020319
    [Google Scholar]
  113. SinghA. AnsariV.A. MahmoodT. AhsanF. WasimR. Dendrimers: A neuroprotective lead in Alzheimer disease: A review on its synthetic approach and applications.Drug Res.202272841742310.1055/a‑1886‑320835931069
    [Google Scholar]
  114. Arbez-GindreC. SteeleB.R. Micha-ScrettasM. Dendrimers in Alzheimer’s disease: Recent approaches in multi-targeting strategies.Pharmaceutics202315389810.3390/pharmaceutics1503089836986759
    [Google Scholar]
  115. KaurA. SinghN. KaurH. KakotyV. SharmaD.S. KhursheedR. BabuM.R. HarishV. GuptaG. GulatiM. KumarP. DurejaH. AlharthiN.S. KhanF.R. RehmanZ. HakamiM.A. PatelM. PatelR. ZandiM. VishwasS. DuaK. SinghS.K. Neurodegenerative diseases and brain delivery of therapeutics: Bridging the gap using dendrimers.J. Drug Deliv. Sci. Technol.20238710486810.1016/j.jddst.2023.104868
    [Google Scholar]
  116. PalanF. ChatterjeeB. Dendrimers in the context of targeting central nervous system disorders.J. Drug Deliv. Sci. Technol.20227310347410.1016/j.jddst.2022.103474
    [Google Scholar]
  117. AlievG. AshrafG.M. TarasovV.V. ChubarevV.N. LeszekJ. GasiorowskiK. MakhmutovaA. BaeesaS.S. Avila-RodriguezM. UstyugovA.A. BachurinS.O. Alzheimer’s disease – Future therapy based on dendrimers.Curr. Neuropharmacol.201917328829410.2174/1570159X1666618091816462330227819
    [Google Scholar]
  118. HenningfieldC.M. SoniN. LeeR.W. SharmaR. ClelandJ.L. GreenK.N. Selective targeting and modulation of plaque associated microglia via systemic hydroxyl dendrimer administration in an Alzheimer’s disease mouse model.Alzheimers Res. Ther.202416110110.1186/s13195‑024‑01470‑338711159
    [Google Scholar]
  119. SinghA. RakshitD. KumarA. MishraA. ShuklaR. VitaminE. Vitamin E modified polyamidoamine dendrimer for piperine delivery to alleviate Aβ 1–42 induced neurotoxicity in Balb/c mice model.J. Biomater. Sci. Polym. Ed.202334162232225410.1080/09205063.2023.223085737379243
    [Google Scholar]
  120. TallonC. BellB.J. SharmaA. PalA. MalvankarM.M. ThomasA.G. YooS.W. HollingerK.R. ColemanK. WilkinsonE.L. KannanS. HaugheyN.J. KannanR.M. RaisR. SlusherB.S. Dendrimer-conjugated nSMase2 inhibitor reduces tau propagation in mice.Pharmaceutics20221410206610.3390/pharmaceutics1410206636297501
    [Google Scholar]
  121. SinghA. Ahamad AnsariV. MahmoodT. Development and evaluation of ursolic acid loaded dendrimers.Res J Pharm Technol20241783642364810.52711/0974‑360X.2024.00568
    [Google Scholar]
  122. IgartúaD.E. MartinezC.S. DelV. AlonsoS. PrietoM.J. Combined therapy for alzheimer’s disease: tacrine and PAMAM dendrimers co-administration reduces the side effects of the drug without modifying its activity.AAPS PharmSciTech202021311010.1208/s12249‑020‑01652‑w32215751
    [Google Scholar]
  123. SinghA. UjjwalR.R. NaqviS. VermaR.K. TiwariS. KesharwaniP. ShuklaR. Formulation development of tocopherol polyethylene glycol nanoengineered polyamidoamine dendrimer for neuroprotection and treatment of Alzheimer disease.J. Drug Target.202230777779110.1080/1061186X.2022.206329735382657
    [Google Scholar]
  124. XuL. WangH. XuY. CuiW. NiW. ChenM. HuangH. StewartC. LiL. LiF. HanJ. Machine learning-assisted sensor array based on poly (amidoamine)(PAMAM) dendrimers for diagnosing Alzheimer’s disease.ACS Sens.2022751315132210.1021/acssensors.2c0013235584464
    [Google Scholar]
  125. DeRidderL. SharmaA. LiawK. SharmaR. JohnJ. KannanS. KannanR.M. Dendrimer–tesaglitazar conjugate induces a phenotype shift of microglia and enhances β-amyloid phagocytosis.Nanoscale202113293995210.1039/D0NR05958G33479718
    [Google Scholar]
  126. SahuR.C. SutharT. KumarD. SinghP. DatusaliaA.K. JainK. Novel ligand conjugated poly(propylene imine) dendrimers for brain targeted delivery of tacrine hydrochloride.J. Drug Deliv. Sci. Technol.20249210533610.1016/j.jddst.2024.105336
    [Google Scholar]
  127. AhmedH.A.M. AliM.M.K. MohammedA.M.A. ShaheenH.M. BatihaG.E.A.E. ShalabyM.A. AlamhA.M.A.E. Method of treating or preventing Alzheimer's disease.Patent US11833181B12023
    [Google Scholar]
  128. KarS. AnandB.G. WuQ. GovindarajanK. Unconjugated PLGA nanoparticles in the treatment of Alzheimer's disease.Patent US2023087306A12023
    [Google Scholar]
  129. XuP. MarkoutsaE. Dual responsive brain targeted nanoparticles for use in treatment of Alzheimer's disease.Patent US2016346208A1, Patent US2024033240A12024
    [Google Scholar]
  130. SutariyaV.B. JinwalU.K. Glutathione-coated nanoparticles for delivery of MKT-077 across the blood-brain barrier.Patent US10758520B1, Patent US11173152B12020
  131. BaumL ChowHL ChengK Nanoparticle contrast agent for early diagnosis of alzheimer's disease by magnetic resonance imaging (MRI). Patent WO2018193278A12018
  132. TaoW. QinY. HuangC. Preparation method and application of fluorescent dendrimer for immunodetection of low-abundance biomarker signal cascade amplification.Patent CN11657427IA2023
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266347890250409153450
Loading
/content/journals/ctmc/10.2174/0115680266347890250409153450
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test