Skip to content
2000
image of Alzheimer's Disease and Polymeric Nanocarriers: Synergistic Advances in Targeted Drug Delivery

Abstract

Introduction

Alzheimer's disease (AD) is a prominent neurodegenerative ailment characterized by the constraints of conventional therapies stemming from insufficient medication transport to the brain. This review examines the function of polymeric nanocarriers (PNCs) in improving therapeutic efficacy for Alzheimer's disease treatment.

Methods

We analyze the principal obstacles to Alzheimer's disease drug delivery: the blood-brain barrier, the blood-cerebrospinal fluid barrier, and multidrug resistance proteins. The review examines three categories of PNCs: polymeric nanoparticles, polymeric micelles, and dendrimers, and their capacity to surmount these obstacles. Literature investigations used search engines like PubMed, Google Scholar, and ScienceDirect.

Results

PNCs exhibit superior drug delivery better biocompatibility, regulated release, and targeted delivery mechanisms. Recent studies demonstrate the effective delivery of several pharmaceuticals, including rivastigmine and galantamine, resulting in enhanced cognitive outcomes in Alzheimer's disease models. Patent research indicates an increase in innovation for PNC-based Alzheimer's disease treatments.

Conclusion

Despite ongoing hurdles in biocompatibility and scalability, PNCs exhibit significant potential to transform Alzheimer's disease treatment by improving medication delivery across biological barriers. Current investigations in nanotechnology and combinatorial medicines indicate a favorable outlook for PNC-based medicinal strategies.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266347890250409153450
2025-04-21
2025-10-11
Loading full text...

Full text loading...

References

  1. Monteiro A.R. Barbosa D.J. Remião F. Silva R. Alzheimer’s disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs. Biochem. Pharmacol. 2023 211 115522 10.1016/j.bcp.2023.115522 36996971
    [Google Scholar]
  2. Ciurea V.A. Covache-Busuioc R.A. Mohan A.G. Costin H.P. Voicu V. Alzheimer’s disease: 120 years of research and progress. J. Med. Life 2023 16 2 173 177 10.25122/jml‑2022‑0111 36937482
    [Google Scholar]
  3. Rajah Kumaran K. Yunusa S. Perimal E. Wahab H. Müller C.P. Hassan Z. Insights into the pathophysiology of Alzheimer’s disease and potential therapeutic targets: A current perspective. J. Alzheimers Dis. 2023 91 2 507 530 10.3233/JAD‑220666 36502321
    [Google Scholar]
  4. Cheng Y. He C.Y. Tian D.Y. Chen S.H. Ren J.R. Sun H.L. Xu M.Y. Tan C.R. Fan D.Y. Jian J.M. Sun P.Y. Zeng G.H. Shen Y.Y. Shi A.Y. Jin W.S. Bu X.L. Liu H.M. Xu Y.M. Wang J. Wang Y.J. Physiological β-amyloid clearance by the liver and its therapeutic potential for Alzheimer’s disease. Acta Neuropathol. 2023 145 6 717 731 10.1007/s00401‑023‑02559‑z 36964213
    [Google Scholar]
  5. Gouilly D. Rafiq M. Nogueira L. Salabert A.S. Payoux P. Péran P. Pariente J. Beyond the amyloid cascade: An update of Alzheimer’s disease pathophysiology. Rev. Neurol. 2023 179 8 812 830 10.1016/j.neurol.2022.12.006 36906457
    [Google Scholar]
  6. Self W.K. Holtzman D.M. Emerging diagnostics and therapeutics for Alzheimer disease. Nat. Med. 2023 29 9 2187 2199 10.1038/s41591‑023‑02505‑2 37667136
    [Google Scholar]
  7. Conti Filho C.E. Loss L.B. Marcolongo-Pereira C. Rossoni J.V. Junior Barcelos R.M. Chiarelli-Neto O. Silva B.S. Passamani Ambrosio R. Castro F.C.A.Q. Teixeira S.F. Mezzomo N.J. Advances in Alzheimer’s disease’s pharmacological treatment. Front. Pharmacol. 2023 14 1101452 10.3389/fphar.2023.1101452 36817126
    [Google Scholar]
  8. Saeed A. Lopez O. Cohen A. Reis S.E. Cardiovascular disease and Alzheimer’s disease: The heart–brain axis. J. Am. Heart Assoc. 2023 12 21 e030780 10.1161/JAHA.123.030780 37929715
    [Google Scholar]
  9. Grobler C. van Tongeren M. Gettemans J. Kell D.B. Pretorius E. Alzheimer’s disease: A systems view provides a unifying explanation of its development. J. Alzheimers Dis. 2023 91 1 43 70 10.3233/JAD‑220720 36442193
    [Google Scholar]
  10. Haleem A. Javaid M. Singh R.P. Rab S. Suman R. Applications of nanotechnology in medical field: a brief review. Global Health Journal 2023 7 2 70 77 10.1016/j.glohj.2023.02.008
    [Google Scholar]
  11. Singh A. Ansari V.A. Mahmood T. Ahsan F. Wasim R. Maheshwari S. Shariq M. Parveen S. Shamim A. Emerging nanotechnology for the treatment of Alzheimer’s disease. CNS Neurol. Disord. Drug Targets 2024 23 6 687 696 10.2174/1871527322666230501232815 37138478
    [Google Scholar]
