Skip to content
2000
Volume 25, Issue 24
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Rheumatoid arthritis (RA) is the most prevalent form of inflammatory arthritis, characterized by chronic inflammation of the synovial membrane. Current therapeutic options have advanced RA management significantly, yet limitations like adverse effects and treatment resistance underscore the need for novel therapeutic agents. Recent advancements have introduced promising candidates, including BTK inhibitors, JAK inhibitors, TLR4 inhibitors, COX-2 inhibitors, and LOX inhibitors, which target specific pathways implicated in RA pathogenesis. This manuscript provides a comprehensive overview of RA, emphasizing its pathophysiology, diagnostic approaches, and therapeutic strategies. Special attention is given to the structural-activity relationships (SAR) and mechanistic insights underlying emerging pharmacological interventions. Moreover, current challenges and future directions in RA drug discovery are critically examined, highlighting innovative wet-lab approaches to address unmet clinical needs.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266346339250328153358
2025-04-14
2025-12-11
Loading full text...

Full text loading...

References

  1. AlmasiS. AslaniS. PoormoghimH. JamshidiA.R. PoursaniS. MahmoudiM. Gene expression profiling of toll-like receptor 4 and 5 in peripheral blood mononuclear cells in rheumatic disorders: Ankylosing spondylitis and rheumatoid arthritis.Iran. J. Allergy Asthma Immunol.20161518792 26996117
    [Google Scholar]
  2. MohammadiS.A. MansouriR. ShahiA. AkhlaghiM. DashtiN. MansouriS. AslaniS. IL27 gene single nucleotide polymorphisms confer susceptibility to rheumatoid arthritis in Iranian population.Meta Gene20181814915210.1016/j.mgene.2018.09.002
    [Google Scholar]
  3. PagetS.A. LockshinM.D. LoeblS. The hospital for special surgery rheumatoid arthritis handbook: everything you need to know.Nashville, TennesseeTurner Publishing Company2002
    [Google Scholar]
  4. SenstB. TadiP. GoyalA. Hypercoagulability.Treasure Island, FLStatPearls2022
    [Google Scholar]
  5. MahmoudiM. AslaniS. FadaeiR. JamshidiA.R. New insights to the mechanisms underlying atherosclerosis in rheumatoid arthritis.Int. J. Rheum. Dis.201720328729710.1111/1756‑185X.12999 28205331
    [Google Scholar]
  6. MalmströmV. CatrinaA.I. KlareskogL. The immunopathogenesis of seropositive rheumatoid arthritis: From triggering to targeting.Nat. Rev. Immunol.2017171607510.1038/nri.2016.124 27916980
    [Google Scholar]
  7. MohammadiH. SharafkandiN. HemmatzadehM. AziziG. KarimiM. Jadidi-NiaraghF. BaradaranB. BabalooZ. The role of innate lymphoid cells in health and disease.J. Cell. Physiol.201823364512452910.1002/jcp.26250 29058773
    [Google Scholar]
  8. MousaviM.J. JamshidiA. ChopraA. AslaniS. AkhlaghiM. MahmoudiM. Implications of the noncoding RNAs in rheumatoid arthritis pathogenesis.J. Cell. Physiol.2019234133534710.1002/jcp.26911 30069877
    [Google Scholar]
  9. ShabgahA.G. NavashenaqJ.G. ShabgahO.G. MohammadiH. SahebkarA. Interleukin-22 in human inflammatory diseases and viral infections.Autoimmun. Rev.201716121209121810.1016/j.autrev.2017.10.004 29037907
    [Google Scholar]
  10. TrollmoC. KlareskogL. Predicting and assessing an inflammatory disease and its complications: Example from rheumatoid arthritis.Biomarkers in Drug Discovery and Development: A Handbook of Practice, Application, and Strategy.Wiley202036537710.1002/9781119187547.ch18
    [Google Scholar]
  11. EdilovaM.I. AkramA. Abdul-SaterA.A. Innate immunity drives pathogenesis of rheumatoid arthritis.Biomed. J.202144217218210.1016/j.bj.2020.06.010 32798211
    [Google Scholar]
  12. KumarL.D. KarthikR. GayathriN. SivasudhaT. Advancement in contemporary diagnostic and therapeutic approaches for rheumatoid arthritis.Biomed. Pharmacother.201679526110.1016/j.biopha.2016.02.001 27044812
