Skip to content
2000
Volume 25, Issue 26
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

The TLR4 (Toll-like receptor 4)/MD2 (Myeloid differentiation protein-2) is a crucial target for developing novel anti-inflammatory drugs. Nevertheless, current inhibitors often have significant adverse effects, necessitating the discovery of safer alternatives.

Objective

The investigation aims to identify novel TLR4/MD2 inhibitors with potential anti-inflammatory activity using machine learning and virtual screening technology.

Methods

A machine-learning model was created using the MACCS (Molecular ACCess Systems) key fingerprint. Subsequently, virtual screening and molecular docking were used to evaluate candidate compounds' binding free energy to the TLR4/MD2 complex. Furthermore, ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction was used to assess the druggable properties of compounds. The most promising compound, T19093, was considered for molecular dynamic simulation. Finally, the anti-inflammatory efficacy of T19093 was further validated using LPS-treated THP-1 cells.

Results

T19093, a polyphenolic compound isolated from the plant genus, showed strong binding to key residues of the TLR4/MD2 complex, with a docking score of -11.29 kcal/mol. Furthermore, ADMET predicted that T19093 has good pharmacokinetic properties and balanced physicochemical properties. Moreover, molecular dynamics simulation confirmed stable binding between T19093 and TLR4/MD2 complex. Finally, it was found that T19093 alleviated LPS-induced inflammatory response by inhibiting the activation of TLR4/MD2 downstream signaling pathways and disrupting the TLR4/MD2 interaction.

Conclusion

T19093 was discovered as a potential novel TLR4/MD2 inhibitor using machine learning and virtual screening techniques and showed potent anti-inflammatory activity, which could provide a new therapeutic alternative for the treatment of inflammation-related diseases.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266345918250212144023
2025-02-18
2025-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ctmc/25/26/CTMC-25-26-08.html?itemId=/content/journals/ctmc/10.2174/0115680266345918250212144023&mimeType=html&fmt=ahah