  12. Song N. Sun S. Chen K. Wang Y. Wang H. Meng J. Guo M. Zhang X.D. Zhang R. Emerging nanotechnology for Alzheimer’s disease: From detection to treatment. J. Control. Release 2023 360 392 417 10.1016/j.jconrel.2023.07.004 37414222
    [Google Scholar]
  13. Liu X. Yuan M. Li L. Zhang J. Huang X. Du J. Tu Z. Wu H. Research progress of nanocarriers for the treatment of Alzheimer’s disease. Curr. Pharm. Des. 2023 29 2 95 115 10.2174/1381612829666221216114912 36529920
    [Google Scholar]
  14. Ansari M.A. Tripathi T. Venkidasamy B. Monziani A. Rajakumar G. Alomary M.N. Multifunctional nanocarriers for Alzheimer’s disease: Befriending the barriers. Mol. Neurobiol. 2023 60 1 1 48 37966683
    [Google Scholar]
  15. Patabendige A. Janigro D. The role of the blood–brain barrier during neurological disease and infection. Biochem. Soc. Trans. 2023 51 2 613 626 10.1042/BST20220830 36929707
    [Google Scholar]
  16. Teixeira M.I. Lopes C.M. Amaral M.H. Costa P.C. Surface-modified lipid nanocarriers for crossing the blood-brain barrier (BBB): A current overview of active targeting in brain diseases. Colloids Surf. B Biointerfaces 2023 221 112999 10.1016/j.colsurfb.2022.112999 36368148
    [Google Scholar]
  17. Song Y.H. De R. Lee K.T. Emerging strategies to fabricate polymeric nanocarriers for enhanced drug delivery across blood-brain barrier: An overview. Adv. Colloid Interface Sci. 2023 320 103008 10.1016/j.cis.2023.103008 37776736
    [Google Scholar]
  18. Dube T. Chibh S. Mishra J. Panda J.J. Receptor targeted polymeric nanostructures capable of navigating across the blood-brain barrier for effective delivery of neural therapeutics. ACS Chem. Neurosci. 2017 8 10 2105 2117 10.1021/acschemneuro.7b00207 28768412
    [Google Scholar]
  19. Nagri S. Rice O. Chen Y. Nanomedicine strategies for central nervous system (CNS) diseases. Front Biomater Sci. 2023 2 1215384 10.3389/fbiom.2023.1215384 38938851
    [Google Scholar]
  20. Gupta U. Sultana S. Pegylated nanoparticles for brain targeting- opportunities and challenges. Curr. Nanomed. 2023 13 3 199 209 10.2174/2468187313666230904150849
    [Google Scholar]
  21. Greig N.H. Unnisa A. Kamal M. Nanotechnology-based gene therapy as a credible tool in the treatment of Alzheimer’s disease. Neural Regen. Res. 2023 18 10 2127 2133 10.4103/1673‑5374.369096 37056119
    [Google Scholar]
  22. Chorawala M.R. Shah A.C. Pandya A.J. Kothari N.R. Prajapati B.G. Symptoms and conventional treatments of Alzheimer’s disease. Alzheimer’s Disease and Advanced Drug Delivery Strategies. Cambridge, Massachusetts Academic Press 2024 13 32 10.1016/B978‑0‑443‑13205‑6.00009‑1
    [Google Scholar]
  23. Nazam N. Farhana A. Shaikh S. Recent Advances in Alzheimer’s Disease in Relation to Cholinesterase Inhibitors and NMDA Receptor Antagonists. Autism Spectrum Disorder and Alzheimer’s Disease. Springer 2022 135 151
    [Google Scholar]
  24. Javed B. Javed A. Kow C.S. Hasan S.S. Pharmacological and non-pharmacological treatment options for sleep disturbances in Alzheimer’s disease. Expert Rev. Neurother. 2023 23 6 501 514 10.1080/14737175.2023.2214316 37267149
    [Google Scholar]
  25. Guo M.H. Vaishnavi S.N. Clinical management in Alzheimer’s disease in the era of disease-modifying therapies. Curr. Treat. Options Neurol. 2023 25 5 121 133 10.1007/s11940‑023‑00750‑x
    [Google Scholar]
  26. Li X. Ji M. Zhang H. Liu Z. Chai Y. Cheng Q. Yang Y. Cordato D. Gao J. Non-drug therapies for Alzheimer’s disease: A review. Neurol. Ther. 2023 12 1 39 72 10.1007/s40120‑022‑00416‑x 36376734
    [Google Scholar]
  27. Varadharajan A. Davis A.D. Ghosh A. Jagtap T. Xavier A. Menon A.J. Roy D. Gandhi S. Gregor T. Guidelines for pharmacotherapy in Alzheimer’s disease – A primer on FDA-approved drugs. J. Neurosci. Rural Pract. 2023 14 4 566 573 10.25259/JNRP_356_2023 38059250
    [Google Scholar]
  28. Buck A. Rezaei K. Quazi A. Goldmeier G. Silverglate B. Grossberg G.T. The donepezil transdermal system for the treatment of patients with mild, moderate, or severe Alzheimer’s disease: A critical review. Expert Rev. Neurother. 2024 24 6 607 614 10.1080/14737175.2024.2355981 38785454
    [Google Scholar]
  29. Panghal A. Flora S.J.S. Nanotechnology in the diagnostic and therapy for Alzheimer’s disease. Biochim. Biophys. Acta, Gen. Subj. 2024 1868 3 130559 10.1016/j.bbagen.2024.130559 38191034
    [Google Scholar]
  30. Tiwari V. Tiwari A. Sharma A. Kumar M. Kaushik D. Sagadevan S. An optimistic approach to nanotechnology in Alzheimer’s disease management: An overview. J. Drug Deliv. Sci. Technol. 2023 86 104722 10.1016/j.jddst.2023.104722