    [Google Scholar]
  13. HannemannN. ApparaillyF. CourtiesG. Synovial macrophages: From ordinary eaters to extraordinary multitaskers.Trends Immunol.202142536837110.1016/j.it.2021.03.002 33832864
    [Google Scholar]
  14. FangQ. ZhouC. NandakumarK.S. Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis.Mediators Inflamm.2020202012010.1155/2020/3830212 32256192
    [Google Scholar]
  15. GuoQ. WangY. XuD. NossentJ. PavlosN.J. XuJ. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies.Bone Res.2018611510.1038/s41413‑018‑0016‑9 29736302
    [Google Scholar]
  16. BartokB. FiresteinG.S. Fibroblast‐like synoviocytes: Key effector cells in rheumatoid arthritis.Immunol. Rev.2010233123325510.1111/j.0105‑2896.2009.00859.x 20193003
    [Google Scholar]
  17. ItohY. Metalloproteinases in rheumatoid arthritis: Potential therapeutic targets to improve current therapies.Prog. Mol. Biol. Transl. Sci.201714832733810.1016/bs.pmbts.2017.03.002 28662826
    [Google Scholar]
  18. YasudaT. Cartilage destruction by matrix degradation products.Mod. Rheumatol.200616419720510.3109/s10165‑006‑0490‑6 16906368
    [Google Scholar]
  19. YapH.Y. TeeS.Z.Y. WongM.M.T. ChowS.K. PehS.C. TeowS.Y. Pathogenic role of immune cells in rheumatoid arthritis: Implications in clinical treatment and biomarker development.Cells201871016110.3390/cells7100161 30304822
    [Google Scholar]
  20. MateenS. ZafarA. MoinS. KhanA.Q. ZubairS. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis.Clin. Chim. Acta201645516117110.1016/j.cca.2016.02.010 26883280
    [Google Scholar]
  21. EssoumaM. NoubiapJ.J. Is air pollution a risk factor for rheumatoid arthritis?J. Inflamm.(Lond)2015124810.1186/s12950‑015‑0092‑1
    [Google Scholar]
  22. AlsaberA. PanJ. Al-HerzA. AlkandaryD. Al-HurbanA. SetiyaP. Influence of ambient air pollution on rheumatoid arthritis disease activity score index.Int. J. Environ. Res. Public Health202017241610.3390/ijerph17020416 31936295
    [Google Scholar]
  23. AdamiG. ViapianaO. RossiniM. OrsoliniG. BertoldoE. GiolloA. GattiD. FassioA. Association between environmental air pollution and rheumatoid arthritis flares.Rheumatology (Oxford)202160104591459710.1093/rheumatology/keab049 33470401
    [Google Scholar]
  24. RaduA.F. BungauS.G. Management of rheumatoid arthritis: An overview.Cells20211011285710.3390/cells10112857 34831081
    [Google Scholar]
  25. QindeelM. UllahM.H. Fakhar-ud-Din; Ahmed, N.; Rehman, A. Recent trends, challenges and future outlook of transdermal drug delivery systems for rheumatoid arthritis therapy.J. Control. Release202032759561510.1016/j.jconrel.2020.09.016 32920080
    [Google Scholar]
  26. MyasoedovaE. CrowsonC.S. KremersH.M. TherneauT.M. GabrielS.E. Is the incidence of rheumatoid arthritis rising?: Results from Olmsted County, Minnesota, 1955–2007.Arthritis Rheum.20106261576158210.1002/art.27425 20191579
    [Google Scholar]
  27. RaoofR. WillemenH.L.D.M. EijkelkampN. Divergent roles of immune cells and their mediators in pain.Rheumatology (Oxford)201857342944010.1093/rheumatology/kex308 28968842
    [Google Scholar]
  28. AncaP.S. TothP.P. KemplerP. RizzoM. Gender differences in the battle against COVID‐19: Impact of genetics, comorbidities, inflammation and lifestyle on differences in outcomes.Int. J. Clin. Pract.2021752e1366610.1111/ijcp.13666 32770758
    [Google Scholar]
  29. NgoS.T. SteynF.J. McCombeP.A. Gender differences in autoimmune disease.Front. Neuroendocrinol.201435334736910.1016/j.yfrne.2014.04.004 24793874
    [Google Scholar]
  30. CrowsonC.S. MattesonE.L. MyasoedovaE. MichetC.J. ErnsteF.C. WarringtonK.J. DavisJ.M. HunderG.G. TherneauT.M. GabrielS.E. The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases.Arthritis Rheum.201163363363910.1002/art.30155 21360492
    [Google Scholar]