References

  1. AkiraS. TakedaK. Toll-like receptor signalling.Nat. Rev. Immunol.20044749951110.1038/nri1391 15229469
    [Google Scholar]
  2. KawaiT. AkiraS. TLR signaling.Cell Death Differ.200613581682510.1038/sj.cdd.4401850 16410796
    [Google Scholar]
  3. TakedaK. KaishoT. AkiraS. Toll-like receptors.Annu. Rev. Immunol.200321133537610.1146/annurev.immunol.21.120601.141126 12524386
    [Google Scholar]
  4. IannucciA. CaneparoV. RaviolaS. DebernardiI. ColangeloD. MiggianoR. GriffanteG. LandolfoS. GariglioM. De AndreaM. Toll-like receptor 4-mediated inflammation triggered by extracellular IFI16 is enhanced by lipopolysaccharide binding.PLoS Pathog.2020169e100881110.1371/journal.ppat.1008811 32903274
    [Google Scholar]
  5. YangJ. LiuR. LuF. XuF. ZhengJ. LiZ. CuiW. WangC. ZhangJ. XuS. ZhouW. WangQ. ChenJ. ChenX. Fast green FCF attenuates lipopolysaccharide-induced depressive-like behavior and downregulates TLR4/Myd88/NF-κB signal pathway in the mouse hippocampus.Front. Pharmacol.20191050110.3389/fphar.2019.00501 31139084
    [Google Scholar]
  6. ZhangY. LiangX. BaoX. XiaoW. ChenG. Toll-like receptor 4 (TLR4) inhibitors: Current research and prospective.Eur. J. Med. Chem.202223511429110.1016/j.ejmech.2022.114291 35307617
    [Google Scholar]
  7. KuzmichN. SivakK. ChubarevV. PorozovY. Savateeva-LyubimovaT. PeriF. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis.Vaccines2017543410.3390/vaccines5040034 28976923
    [Google Scholar]
  8. KawamotoT. IiM. KitazakiT. IizawaY. KimuraH. TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain.Eur. J. Pharmacol.20085841404810.1016/j.ejphar.2008.01.026 18299127
    [Google Scholar]
  9. MullarkeyM. RoseJ.R. BristolJ. KawataT. KimuraA. KobayashiS. PrzetakM. ChowJ. GusovskyF. ChristW.J. RossignolD.P. Inhibition of endotoxin response by e5564, a novel Toll-like receptor 4-directed endotoxin antagonist.J. Pharmacol. Exp. Ther.200330431093110210.1124/jpet.102.044487 12604686
    [Google Scholar]
  10. Perrin-CoconL. Aublin-GexA. SestitoS.E. ShireyK.A. PatelM.C. AndréP. BlancoJ.C. VogelS.N. PeriF. LotteauV. TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza infection.Sci. Rep.2017714079110.1038/srep40791 28106157
    [Google Scholar]
  11. MatsunagaN. TsuchimoriN. MatsumotoT. IiM. TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules.Mol. Pharmacol.2011791344110.1124/mol.110.068064 20881006
    [Google Scholar]
  12. AggarwalB.B. HarikumarK.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases.Int. J. Biochem. Cell Biol.2009411405910.1016/j.biocel.2008.06.010 18662800
    [Google Scholar]
  13. ZhenL. FanD. ZhangY. CaoX. WangL. Resveratrol ameliorates experimental periodontitis in diabetic mice through negative regulation of TLR4 signaling.Acta Pharmacol. Sin.201536222122810.1038/aps.2014.131 25530164
    [Google Scholar]
  14. K, R.M.; Ghosh, B. Quercetin inhibits LPS-induced nitric oxide and tumor necrosis factor-α production in murine macrophages.Int. J. Immunopharmacol.199921743544310.1016/S0192‑0561(99)00024‑7 10454017
    [Google Scholar]
  15. GuptaR. SrivastavaD. SahuM. TiwariS. AmbastaR.K. KumarP. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery.Mol. Divers.20212531315136010.1007/s11030‑021‑10217‑3 33844136
    [Google Scholar]
  16. NaqviA.A.T. MohammadT. HasanG.M. HassanM.I. Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships.Curr. Top. Med. Chem.201818201755176810.2174/1568026618666181025114157 30360721
    [Google Scholar]
  17. MollicaA. ZenginG. DurdagiS. Ekhteiari SalmasR. MacedonioG. StefanucciA. DimmitoM.P. NovellinoE. Combinatorial peptide library screening for discovery of diverse α-glucosidase inhibitors using molecular dynamics simulations and binary QSAR models.J. Biomol. Struct. Dyn.201937372674010.1080/07391102.2018.1439403 29421954