    [Google Scholar]
  31. Dighe S. Jog S. Momin M. Sawarkar S. Omri A. Intranasal drug delivery by nanotechnology: Advances in and challenges for Alzheimer’s disease management. Pharmaceutics 2023 16 1 58 10.3390/pharmaceutics16010058 38258068
    [Google Scholar]
  32. Kumar A. Sudevan S.T. Nair A.S. Singh A.K. Kumar S. Jose J. Behl T. Mangalathillam S. Mathew B. Kim H. Current and future nano-carrier-based approaches in the treatment of Alzheimer’s disease. Brain Sci. 2023 13 2 213 10.3390/brainsci13020213 36831756
    [Google Scholar]
  33. Lu Z.G. Shen J. Yang J. Wang J.W. Zhao R.C. Zhang T.L. Guo J. Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct. Target. Ther. 2023 8 1 39 10.1038/s41392‑022‑01298‑z 36650130
    [Google Scholar]
  34. Miao Y.B. Zhao W. Renchi G. Gong Y. Shi Y. Customizing delivery nano-vehicles for precise brain tumor therapy. J. Nanobiotechnology 2023 21 1 32 10.1186/s12951‑023‑01775‑9 36707835
    [Google Scholar]
  35. Khare P. Edgecomb S.X. Hamadani C.M. Tanner E.E.L. Manickam S. D. Lipid nanoparticle-mediated drug delivery to the brain. Adv. Drug Deliv. Rev. 2023 197 114861 10.1016/j.addr.2023.114861 37150326
    [Google Scholar]
  36. Sanap S.N. Bisen A.C. Kedar A. Agrawal S. Bhatta R.S. Recent update on pharmacokinetics and drug metabolism in CNS-based drug discovery. Curr. Pharm. Des. 2023 29 20 1602 1616 10.2174/1381612829666230707121415 37424342
    [Google Scholar]
  37. Tian M. Ma Z. Yang G.Z. Micro/nanosystems for controllable drug delivery to the brain. Innovation 2024 5 1 100548 10.1016/j.xinn.2023.100548 38161522
    [Google Scholar]
  38. Huttunen K.M. Improving drug delivery to the brain: The prodrug approach. Expert Opin. Drug Deliv. 2024 21 5 683 693 Epub ahead of print10.1080/17425247.2024.2355180 38738934
    [Google Scholar]
  39. Pardridge W.M. Receptor-mediated drug delivery of bispecific therapeutic antibodies through the blood-brain barrier. Frontiers in Drug Delivery 2023 3 1227816 10.3389/fddev.2023.1227816 37583474
    [Google Scholar]
  40. Mineiro R. Albuquerque T. Neves A.R. Santos C.R.A. Costa D. Quintela T. The role of biological rhythms in new drug formulations to cross the brain barriers. Int. J. Mol. Sci. 2023 24 16 12541 10.3390/ijms241612541 37628722
    [Google Scholar]
  41. Nguyen-Thi P.T. Ho T.T. Nguyen T.T. Vo G.V. Nanotechnology-based drug delivery for Alzheimer’s and Parkinson’s diseases. Curr. Drug Deliv. 2024 21 7 917 931 10.2174/1567201820666230707113405 37424345
    [Google Scholar]
  42. Manimaran V. Nivetha R.P. Tamilanban T. Narayanan J. Vetriselvan S. Fuloria N.K. Chinni S.V. Sekar M. Fuloria S. Wong L.S. Biswas A. Ramachawolran G. Selvaraj S. Nanogels as novel drug nanocarriers for CNS drug delivery. Front. Mol. Biosci. 2023 10 1232109 10.3389/fmolb.2023.1232109 37621994
    [Google Scholar]
  43. Lin T.S. Woon C.K. Hui W.K. Abas R. Haron M.H. Das S. Natural product-based nanomedicine: Recent advances and issues for the treatment of Alzheimer’s disease. Curr. Neuropharmacol. 2022 20 8 1498 1518 10.2174/1570159X20666211217163540 34923947
    [Google Scholar]
  44. Puranik N. Yadav D. Song M. Advancements in the application of nanomedicine in Alzheimer’s disease: A therapeutic perspective. Int. J. Mol. Sci. 2023 24 18 14044 10.3390/ijms241814044 37762346
    [Google Scholar]
  45. Amulya E. Sikder A. Vambhurkar G. Shah S. Khatri D.K. Raghuvanshi R.S. Singh S.B. Srivastava S. Nanomedicine based strategies for oligonucleotide traversion across the blood–brain barrier. J. Control. Release 2023 354 554 571 10.1016/j.jconrel.2023.01.031 36649742
    [Google Scholar]
  46. Guo Z.H. Khattak S. Rauf M.A. Ansari M.A. Alomary M.N. Razak S. Yang C.Y. Wu D.D. Ji X.Y. Role of Nanomedicine-based therapeutics in the treatment of CNS disorders. Molecules 2023 28 3 1283 10.3390/molecules28031283 36770950
    [Google Scholar]
  47. Kazemi-Lomedasht F. Hasannejad-Asl B. Pooresmaeil F. Choupani E. Dabiri M. Behmardi A. Fadaie M. Fathi M. Moosavi S.A. Takamoli S. Hemati E. Naei V.Y. Nanoparticles as powerful tools for crossing the blood-brain barrier. CNS Neurol. Disord. Drug Targets 2023 22 1 18 26 10.2174/1871527321666220222092655 35196974
    [Google Scholar]
  48. Alajangi H.K. Kaur M. Sharma A. Rana S. Thakur S. Chatterjee M. Singla N. Jaiswal P.K. Singh G. Barnwal R.P. Blood–brain barrier: Emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders. Mol. Brain 2022 15 1 49 10.1186/s13041‑022‑00937‑4 35650613
    [Google Scholar]