  31. TanwarA. ThakurP. ChawlaR. AnsariM.M. Curative remedies for rheumatoid arthritis: Herbal informatics approach for rational based selection of natural plant products.Indian J. Tradit. Knowl.2017161128133
    [Google Scholar]
  32. InnalaL. BerglinE. MöllerB. LjungL. SmedbyT. SödergrenA. MagnussonS. Rantapää-DahlqvistS. Wållberg-JonssonS. Age at onset determines severity and choice of treatment in early rheumatoid arthritis: A prospective study.Arthritis Res. Ther.2014162R9410.1186/ar4540 24731866
    [Google Scholar]
  33. WattsR.A. ConaghanP.G. DentonC. FosterH. IsaacsJ. Oxford textbook of rheumatology.OUP Oxford201310.1093/med/9780199642489.001.0001
    [Google Scholar]
  34. DingQ. HuW. WangR. YangQ. ZhuM. LiM. CaiJ. RoseP. MaoJ. ZhuY.Z. Signaling pathways in rheumatoid arthritis: Implications for targeted therapy.Signal Transduct. Target. Ther.2023816810.1038/s41392‑023‑01331‑9 36797236
    [Google Scholar]
  35. XinP. XuX. DengC. LiuS. WangY. ZhouX. MaH. WeiD. SunS. The role of JAK/STAT signaling pathway and its inhibitors in diseases.Int. Immunopharmacol.20208010621010.1016/j.intimp.2020.106210 31972425
    [Google Scholar]
  36. SimonL.S. TaylorP.C. ChoyE.H. The Jak/STAT pathway: A focus on pain in rheumatoid arthritis.Semin. Arthritis Rheum.202151127810.1016/j.semarthrit.2020.10.008
    [Google Scholar]
  37. MalemudC.J. The role of the JAK/STAT signal pathway in rheumatoid arthritis.Ther. Adv. Musculoskelet. Dis.2018105-611712710.1177/1759720X18776224 29942363
    [Google Scholar]
  38. AngeliniJ. TalottaR. RoncatoR. FornasierG. BarbieroG. Dal CinL. BrancatiS. ScaglioneF. JAK-inhibitors for the treatment of rheumatoid arthritis: A focus on the present and an outlook on the future.Biomolecules2020107100210.3390/biom10071002 32635659
    [Google Scholar]
  39. BanerjeeS. BiehlA. GadinaM. HasniS. SchwartzD.M. JAK–STAT signaling as a target for inflammatory and autoimmune diseases: Current and future prospects.Drugs201777552154610.1007/s40265‑017‑0701‑9 28255960
    [Google Scholar]
  40. BousoikE. Montazeri AliabadiH. “Do we know jack” about JAK? A closer look at JAK/STAT signaling pathway.Front. Oncol.2018828710.3389/fonc.2018.00287 30109213
    [Google Scholar]
  41. MalemudC.J. Intracellular signaling pathways in rheumatoid arthritis.J. Clin. Cell. Immunol.2013416010.4172/2155‑9899.1000160
    [Google Scholar]
  42. LeonardW.J. LinJ.X. ImmunologyC. Cytokine receptor signaling pathways.J. Allergy Clin. Immunol.2000105587788810.1067/mai.2000.106899 10808165
    [Google Scholar]
  43. AbdouA.G. MaraeeA. YassienH. SarhanM. Immunohistochemistry of Janus kinase 1 (JAK1) expression in vitiligo.J. Pathol. Transl. Med.201852636336810.4132/jptm.2018.09.18 30347972
    [Google Scholar]
  44. HeX. ChenX. ZhangH. XieT. YeX.Y. Selective Tyk2 inhibitors as potential therapeutic agents: A patent review (2015–2018).Expert Opin. Ther. Pat.201929213714910.1080/13543776.2019.1567713 30621465
    [Google Scholar]
  45. GaoW. DongX. YangZ. MaoG. XingW. Association between rs7574865 polymorphism in STAT4 gene and rheumatoid arthritis: An updated meta-analysis.Eur. J. Intern. Med.20207110110310.1016/j.ejim.2019.11.009 31757580
    [Google Scholar]
  46. RalphJ.A. MorandE.F. MAPK phosphatases as novel targets for rheumatoid arthritis.Expert Opin. Ther. Targets200812779580810.1517/14728222.12.7.795 18554149
    [Google Scholar]
  47. SujithaS. RasoolM. MicroRNAs and bioactive compounds on TLR/MAPK signaling in rheumatoid arthritis.Clin. Chim. Acta201747310611510.1016/j.cca.2017.08.021 28842173
    [Google Scholar]
  48. WhitakerR.H. CookJ.G. Stress relief techniques: P38 MAPK determines the balance of cell cycle and apoptosis pathways.Biomolecules20211110144410.3390/biom11101444 34680077
    [Google Scholar]
  49. KanaiT. KondoN. OkadaM. SanoH. OkumuraG. KijimaY. OgoseA. KawashimaH. EndoN. The JNK pathway represents a novel target in the treatment of rheumatoid arthritis through the suppression of MMP-3.J. Orthop. Surg. Res.20201518710.1186/s13018‑020‑01595‑9 32131874