    [Google Scholar]
  18. PoliG. DimmitoM.P. MollicaA. ZenginG. BenyheS. ZadorF. StefanucciA. Discovery of novel μ-Opioid receptor inverse agonist from a combinatorial library of tetrapeptides through structure-based virtual screening.Molecules20192421387210.3390/molecules24213872 31717871
    [Google Scholar]
  19. JiangY. LuoJ. HuangD. LiuY. LiD. Machine learning advances in microbiology: A review of methods and applications.Front. Microbiol.20221392545410.3389/fmicb.2022.925454 35711777
    [Google Scholar]
  20. LiangH. ZhaoL. GongX. HuM. WangH. Virtual screening FDA approved drugs against multiple targets of SARS‐CoV‐2.Clin. Transl. Sci.20211431123113210.1111/cts.13007 33606912
    [Google Scholar]
  21. NowotkaM.M. GaultonA. MendezD. BentoA.P. HerseyA. LeachA. Using ChEMBL web services for building applications and data processing workflows relevant to drug discovery.Expert Opin. Drug Discov.2017128757767 28602100
    [Google Scholar]
  22. StewartS. IvyM.A. AnslynE.V. The use of principal component analysis and discriminant analysis in differential sensing routines.Chem. Soc. Rev.2014431708410.1039/C3CS60183H 23995750
    [Google Scholar]
  23. MoritzC.P. PaulS. StoevesandtO. TholanceY. CamdessanchéJ.P. AntoineJ.C. Autoantigenomics: Holistic characterization of autoantigen repertoires for a better understanding of autoimmune diseases.Autoimmun. Rev.202019210245010.1016/j.autrev.2019.102450 31838165
    [Google Scholar]
  24. SawadaR. KoteraM. YamanishiY. Benchmarking a wide range of chemical descriptors for drug‐target interaction prediction using a chemogenomic approach.Mol. Inform.20143311-1271973110.1002/minf.201400066 27485418
    [Google Scholar]
  25. Fernández-de GortariE. García-JacasC.R. Martinez-MayorgaK. Medina-FrancoJ.L. Database fingerprint (DFP): An approach to represent molecular databases.J. Cheminform.201791910.1186/s13321‑017‑0195‑1 28224019
    [Google Scholar]
  26. YuS.H. WangH.L. An updated decision tree for horizontal ridge augmentation: A narrative review.Int. J. Periodontics Restorative Dent.202242334134910.11607/prd.5031 35472110
    [Google Scholar]
  27. DuT. XuY. XuX. XiongS. ZhangL. DongB. HuangJ. HuangT. XiaoM. XiongT. XieM. ACE inhibitory peptides from enzymatic hydrolysate of fermented black sesame seed: Random forest-based optimization, screening, and molecular docking analysis.Food Chem.2024437Pt 213792110.1016/j.foodchem.2023.137921 37944395
    [Google Scholar]
  28. JiangY. LiuW. LiT. HuY. ChenS. XiS. WenY. HuangL. ZhaoL. XiaoC. HuangX. HanZ. LiuH. QiX. YangY. YuJ. CaiS. LiG. Prognostic and predictive value of p21-activated kinase 6 associated support vector machine classifier in gastric cancer treated by 5-fluorouracil/oxaliplatin chemotherapy.EBioMedicine201722788810.1016/j.ebiom.2017.06.028 28687498
    [Google Scholar]
  29. WankhadeN. SharmaA. WaniM.A. BanerjeeA. GargP. Predictive modeling and drug repurposing for Type-II diabetes.ACS Med. Chem. Lett.202415111907191710.1021/acsmedchemlett.4c00358 39563823
    [Google Scholar]
  30. LiS. DingY. ChenM. ChenY. KirchmairJ. ZhuZ. WuS. XiaJ. HDAC3i‐Finder: A machine learning‐based computational tool to screen for HDAC3 inhibitors.Mol. Inform.2021403200010510.1002/minf.202000105 33067876
    [Google Scholar]
  31. TanakaT. [Fundamentals] 5. Python+scikit-learn for machine learning in medical imaging.Nippon Hoshasen Gijutsu Gakkai Zasshi202379101189119310.6009/jjrt.2023‑2266 37866903
    [Google Scholar]
  32. WarkentinM.T. Al-SawaiheyH. LamS. LiuG. DiergaardeB. YuanJ.M. WilsonD.O. Atkar-KhattraS. GrantB. BrhaneY. Khodayari-MoezE. MurisonK.R. TammemagiM.C. CampbellK.R. HungR.J. Radiomics analysis to predict pulmonary nodule malignancy using machine learning approaches.Thorax2024794thorax-2023-22022610.1136/thorax‑2023‑22022638195644