  49. Parvez S. Kaushik M. Ali M. Alam M.M. Ali J. Tabassum H. Kaushik P. Dodging blood brain barrier with “nano” warriors: Novel strategy against ischemic stroke. Theranostics 2022 12 2 689 719 10.7150/thno.64806 34976208
    [Google Scholar]
  50. Hersh A.M. Alomari S. Tyler B.M. Crossing the blood-brain barrier: Advances in nanoparticle technology for drug delivery in neuro-oncology. Int. J. Mol. Sci. 2022 23 8 4153 10.3390/ijms23084153 35456971
    [Google Scholar]
  51. Bazi Alahri M. Jibril Ibrahim A. Barani M. Arkaban H. Shadman S.M. Salarpour S. Zarrintaj P. Jaberi J. Turki Jalil A. Management of brain cancer and neurodegenerative disorders with polymer-based nanoparticles as a biocompatible platform. Molecules 2023 28 2 841 10.3390/molecules28020841 36677899
    [Google Scholar]
  52. Mishra A. Kumar R. Mishra J. Dutta K. Ahlawat P. Kumar A. Dhanasekaran S. Gupta A.K. Sinha S. Bishi D.K. Gupta P.K. Nayak S. Strategies facilitating the permeation of nanoparticles through blood-brain barrier: An insight towards the development of brain-targeted drug delivery system. J. Drug Deliv. Sci. Technol. 2023 86 104694 10.1016/j.jddst.2023.104694
    [Google Scholar]
  53. Wang L. Shi Y. Jiang J. Li C. Zhang H. Zhang X. Jiang T. Wang L. Wang Y. Feng L. Micro‐nanocarriers based drug delivery technology for blood‐brain barrier crossing and brain tumor targeting therapy. Small 2022 18 45 2203678 10.1002/smll.202203678 36103614
    [Google Scholar]
  54. Teleanu R.I. Preda M.D. Niculescu A.G. Vladâcenco O. Radu C.I. Grumezescu A.M. Teleanu D.M. Current strategies to enhance delivery of drugs across the blood–brain barrier. Pharmaceutics 2022 14 5 987 10.3390/pharmaceutics14050987 35631573
    [Google Scholar]
  55. Ghorai S.M. Deep A. Magoo D. Gupta C. Gupta N. Cell-penetrating and targeted peptides delivery systems as potential pharmaceutical carriers for enhanced delivery across the blood–brain barrier (BBB). Pharmaceutics 2023 15 7 1999 10.3390/pharmaceutics15071999 37514185
    [Google Scholar]
  56. Tincu Iurciuc C.E. Andrițoiu C.V. Popa M. Ochiuz L. Recent advancements and strategies for overcoming the blood-brain barrier using albumin-based drug delivery systems to treat brain cancer, with a focus on glioblastoma. Polymers (Basel) 2023 15 19 3969 10.3390/polym15193969 37836018
    [Google Scholar]
  57. Ekhator C. Qureshi M.Q. Zuberi A.W. Hussain M. Sangroula N. Yerra S. Devi M. Naseem M.A. Bellegarde S.B. Pendyala P.R. Advances and opportunities in nanoparticle drug delivery for central nervous system disorders: A review of current advances. Cureus 2023 15 8 e44302 10.7759/cureus.44302 37649926
    [Google Scholar]
  58. Huttunen K.M. Terasaki T. Urtti A. Montaser A.B. Uchida Y. Pharmacoproteomics of brain barrier transporters and substrate design for the brain targeted drug delivery. Pharm. Res. 2022 39 7 1363 1392 10.1007/s11095‑022‑03193‑2 35257288
    [Google Scholar]
  59. Sethi B. Kumar V. Mahato K. Coulter D.W. Mahato R.I. Recent advances in drug delivery and targeting to the brain. J. Control. Release 2022 350 668 687 10.1016/j.jconrel.2022.08.051 36057395
    [Google Scholar]
  60. Rawal S.U. Patel B.M. Patel M.M. New drug delivery systems developed for brain targeting. Drugs 2022 82 7 749 792 10.1007/s40265‑022‑01717‑z 35596879
    [Google Scholar]
  61. Ouyang Q. Meng Y. Zhou W. Tong J. Cheng Z. Zhu Q. New advances in brain-targeting nano-drug delivery systems for Alzheimer’s disease. J. Drug Target. 2022 30 1 61 81 10.1080/1061186X.2021.1927055 33983096
    [Google Scholar]
  62. Puris E. Fricker G. Gynther M. Targeting transporters for drug delivery to the brain: Can we do better? Pharm. Res. 2022 39 7 1415 1455 10.1007/s11095‑022‑03241‑x 35359241
    [Google Scholar]
  63. Taliyan R. Kakoty V. Sarathlal K.C. Kharavtekar S.S. Karennanavar C.R. Choudhary Y.K. Singhvi G. Riadi Y. Dubey S.K. Kesharwani P. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer’s disease. J. Control. Release 2022 343 528 550 10.1016/j.jconrel.2022.01.044 35114208
    [Google Scholar]
  64. Pathak K Mishra SK Porwal A Bahadur, S Nanocarriers for Alzheimer's disease: Research and patent update. J Appl Pharm Sci, 2021, 11(3), 001- 2021
  65. Nguyen T.T. Nguyen T.T.D. Nguyen T.K.O. Vo T.K. Vo V.G. Advances in developing therapeutic strategies for Alzheimer’s disease. Biomed. Pharmacother. 2021 139 111623 10.1016/j.biopha.2021.111623 33915504
    [Google Scholar]
  66. Awad R. Avital A. Sosnik A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharm. Sin. B 2023 13 5 1866 1886 10.1016/j.apsb.2022.07.003 37250152
    [Google Scholar]