    [Google Scholar]
  50. ZhangL. XiaoH. ZhangF. WuY. ShuJ. LiY. TaiY. XuS. XuJ. WeiW. BAFF, involved in B cell activation through the NF-κB pathway, is related to disease activity and bone destruction in rheumatoid arthritis.Acta Pharmacol. Sin.202142101665167510.1038/s41401‑020‑00582‑4 33483588
    [Google Scholar]
  51. IwataS. NakayamadaS. FukuyoS. KuboS. YunoueN. WangS.P. YoshikawaM. SaitoK. TanakaY. Activation of Syk in peripheral blood B cells in patients with rheumatoid arthritis: A potential target for abatacept therapy.Arthritis Rheumatol.2015671637310.1002/art.38895 25303149
    [Google Scholar]
  52. CornethO.B.J. Klein WolterinkR.G.J. HendriksR.W. BTK signaling in B cell differentiation and autoimmunity.Curr. Top. Microbiol. Immunol.20153936710510.1007/82_2015_478 26341110
    [Google Scholar]
  53. MarkmanB. DienstmannR. TaberneroJ. Targeting the PI3K/Akt/mTOR pathway--beyond rapalogs.Oncotarget20101753054310.18632/oncotarget.188 21317449
    [Google Scholar]
  54. ErsahinT. TuncbagN. Cetin-AtalayR. The PI3K/AKT/mTOR interactive pathway.Mol. Biosyst.20151171946195410.1039/C5MB00101C 25924008
    [Google Scholar]
  55. TsaiC.H. LiuS.C. WangY.H. SuC.M. HuangC.C. HsuC.J. TangC.H. Osteopontin inhibition of miR-129-3p enhances IL-17 expression and monocyte migration in rheumatoid arthritis.Biochim. Biophys. Acta, Gen. Subj.201718612152210.1016/j.bbagen.2016.11.015 27851983
    [Google Scholar]
  56. ShodaH. NagafuchiY. TsuchidaY. SakuraiK. SumitomoS. FujioK. YamamotoK. Increased serum concentrations of IL-1 beta, IL-21 and Th17 cells in overweight patients with rheumatoid arthritis.Arthritis Res. Ther.201719111110.1186/s13075‑017‑1308‑y 28569167
    [Google Scholar]
  57. KwokS.K. ChoM.L. ParkM.K. OhH.J. ParkJ.S. HerY.M. LeeS.Y. YounJ. JuJ.H. ParkK.S. KimS.I. KimH.Y. ParkS.H. Interleukin‐21 promotes osteoclastogenesis in humans with rheumatoid arthritis and in mice with collagen‐induced arthritis.Arthritis Rheum.201264374075110.1002/art.33390 21968544
    [Google Scholar]
  58. DineshP. RasoolM. Berberine inhibits IL-21/IL-21R mediated inflammatory proliferation of fibroblast-like synoviocytes through the attenuation of PI3K/Akt signaling pathway and ameliorates IL-21 mediated osteoclastogenesis.Cytokine2018106546610.1016/j.cyto.2018.03.005 29549724
    [Google Scholar]
  59. ZouL. ZhangG. LiuL. ChenC. CaoX. CaiJ. Relationship between PI3K pathway and angiogenesis in CIA rat synovium.Am. J. Transl. Res.20168731413147 27508035
    [Google Scholar]
  60. LiX.F. SunY.Y. BaoJ. ChenX. LiY.H. YangY. ZhangL. HuangC. WuB.M. MengX.M. LiJ. Functional role of PPAR-γ on the proliferation and migration of fibroblast-like synoviocytes in rheumatoid arthritis.Sci. Rep.2017711267110.1038/s41598‑017‑12570‑6 28978936
    [Google Scholar]
  61. YangY. WeiC. LiuJ. MaD. XiongC. LinD. WuA. Atorvastatin protects against postoperative neurocognitive disorder via a peroxisome proliferator-activated receptor-gamma signaling pathway in mice.J. Int. Med. Res.2020485030006052092425110.1177/0300060520924251 32412807
    [Google Scholar]
  62. KlotzL. BurgdorfS. DaniI. SaijoK. FlossdorfJ. HuckeS. AlferinkJ. NovakN. BeyerM. MayerG. LanghansB. KlockgetherT. WaismanA. EberlG. SchultzeJ. FamulokM. KolanusW. GlassC. KurtsC. KnolleP.A. The nuclear receptor PPARγ selectively inhibits Th17 differentiation in a T cell–intrinsic fashion and suppresses CNS autoimmunity.J. Exp. Med.2009206102079208910.1084/jem.20082771 19737866
    [Google Scholar]
  63. XuZ. WangG. ZhuY. LiuR. SongJ. NiY. SunH. YangB. HouM. ChenL. JiM. FuZ. PPAR‐γ agonist ameliorates liver pathology accompanied by increasing regulatory B and T cells in high‐fat‐diet mice.Obesity (Silver Spring)201725358159010.1002/oby.21769 28150448
    [Google Scholar]
  64. XiaH. ChenL. LiuH. SunZ. YangW. YangY. CuiS. LiS. WangY. SongL. AbdelgawadA.F. ShangY. YaoS. Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype.Sci. Rep.2017719910.1038/s41598‑017‑00103‑0 28273909
    [Google Scholar]
  65. LiX. YinS. LiH. YangY. ChenX. SongB. WuS. WuY. WangH. LiJ. PPAR-γ alleviates the inflammatory response in TNF-α-induced fibroblast-like synoviocytes by binding to p53 in rheumatoid arthritis.Acta Pharmacol. Sin.202344245446410.1038/s41401‑022‑00957‑9 35918412
    [Google Scholar]
  66. LiC. DingX.Y. XiangD.M. XuJ. HuangX.L. HouF.F. ZhouQ.G. Enhanced M1 and impaired M2 macrophage polarization and reduced mitochondrial biogenesis via inhibition of AMP kinase in chronic kidney disease.Cell. Physiol. Biochem.201536135837210.1159/000430106 25967974
    [Google Scholar]
  67. ErlandssonM.C. Töyrä SilfverswärdS. NadaliM. TurkkilaM. SvenssonM.N.D. JonssonI.M. AnderssonK.M.E. BokarewaM.I. IGF-1R signalling contributes to IL-6 production and T cell dependent inflammation in rheumatoid arthritis.Biochim. Biophys. Acta Mol. Basis Dis.2017186392158217010.1016/j.bbadis.2017.06.002 28583713
    [Google Scholar]
  68. AletahaD. NeogiT. SilmanA.J. FunovitsJ. FelsonD.T. BinghamC.O. BirnbaumN.S. BurmesterG.R. BykerkV.P. CohenM.D. CombeB. CostenbaderK.H. DougadosM. EmeryP. FerraccioliG. HazesJ.M.W. HobbsK. HuizingaT.W.J. KavanaughA. KayJ. KvienT.K. LaingT. MeaseP. MénardH.A. MorelandL.W. NadenR.L. PincusT. SmolenJ.S. Stanislawska-BiernatE. SymmonsD. TakP.P. UpchurchK.S. VencovskýJ. WolfeF. HawkerG. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative.Arthritis Rheum.20106292569258110.1002/art.27584 20872595
    [Google Scholar]
  69. HorneffG. BeckerI.J.A.R.D. OP0143 serious infections in juvenile idiopathic arthritis patients upon TNF inhibitors depend on disease activity.201473211411510.1136/annrheumdis‑2014‑eular.2409
    [Google Scholar]
  70. AggarwalR. RingoldS. KhannaD. NeogiT. JohnsonS.R. MillerA. BrunnerH.I. OgawaR. FelsonD. OgdieA. AletahaD. FeldmanB.M. Distinctions between diagnostic and classification criteria?Arthritis Care Res. (Hoboken)201567789189710.1002/acr.22583 25776731
    [Google Scholar]
  71. VyasS. BhallaA.S. RanjanP. KumarS. KumarU. GuptaA.K. Rheumatoid arthritis revisited–Advanced imaging review.Pol. Przegl. Radiol. Med. Nukl.20168162963510.12659/PJR.899317 28105245
    [Google Scholar]
  72. CarstensenS.M.D. TerslevL. JensenM.P. ØstergaardM. Future use of musculoskeletal ultrasonography and magnetic resonance imaging in rheumatoid arthritis.Curr. Opin. Rheumatol.202032326427210.1097/BOR.0000000000000709 32205568
    [Google Scholar]
  73. van DelftM.A.M. HuizingaT.W.J. An overview of autoantibodies in rheumatoid arthritis.J. Autoimmun.202011010239210.1016/j.jaut.2019.102392 31911013
    [Google Scholar]
  74. SieghartD. PlatzerA. StudenicP. AlastiF. GrundhuberM. SwiniarskiS. HornT. HaslacherH. BlümlS. SmolenJ. SteinerG. Determination of autoantibody isotypes increases the sensitivity of serodiagnostics in rheumatoid arthritis.Front. Immunol.2018987610.3389/fimmu.2018.00876 29740454
    [Google Scholar]
  75. Rantapää-DahlqvistS. de JongB.A.W. BerglinE. HallmansG. WadellG. StenlundH. SundinU. van VenrooijW.J. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis.Arthritis Rheum.200348102741274910.1002/art.11223 14558078
    [Google Scholar]
  76. MunS. LeeJ. ParkM. ShinJ. LimM.K. KangH.G. Serum biomarker panel for the diagnosis of rheumatoid arthritis.Arthritis Res. Ther.20212313110.1186/s13075‑020‑02405‑7 33461622
    [Google Scholar]
  77. LinY.J. AnzagheM. SchülkeS. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis.Cells20209488010.3390/cells9040880 32260219
    [Google Scholar]
  78. SinghR. JadhavK. VaghasiyaK. RayE. ShuklaR. VermaR.K. New generation smart drug delivery systems for rheumatoid arthritis.20232913984100137038685
    [Google Scholar]