  67. Alotaibi B.S. Buabeid M. Ibrahim N.A. Kharaba Z.J. Ijaz M. Noreen S. Murtaza G. Potential of nanocarrier-based drug delivery systems for brain targeting: A current review of literature. Int. J. Nanomedicine 2021 16 7517 7533 10.2147/IJN.S333657 34795481
    [Google Scholar]
  68. Shakeri S. Ashrafizadeh M. Zarrabi A. Roghanian R. Afshar E.G. Pardakhty A. Mohammadinejad R. Kumar A. Thakur V.K. Multifunctional polymeric nanoplatforms for brain diseases diagnosis, therapy and theranostics. Biomedicines 2020 8 1 13 10.3390/biomedicines8010013 31941057
    [Google Scholar]
  69. Ayub A. Wettig S. An overview of nanotechnologies for drug delivery to the brain. Pharmaceutics 2022 14 2 224 10.3390/pharmaceutics14020224 35213957
    [Google Scholar]
  70. Madej M. Kurowska N. Strzalka-Mrozik B. Polymeric nanoparticles—tools in a drug delivery system in selected cancer therapies. Appl. Sci. (Basel) 2022 12 19 9479 10.3390/app12199479
    [Google Scholar]
  71. Tosi G. Duskey J.T. Kreuter J. Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier. Expert Opin. Drug Deliv. 2020 17 1 23 32 10.1080/17425247.2020.1698544 31774000
    [Google Scholar]
  72. Cano A. Sánchez-López E. Ettcheto M. López-Machado A. Espina M. Souto E.B. Galindo R. Camins A. García M.L. Turowski P. Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases. Nanomedicine (Lond.) 2020 15 12 1239 1261 10.2217/nnm‑2019‑0443 32370600
    [Google Scholar]
  73. Rabha B. Bharadwaj K.K. Pati S. Choudhury B.K. Sarkar T. Kari Z.A. Edinur H.A. Baishya D. Atanase L.I. Development of polymer-based nanoformulations for glioblastoma brain cancer therapy and diagnosis: An update. Polymers (Basel) 2021 13 23 4114 10.3390/polym13234114 34883617
    [Google Scholar]
  74. Ribovski L. Hamelmann N.M. Paulusse J.M.J. Polymeric nanoparticles properties and brain delivery. Pharmaceutics 2021 13 12 2045 10.3390/pharmaceutics13122045 34959326
    [Google Scholar]
  75. Zhang W. Mehta A. Tong Z. Esser L. Voelcker N.H. Development of polymeric nanoparticles for blood–brain barrier transfer—strategies and challenges. Adv. Sci. 2021 8 10 2003937 10.1002/advs.202003937 34026447
    [Google Scholar]
  76. Raman S. Mahmood S. Hilles A.R. Javed M.N. Azmana M. Al-Japairai K.A.S. Polymeric nanoparticles for brain drug delivery - A review. Curr. Drug Metab. 2020 21 9 649 660 10.2174/1389200221666200508074348 32384025
    [Google Scholar]
  77. Alabrahim O.A.A. Azzazy H.M.E.S. Polymeric nanoparticles for dopamine and levodopa replacement in Parkinson’s disease. Nanoscale Adv. 2022 4 24 5233 5244 10.1039/D2NA00524G 36540116
    [Google Scholar]
  78. Zha S. Wong K.L. All A.H. Intranasal delivery of functionalized polymeric nanomaterials to the brain. Adv. Healthc. Mater. 2022 11 11 2102610 10.1002/adhm.202102610 35166052
    [Google Scholar]
  79. Imam F. Mukhopadhyay S. Kothiyal P. Alshehri S. Saad Alharbi K. Afzal M. Iqbal M. Rashid Khan M. Khalid Anwer M. Ahmed Hattab Alanazi A. Ghanem Alqahtani A. Abdullah Alhamamah M. Formulation and characterization of polymeric nanoparticle of Rivastigmine for effective management of Alzheimer’s disease. Saudi Pharm. J. 2024 32 5 102048 10.1016/j.jsps.2024.102048 38585197
    [Google Scholar]
  80. Oliveira Silva R. Counil H. Rabanel J.M. Haddad M. Zaouter C. Ben Khedher M.R. Patten S. Ramassamy C. Donepezil-loaded nanocarriers for the treatment of Alzheimer’s disease: Superior efficacy of extracellular vesicles over polymeric nanoparticles. Int. J. Nanomedicine 2024 19 1077 1096 10.2147/IJN.S449227 38317848
    [Google Scholar]
  81. El-ASSAL M.I. Samuel D. Optimization of rivastigmine chitosan nanoparticles for neurodegenerative Alzheimer; In vitro and ex vivo characterizations. Int. J. Pharm. Pharm. Sci. 2022 14 1 17 27 10.22159/ijpps.2022v14i1.43145
    [Google Scholar]
  82. Abbas H. Sayed N.S.E. Youssef N.A.H.A. Gaafar M.E. P.; Mousa, M.R.; Fayez, A.M.; Elsheikh, M.A. Novel luteolin-loaded chitosan decorated nanoparticles for brain-targeting delivery in a Sporadic Alzheimer’s disease mouse model: Focus on antioxidant, anti-inflammatory, and amyloidogenic pathways. Pharmaceutics 2022 14 5 1003 10.3390/pharmaceutics14051003 35631589
    [Google Scholar]
  83. Musumeci T. Di Benedetto G. Carbone C. Bonaccorso A. Amato G. Lo Faro M.J. Burgaletto C. Puglisi G. Bernardini R. Cantarella G. Intranasal administration of a trail neutralizing monoclonal antibody adsorbed in PLGA nanoparticles and NLC nanosystems: An in vivo study on a mouse model of Alzheimer’s disease. Biomedicines 2022 10 5 985 10.3390/biomedicines10050985 35625722
    [Google Scholar]