  79. ButtgereitF. StrandV. LeeE.B. Simon-CamposA. McCabeD. GenetA. TammaraB. RojoR. Hey-HadaviJ. Fosdagrocorat (PF-04171327) versus prednisone or placebo in rheumatoid arthritis: A randomised, double-blind, multicentre, phase IIb study.RMD Open201951e00088910.1136/rmdopen‑2018‑000889 31168411
    [Google Scholar]
  80. WangQ. HeL. FanD. LiangW. FangJ. Improving the anti-inflammatory efficacy of dexamethasone in the treatment of rheumatoid arthritis with polymerized stealth liposomes as a delivery vehicle.J. Mater. Chem. B Mater. Biol. Med.2020891841185110.1039/C9TB02538C 32016224
    [Google Scholar]
  81. IngawaleD.K. MandlikS.K.J.I. New insights into the novel anti-inflammatory mode of action of glucocorticoids.Immunopharmacol Immunotoxicol2020422597310.1080/08923973.2020.1728765
    [Google Scholar]
  82. Sarzi-PuttiniP. CeribelliA. MarottoD. BatticciottoA. AtzeniF. Systemic rheumatic diseases: From biological agents to small molecules.Autoimmun. Rev.201918658359210.1016/j.autrev.2018.12.009 30959214
    [Google Scholar]
  83. LittlejohnE.A. MonradS.U. Early diagnosis and treatment of rheumatoid arthritis.Prim. Care201845223725510.1016/j.pop.2018.02.010 29759122
    [Google Scholar]
  84. PagliaM.D.G. SilvaM.T. LopesL.C. Barberato-FilhoS. MazzeiL.G. AbeF.C. de Cássia BergamaschiC. Use of corticoids and non-steroidal anti-inflammatories in the treatment of rheumatoid arthritis: Systematic review and network meta-analysis.PLoS One2021164e024886610.1371/journal.pone.0248866 33826610
    [Google Scholar]
  85. BinduS. MazumderS. BandyopadhyayU. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective.Biochem. Pharmacol.202018011414710.1016/j.bcp.2020.114147 32653589
    [Google Scholar]
  86. BacchiS. PalumboP. SpontaA. CoppolinoM.F. Clinical pharmacology of non-steroidal anti-inflammatory drugs: A review.Antiinflamm. Antiallergy Agents Med. Chem.2012111526410.2174/187152312803476255 22934743
    [Google Scholar]
  87. JohnsonA.G. QuinnD.I. DayR.O. Non‐steroidal anti‐inflammatory drugs.Med. J. Aust.1995163315515810.5694/j.1326‑5377.1995.tb127972.x 7643770
    [Google Scholar]
  88. LingS. BluettJ. BartonA. Prediction of response to methotrexate in rheumatoid arthritis.Expert Rev. Clin. Immunol.201814541942910.1080/1744666X.2018.1465409 29667454
    [Google Scholar]
  89. MoranR.G. Folate antimetabolites inhibitory to de novo purine synthesis.Cancer Treat Res.199258658710.1007/978‑1‑4615‑3876‑9_4
    [Google Scholar]
  90. WangW. ZhouH. LiuL. Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review.Eur. J. Med. Chem.201815850251610.1016/j.ejmech.2018.09.027 30243154
    [Google Scholar]
  91. BelaniP.J. KavadichandaC.G. NegiV.S. Comparison between leflunomide and sulfasalazine based triple therapy in methotrexate refractory rheumatoid arthritis: An open-label, non-inferiority randomized controlled trial.Rheumatol. Int.202242577178210.1007/s00296‑021‑04994‑1 34586472
    [Google Scholar]
  92. LawS.T. TaylorP.C. Role of biological agents in treatment of rheumatoid arthritis.Pharmacol. Res.201915010449710.1016/j.phrs.2019.104497 31629903
    [Google Scholar]
  93. KeystoneE.C. GenoveseM.C. KlareskogL. HsiaE.C. HallS.T. MirandaP.C. PazdurJ. BaeS-C. PalmerW. ZrubekJ. WiekowskiM. VisvanathanS. WuZ. RahmanM.U. Golimumab, a human antibody to tumour necrosis factor α given by monthly subcutaneous injections, in active rheumatoid arthritis despite methotrexate therapy: The GO-FORWARD Study.Ann. Rheum. Dis.200968678979610.1136/ard.2008.099010 19066176
    [Google Scholar]
  94. MainiR. St ClairE.W. BreedveldF. FurstD. KaldenJ. WeismanM. SmolenJ. EmeryP. HarrimanG. FeldmannM. LipskyP. Infliximab (chimeric anti-tumour necrosis factor α monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: A randomised phase III trial.199935491941932193910.1016/S0140‑6736(99)05246‑0 10622295
    [Google Scholar]