  84. Saleh S.R. Khamiss S.E. Aly Madhy S. Khattab S.N. Sheta E. Elnozahy F.Y. Thabet E.H. Ghareeb D.A. Awad D. El-bessoumy A.A. Biochemical investigation and in silico analysis of the therapeutic efficacy of Ipriflavone through Tet-1 Surface-Modified-PLGA nanoparticles in streptozotocin-induced Alzheimer’s like disease: Reduced oxidative damage and etiological dscripetors. Int. J. Pharm. 2025 669 125021 10.1016/j.ijpharm.2024.125021 39631714
    [Google Scholar]
  85. Georgieva D. Nikolova D. Vassileva E. Kostova B. Chitosan-based nanoparticles for targeted nasal galantamine delivery as a promising tool in Alzheimer’s disease therapy. Pharmaceutics 2023 15 3 829 10.3390/pharmaceutics15030829 36986689
    [Google Scholar]
  86. Funguetto-Ribeiro A.C. Nakama K.A. Pinz M.P. Oliveira R.L. Sacramento M. Pereira F.S.O. Pinton S. Wilhelm E.A. Luchese C. Alves D. Ávila D.S. Haas S.E. Development and in vivo assessment of 4-Phenyltellanyl-7-chloroquinoline-loaded polymeric nanocapsules in Alzheimer’s disease models. Brain Sci. 2023 13 7 999 10.3390/brainsci13070999 37508931
    [Google Scholar]
  87. Kushawaha S.K. Ashawat M.S. Soni D. Kumar P. Rimpi; Baldi, A. Aurothioglucose encapsulated nanoparticles fostered neuroprotection in streptozotocin-induced Alzheimer’s disease. Brain Res. 2024 1834 148906 10.1016/j.brainres.2024.148906 38570152
    [Google Scholar]
  88. Yekeler H.B. Guler E. Beato P.S. Priya S. Abobakr F.K.M. Dogan M. Uner B. Kalaskar D.M. Cam M.E. Design and in vitro evaluation of curcumin-loaded PLGA nanoparticle-embedded sodium alginate/gelatin 3D printed scaffolds for Alzheimer’s disease. Int. J. Biol. Macromol. 2024 268 Pt 2 131841 10.1016/j.ijbiomac.2024.131841 38679260
    [Google Scholar]
  89. Wilson B. Mohamed Alobaid B.N. Geetha K.M. Jenita J.L. Chitosan nanoparticles to enhance nasal absorption and brain targeting of sitagliptin to treat Alzheimer’s disease. J. Drug Deliv. Sci. Technol. 2021 61 102176 10.1016/j.jddst.2020.102176
    [Google Scholar]
  90. Dhas N. Mehta T. Intranasal delivery of chitosan decorated PLGA core/shell nanoparticles containing flavonoid to reduce oxidative stress in the treatment of Alzheimer’s disease. J. Drug Deliv. Sci. Technol. 2021 61 102242 10.1016/j.jddst.2020.102242
    [Google Scholar]
  91. Omar S.H. Osman R. Mamdouh W. Abdel-Bar H.M. Awad G.A.S. Bioinspired lipid-polysaccharide modified hybrid nanoparticles as a brain-targeted highly loaded carrier for a hydrophilic drug. Int. J. Biol. Macromol., 2020, 165(Pt A), 483-494. 10.1016/j.ijbiomac.2020.09.170 32987085
    [Google Scholar]
  92. Nanaki S.G. Spyrou K. Bekiari C. Veneti P. Baroud T.N. Karouta N. Grivas I. Papadopoulos G.C. Gournis D. Bikiaris D.N. Hierarchical porous Carbon—PLLA and PLGA hybrid nanoparticles for intranasal delivery of galantamine for Alzheimer’s disease therapy. Pharmaceutics 2020 12 3 227 10.3390/pharmaceutics12030227 32143505
    [Google Scholar]
  93. Prakashkumar N. Sivamaruthi B.S. Chaiyasut C. Suganthy N. Decoding the neuroprotective potential of methyl gallate-loaded starch nanoparticles against beta amyloid-induced oxidative stress-mediated apoptosis: An in vitro study. Pharmaceutics 2021 13 3 299 10.3390/pharmaceutics13030299 33668877
    [Google Scholar]
  94. Bhanderi M. Shah J. Gorain B. Nair A.B. Jacob S. Asdaq S.M.B. Fattepur S. Alamri A.S. Alsanie W.F. Alhomrani M. Nagaraja S. Anwer M.K. Optimized rivastigmine nanoparticles coated with eudragit for intranasal application to brain delivery: Evaluation and nasal ciliotoxicity studies. Materials (Basel) 2021 14 21 6291 10.3390/ma14216291 34771817
    [Google Scholar]
  95. Kaur J. Gulati M. Kapoor B. Jha N.K. Gupta P.K. Gupta G. Chellappan D.K. Devkota H.P. Prasher P. Ansari M.S. Aba Alkhayl F.F. Arshad M.F. Morris A. Choonara Y.E. Adams J. Dua K. Singh S.K. Advances in designing of polymeric micelles for biomedical application in brain related diseases. Chem. Biol. Interact. 2022 361 109960 10.1016/j.cbi.2022.109960 35533733
    [Google Scholar]
  96. Parashar P. Kanoujia J. Kishore A. Progress in polymeric micelles as viable wagons for brain targeting. Curr. Pharm. Des. 2023 29 2 116 125 10.2174/1381612829666221223101753 36567302
    [Google Scholar]
  97. Majumder N.G. Das N. Das S.K. Polymeric micelles for anticancer drug delivery. Ther. Deliv. 2020 11 10 613 635 10.4155/tde‑2020‑0008 32933425
    [Google Scholar]
  98. Kaur P. Rajput A. Singh D. Singh G. Mehra A. Kaur S. Bedi N. Arora S. The sojourn of polymeric micelles for effective brain drug delivery system. Curr. Drug Deliv. 2024 21 1 65 79 10.2174/1567201820666230413082352 37069713
    [Google Scholar]
  99. Revdekar A. Shende P. Block copolymers in Alzheimer’s disease therapy: A perceptive to revolutionize biomaterials. J. Control. Release 2021 340 271 281 10.1016/j.jconrel.2021.11.007 34763003
    [Google Scholar]
  100. Kotta S. Aldawsari H.M. Badr-Eldin S.M. Nair A.B. Yt K. Progress in polymeric micelles for drug delivery applications. Pharmaceutics 2022 14 8 1636 10.3390/pharmaceutics14081636 36015262
    [Google Scholar]
  101. Agrawal M. Prathyusha E. Ahmed H. Dubey S.K. Kesharwani P. Singhvi G. Naidu V.G.M. Alexander A. Biomaterials in treatment of Alzheimer’s disease. Neurochem. Int. 2021 145 105008 10.1016/j.neuint.2021.105008 33684545
    [Google Scholar]
  102. Gothwal A. Lamptey R.N.L. Singh J. Multifunctionalized cationic chitosan polymeric micelles polyplexed with pVGF for noninvasive delivery to the mouse brain through the intranasal route for developing therapeutics for Alzheimer’s disease. Mol. Pharm. 2023 20 6 3009 3019 10.1021/acs.molpharmaceut.3c00031 37093958
    [Google Scholar]
  103. Yu Y. He S. Kong L. Shi N. Liu Y. Zang J. Guo R. Zhang L. Li X. Li X. Brain-targeted multifunctional micelles delivering Oridonin and Phillyrin for synergistic therapy of Alzheimer’s disease. J. Drug Deliv. Sci. Technol. 2023 87 104794 10.1016/j.jddst.2023.104794
    [Google Scholar]
  104. Gianessi L. Magini A. Dominici R. Giovagnoli S. Dolcetta D. A stable micellar formulation of RAD001 for intracerebroventricular delivery and the treatment of Alzheimer’s disease and other neurological disorders. Int. J. Mol. Sci. 2023 24 24 17478 10.3390/ijms242417478 38139306
    [Google Scholar]
  105. İğdeli G. Fritzen L. Pietrzik C.U. Temel B.A. Preparation and characterization of poly(ethylene glycol)- b -poly(tert -butyl methacrylate) micelles as potential nanocarriers for donepezil. Pharm. Dev. Technol. 2024 29 10 1111 1120 10.1080/10837450.2024.2423833 39474809
    [Google Scholar]
  106. Xu S. Yang P. Qian K. Li Y. Guo Q. Wang P. Meng R. Wu J. Cao J. Cheng Y. Xu M. Zhang Q. Modulating autophagic flux via ROS-responsive targeted micelles to restore neuronal proteostasis in Alzheimer’s disease. Bioact. Mater. 2022 11 300 316 10.1016/j.bioactmat.2021.09.017 34977433
    [Google Scholar]
  107. Chibhabha F. Yang Y. Ying K. Jia F. Zhang Q. Ullah S. Liang Z. Xie M. Li F. Non-invasive optical imaging of retinal Aβ plaques using curcumin loaded polymeric micelles in APP swe/PS1 ΔE9 transgenic mice for the diagnosis of Alzheimer’s disease. J. Mater. Chem. B Mater. Biol. Med. 2020 8 33 7438 7452 10.1039/D0TB01101K 32662804
    [Google Scholar]
  108. Zhang B. Gao Y. Zhang X. Jiang J. Ren J. Wang S. Hu H. Zhao Y. Chen L. Zhao K. Dai F. Ultra-stable dextran conjugated prodrug micelles for oxidative stress and glycometabolic abnormality combination treatment of Alzheimer’s disease. Int. J. Biol. Macromol. 2022 203 430 444 10.1016/j.ijbiomac.2022.01.154 35093435
    [Google Scholar]
  109. Lamptey R.N.L. Gothwal A. Trivedi R. Arora S. Singh J. Synthesis and characterization of fatty acid grafted chitosan polymeric micelles for improved gene delivery of VGF to the brain through intranasal route. Biomedicines 2022 10 2 493 10.3390/biomedicines10020493 35203704
    [Google Scholar]
  110. Zhen L. Wei Q. Wang Q. Zhang H. Adu-Frimpong M. Kesse Firempong C. Xu X. Yu J. Preparation and in vitro/in vivo evaluation of 6-Gingerol TPGS/PEG-PCL polymeric micelles. Pharm. Dev. Technol. 2020 25 1 1 8 10.1080/10837450.2018.1558239 30557068
    [Google Scholar]
  111. Moreira D.A. Santos S.D. Leiro V. Pêgo A.P. Dendrimers and derivatives as multifunctional nanotherapeutics for Alzheimer’s disease. Pharmaceutics 2023 15 4 1054 10.3390/pharmaceutics15041054 37111540
    [Google Scholar]
  112. Pérez-Carrión M.D. Posadas I. Dendrimers in neurodegenerative diseases. Processes (Basel) 2023 11 2 319 10.3390/pr11020319
    [Google Scholar]
  113. Singh A. Ansari V.A. Mahmood T. Ahsan F. Wasim R. Dendrimers: A neuroprotective lead in Alzheimer disease: A review on its synthetic approach and applications. Drug Res. 2022 72 8 417 423 10.1055/a‑1886‑3208 35931069
    [Google Scholar]
  114. Arbez-Gindre C. Steele B.R. Micha-Screttas M. Dendrimers in Alzheimer’s disease: Recent approaches in multi-targeting strategies. Pharmaceutics 2023 15 3 898 10.3390/pharmaceutics15030898 36986759
    [Google Scholar]
  115. Kaur A. Singh N. Kaur H. Kakoty V. Sharma D.S. Khursheed R. Babu M.R. Harish V. Gupta G. Gulati M. Kumar P. Dureja H. Alharthi N.S. Khan F.R. Rehman Z. Hakami M.A. Patel M. Patel R. Zandi M. Vishwas S. Dua K. Singh S.K. Neurodegenerative diseases and brain delivery of therapeutics: Bridging the gap using dendrimers. J. Drug Deliv. Sci. Technol. 2023 87 104868 10.1016/j.jddst.2023.104868