  95. ZavvarM. AssadiaslS. SoleimanifarN. PakdelF.D. AbdolmohammadiK. FatahiY. AbdolmalekiM. BaghdadiH. TayebiL. NicknamM.H. Gene therapy in rheumatoid arthritis: Strategies to select therapeutic genes.J. Cell. Physiol.201923410169131692410.1002/jcp.28392 30809802
    [Google Scholar]
  96. FengN. GuoF. Nanoparticle-siRNA: A potential strategy for rheumatoid arthritis therapy? J. Control. Release202032538039310.1016/j.jconrel.2020.07.006
    [Google Scholar]
  97. ChangC. XuL. ZhangR. JinY. JiangP. WeiK. XuL. ShiY. ZhaoJ. XiongM. GuoS. HeD. MicroRNA-mediated epigenetic regulation of rheumatoid arthritis susceptibility and pathogenesis.Front. Immunol.20221383888410.3389/fimmu.2022.838884 35401568
    [Google Scholar]
  98. SongP. YangC. ThomsenJ.S. Dagnæs-HansenF. JakobsenM. BrüelA. DeleuranB. KjemsJ. Lipidoid-siRNA nanoparticle-mediated IL-1β gene silencing for systemic arthritis therapy in a mouse model.Mol. Ther.20192781424143510.1016/j.ymthe.2019.05.002 31153827
    [Google Scholar]
  99. SunX. DongS. LiX. YuK. SunF. LeeR.J. LiY. TengL. Delivery of siRNA using folate receptor-targeted pH-sensitive polymeric nanoparticles for rheumatoid arthritis therapy.Nanomedicine20192010201710.1016/j.nano.2019.102017 31128293
    [Google Scholar]
  100. ShresthaS. ZhaoJ. YangC. ZhangJ. Iguratimod combination therapy compared with methotrexate monotherapy for the treatment of rheumatoid arthritis: A systematic review and meta-analysis.Clin. Rheumatol.202140104007401710.1007/s10067‑021‑05746‑z 33914203
    [Google Scholar]
  101. TangQ. YinD. WangY. DuW. QinY. DingA. LiH. Cancer stem cells and combination therapies to eradicate them.Curr. Pharm. Des.2020261719942008 32250222
    [Google Scholar]
  102. XiaoS. TangY. LvZ. LinY. ChenL. Nanomedicine: Advantages for their use in rheumatoid arthritis theranostics.J. Control. Release201931630231610.1016/j.jconrel.2019.11.008 31715278
    [Google Scholar]
  103. DamjanovN. KauffmanR.S. Spencer-GreenG.T. Efficacy, pharmacodynamics, and safety of VX‐702, a novel p38 MAPK inhibitor, in rheumatoid arthritis: Results of two randomized, double‐blind, placebo‐controlled clinical studies.Arthritis Rheum.20096051232124110.1002/art.24485 19404957
    [Google Scholar]
  104. GenoveseM.C. CohenS.B. WofsyD. WeinblattM. FiresteinG.S. BrahnE. StrandV. BakerD.G. TongS. A 24-week, randomized, double-blind, placebo-controlled, parallel group study of the efficacy of oral SCIO-469, a p38 mitogen-activated protein kinase inhibitor, in patients with active rheumatoid arthritis.J. Rheumatol.201138584685410.3899/jrheum.100602 21285160
    [Google Scholar]
  105. BullockJ. RizviS.A.A. SalehA.M. AhmedS.S. DoD.P. AnsariR.A. AhmedJ. Rheumatoid arthritis: A brief overview of the treatment.Med. Princ. Pract.201827650150710.1159/000493390 30173215
    [Google Scholar]
  106. SchjerningA.M. McGettiganP. GislasonG. Cardiovascular effects and safety of (non-aspirin) NSAIDs.Nat. Rev. Cardiol.202017957458410.1038/s41569‑020‑0366‑z 32322101
    [Google Scholar]
  107. SalliotC. van der HeijdeD. Long-term safety of methotrexate monotherapy in patients with rheumatoid arthritis: A systematic literature research.Ann. Rheum. Dis.20096871100110410.1136/ard.2008.093690 19060002
    [Google Scholar]
  108. SinniahA. YazidS. FlowerR.J. From NSAIDs to glucocorticoids and beyond.Cells20211012352410.3390/cells10123524 34944032
    [Google Scholar]
  109. StrehlC. van der GoesM.C. BijlsmaJ.W.J. JacobsJ.W.G. ButtgereitF. Glucocorticoid-targeted therapies for the treatment of rheumatoid arthritis.Expert Opin. Investig. Drugs201726218719510.1080/13543784.2017.1276562 28043173
    [Google Scholar]
  110. CañeteJ.D. HernándezM.V. SanmartíR. Safety profile of biological therapies for treating rheumatoid arthritis.Expert Opin. Biol. Ther.20171791089110310.1080/14712598.2017.1346078 28657381
    [Google Scholar]
  111. PanchalN.K. Prince SabinaE. ToxicologyC. Non-steroidal anti-inflammatory drugs (NSAIDs): A current insight into its molecular mechanism eliciting organ toxicities.Food Chem. Toxicol.202317211359810.1016/j.fct.2022.113598 36608735