    [Google Scholar]
  116. Palan F. Chatterjee B. Dendrimers in the context of targeting central nervous system disorders. J. Drug Deliv. Sci. Technol. 2022 73 103474 10.1016/j.jddst.2022.103474
    [Google Scholar]
  117. Aliev G. Ashraf G.M. Tarasov V.V. Chubarev V.N. Leszek J. Gasiorowski K. Makhmutova A. Baeesa S.S. Avila-Rodriguez M. Ustyugov A.A. Bachurin S.O. Alzheimer’s disease – Future therapy based on dendrimers. Curr. Neuropharmacol. 2019 17 3 288 294 10.2174/1570159X16666180918164623 30227819
    [Google Scholar]
  118. Henningfield C.M. Soni N. Lee R.W. Sharma R. Cleland J.L. Green K.N. Selective targeting and modulation of plaque associated microglia via systemic hydroxyl dendrimer administration in an Alzheimer’s disease mouse model. Alzheimers Res. Ther. 2024 16 1 101 10.1186/s13195‑024‑01470‑3 38711159
    [Google Scholar]
  119. Singh A. Rakshit D. Kumar A. Mishra A. Shukla R. Vitamin E. Vitamin E modified polyamidoamine dendrimer for piperine delivery to alleviate Aβ 1–42 induced neurotoxicity in Balb/c mice model. J. Biomater. Sci. Polym. Ed. 2023 34 16 2232 2254 10.1080/09205063.2023.2230857 37379243
    [Google Scholar]
  120. Tallon C. Bell B.J. Sharma A. Pal A. Malvankar M.M. Thomas A.G. Yoo S.W. Hollinger K.R. Coleman K. Wilkinson E.L. Kannan S. Haughey N.J. Kannan R.M. Rais R. Slusher B.S. Dendrimer-conjugated nSMase2 inhibitor reduces tau propagation in mice. Pharmaceutics 2022 14 10 2066 10.3390/pharmaceutics14102066 36297501
    [Google Scholar]
  121. Singh A. Ahamad Ansari V. Mahmood T. Development and evaluation of ursolic acid loaded dendrimers. Res J Pharm Technol 2024 17 8 3642 3648 10.52711/0974‑360X.2024.00568
    [Google Scholar]
  122. Igartúa D.E. Martinez C.S. Del V. Alonso S. Prieto M.J. Combined therapy for alzheimer’s disease: tacrine and PAMAM dendrimers co-administration reduces the side effects of the drug without modifying its activity. AAPS PharmSciTech 2020 21 3 110 10.1208/s12249‑020‑01652‑w 32215751
    [Google Scholar]
  123. Singh A. Ujjwal R.R. Naqvi S. Verma R.K. Tiwari S. Kesharwani P. Shukla R. Formulation development of tocopherol polyethylene glycol nanoengineered polyamidoamine dendrimer for neuroprotection and treatment of Alzheimer disease. J. Drug Target. 2022 30 7 777 791 10.1080/1061186X.2022.2063297 35382657
    [Google Scholar]
  124. Xu L. Wang H. Xu Y. Cui W. Ni W. Chen M. Huang H. Stewart C. Li L. Li F. Han J. Machine learning-assisted sensor array based on poly (amidoamine)(PAMAM) dendrimers for diagnosing Alzheimer’s disease. ACS Sens. 2022 7 5 1315 1322 10.1021/acssensors.2c00132 35584464
    [Google Scholar]
  125. DeRidder L. Sharma A. Liaw K. Sharma R. John J. Kannan S. Kannan R.M. Dendrimer–tesaglitazar conjugate induces a phenotype shift of microglia and enhances β-amyloid phagocytosis. Nanoscale 2021 13 2 939 952 10.1039/D0NR05958G 33479718
    [Google Scholar]
  126. Sahu R.C. Suthar T. Kumar D. Singh P. Datusalia A.K. Jain K. Novel ligand conjugated poly(propylene imine) dendrimers for brain targeted delivery of tacrine hydrochloride. J. Drug Deliv. Sci. Technol. 2024 92 105336 10.1016/j.jddst.2024.105336
    [Google Scholar]
  127. Ahmed H.A.M. Ali M.M.K. Mohammed A.M.A. Shaheen H.M. Batiha G.E.A.E. Shalaby M.A. Alamh A.M.A.E. Method of treating or preventing Alzheimer's disease.Patent US11833181B1, 2023
    [Google Scholar]
  128. Kar S. Anand B.G. Wu Q. Govindarajan K. Unconjugated PLGA nanoparticles in the treatment of Alzheimer's disease. Patent US2023087306A1, 2023
    [Google Scholar]
  129. Xu P. Markoutsa E. Dual responsive brain targeted nanoparticles for use in treatment of Alzheimer's disease.Patent US2016346208A1, Patent US2024033240A1, 2024
    [Google Scholar]
  130. Sutariya V.B. Jinwal U.K. Glutathione-coated nanoparticles for delivery of MKT-077 across the blood-brain barrier. Patent US10758520B1, Patent US11173152B1, 2020
  131. Baum L Chow HL Cheng K Nanoparticle contrast agent for early diagnosis of alzheimer's disease by magnetic resonance imaging (MRI). Patent WO2018193278A1 2018
  132. Tao W. Qin Y. Huang C. Preparation method and application of fluorescent dendrimer for immunodetection of low-abundance biomarker signal cascade amplification. Patent CN116574271A, 2023
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266347890250409153450
Loading
/content/journals/ctmc/10.2174/0115680266347890250409153450
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test