    [Google Scholar]
  112. ZhouS. JiangW. ChenG. HuangG. Design and synthesis of novel double-ring conjugated enones as potent anti-rheumatoid arthritis agents.ACS Omega2022748440654407710.1021/acsomega.2c05492 36506211
    [Google Scholar]
  113. FangX. LiuC. ZhangK. YangW. WuZ. ShenS. MaY. LuX. ChenY. LuT. HuQ. JiangY. Discovery of orally active 1,4,5,6,8-pentaazaacenaphthylens as novel, selective, and potent covalent BTK inhibitors for the treatment of rheumatoid arthritis.Eur. J. Med. Chem.202324611494010.1016/j.ejmech.2022.114940 36462441
    [Google Scholar]
  114. PallaviH. VivekH.K. KhanumS.A. JiangY. Design, docking, synthesis, and characterization of novel N‘(2-phenoxyacetyl) nicotinohydrazide and N’(2-phenoxyacetyl) isonicotinohydrazide derivatives as anti-inflammatory and analgesic agents.J. Mol. Struct.2022124713140410.1016/j.molstruc.2021.131404
    [Google Scholar]
  115. PanT. HeM. DengL. LiJ. FanY. HaoX. MuS. Design, synthesis, and evaluation of the COX-2 inhibitory activities of new 1,3-Dihydro-2H-indolin-2-one derivatives.Molecules20232812466810.3390/molecules28124668 37375225
    [Google Scholar]
  116. MiaoY. YangJ. YunY. SunJ. WangX. Synthesis and anti-rheumatoid arthritis activities of 3-(4-aminophenyl)-coumarin derivatives.J. Enzyme Inhib. Med. Chem.202136145046110.1080/14756366.2021.1873978 33557646
    [Google Scholar]
  117. ShuL. ChenC. HuanX. HuangH. WangM. ZhangJ. YanY. LiuJ. ZhangT. ZhangD. Design, synthesis, and pharmacological evaluation of 4- or 6-phenyl-pyrimidine derivatives as novel and selective Janus kinase 3 inhibitors.Eur. J. Med. Chem.202019111214810.1016/j.ejmech.2020.112148 32097841
    [Google Scholar]
  118. ZhangC. PeiH. HeJ. ZhuJ. LiW. NiuT. XiangM. ChenL. Design, synthesis and evaluation of novel 7H-pyrrolo[2,3-d]pyrimidin-4-amine derivatives as potent, selective and reversible Bruton’s tyrosine kinase (BTK) inhibitors for the treatment of rheumatoid arthritis.Eur. J. Med. Chem.201916912114310.1016/j.ejmech.2019.02.077 30875504
    [Google Scholar]
  119. El-MiligyM.M.M. HazzaaA.A. El-MessmaryH. NassraR.A. El-HawashS.A.M. New hybrid molecules combining benzothiophene or benzofuran with rhodanine as dual COX-1/2 and 5-LOX inhibitors: Synthesis, biological evaluation and docking study.Bioorg. Chem.20177210211510.1016/j.bioorg.2017.03.012 28390993
    [Google Scholar]
  120. HariziH. CorcuffJ.B. GualdeN. Arachidonic-acid-derived eicosanoids: Roles in biology and immunopathology.Trends Mol. Med.2008141046146910.1016/j.molmed.2008.08.005 18774339
    [Google Scholar]
  121. YaoX. SunX. JinS. YangL. XuH. RaoY. Discovery of 4-aminoquinoline-3-carboxamide derivatives as potent reversible Bruton’s tyrosine kinase inhibitors for the treatment of rheumatoid arthritis.J. Med. Chem.201962146561657410.1021/acs.jmedchem.9b00329 31260299
    [Google Scholar]
  122. KaurM. SinghM. SilakariO. Oxindole-based SYK and JAK3 dual inhibitors for rheumatoid arthritis: Designing, synthesis and biological evaluation.Future Med. Chem.20179111193121110.4155/fmc‑2017‑0037 28722479
    [Google Scholar]
  123. YuR.N. ChenC.J. ShuL. YinY. WangZ.J. ZhangT.T. ZhangD.Y. Structure-based design and synthesis of pyrimidine-4,6-diamine derivatives as Janus kinase 3 inhibitors.Bioorg. Med. Chem.20192781646165710.1016/j.bmc.2019.03.009 30853331
    [Google Scholar]
  124. ChiassonA.I. RobichaudS. Ndongou MoutombiF.J. HébertM.P.A. MbarikM. SuretteM.E. TouaibiaM. New zileuton-hydroxycinnamic acid hybrids: Synthesis and structure-activity relationship towards 5-lipoxygenase inhibition.Molecules20202520468610.3390/molecules25204686 33066378
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266346339250328153358
Loading
/content/journals/ctmc/10.2174/0115680266346339250328153358
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test