    [Google Scholar]
  33. SunnetciK.M. AlkanA. Biphasic majority voting-based comparative COVID-19 diagnosis using chest X-ray images.Expert Syst. Appl.202321611943010.1016/j.eswa.2022.119430 36570382
    [Google Scholar]
  34. CuiQ. ZhangY. MaY. YuH. ZhaoX. ZhangL. GeS. ZhangG. QinX. A network pharmacology approach to investigate the mechanism of Shuxuening injection in the treatment of ischemic stroke.J. Ethnopharmacol.202025711289110.1016/j.jep.2020.112891 32315738
    [Google Scholar]
  35. HahnD.F. GapsysV. de GrootB.L. MobleyD.L. TresadernG. Current state of open source force fields in protein–ligand binding affinity predictions.J. Chem. Inf. Model.202464135063507610.1021/acs.jcim.4c00417 38895959
    [Google Scholar]
  36. DhawaleS.A. DabhadeP.S. MokaleS.N. Discovery of new quinazoline derivatives as VEGFR-2 inhibitors: Design, Synthesis, and anti-proliferative studies.Anticancer. Agents Med. Chem.202323182042205510.2174/1871520623666230714152455 37455449
    [Google Scholar]
  37. LeeT.S. AllenB.K. GieseT.J. GuoZ. LiP. LinC. McGeeT.D.Jr PearlmanD.A. RadakB.K. TaoY. TsaiH.C. XuH. ShermanW. YorkD.M. Alchemical binding free energy calculations in AMBER20: Advances and best practices for drug discovery.J. Chem. Inf. Model.202060115595562310.1021/acs.jcim.0c00613 32936637
    [Google Scholar]
  38. WangJ. WangW. KollmanP.A. CaseD.A. Automatic atom type and bond type perception in molecular mechanical calculations.J. Mol. Graph. Model.200625224726010.1016/j.jmgm.2005.12.005 16458552
    [Google Scholar]
  39. WangJ. WolfR.M. CaldwellJ.W. KollmanP.A. CaseD.A. Development and testing of a general amber force field.J. Comput. Chem.20042591157117410.1002/jcc.20035 15116359
    [Google Scholar]
  40. MaierJ.A. MartinezC. KasavajhalaK. WickstromL. HauserK.E. SimmerlingC. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB.J. Chem. Theory Comput.20151183696371310.1021/acs.jctc.5b00255 26574453
    [Google Scholar]
  41. SaguiC. DardenT.A. Molecular dynamics simulations of biomolecules: Long-range electrostatic effects.Annu. Rev. Biophys. Biomol. Struct.199928115517910.1146/annurev.biophys.28.1.155 10410799
    [Google Scholar]
  42. LariniL. MannellaR. LeporiniD. Langevin stabilization of molecular-dynamics simulations of polymers by means of quasisymplectic algorithms.J. Chem. Phys.20071261010410110.1063/1.2464095 17362055
    [Google Scholar]
  43. GenhedenS. RydeU. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities.Expert Opin. Drug Discov.201510544946110.1517/17460441.2015.1032936 25835573
    [Google Scholar]
  44. ZhengX. WangW. PiaoH. XuW. ShiH. ZhaoC. The genus Gnaphalium L. (Compositae): Phytochemical and pharmacological characteristics.Molecules20131878298831810.3390/molecules18078298 23860277
    [Google Scholar]
  45. ParkS. ShinH.J. ShahM. ChoH.Y. AnwarM.A. AchekA. KwonH.K. LeeB. YooT.H. ChoiS. TLR4/MD2 specific peptides stalled in vivo LPS-induced immune exacerbation.Biomaterials2017126496010.1016/j.biomaterials.2017.02.023 28254693
    [Google Scholar]
  46. LockerK.C.S. KachapatiK. WuY. BednarK.J. AdamsD. PatelC. TsukamotoH. HeuerL.S. AronowB.J. HerrA.B. RidgwayW.M. Endosomal sequestration of TLR4 antibody induces myeloid-derived suppressor cells and reverses acute type 1 diabetes.Diabetes202271347048210.2337/db21‑0426 35040474
    [Google Scholar]
  47. ZhanH. PuQ. LongX. LuW. WangG. MengF. LiaoZ. LanX. ChenM. Oxybaphus himalaicus mitigates lipopolysaccharide-induced acute kidney injury by inhibiting TLR4/MD2 complex formation.Antioxidants20221112230710.3390/antiox11122307 36552516
    [Google Scholar]
  48. ZhangT. XingS. DuJ. XiaJ. DongS. LiZ. LiuZ. SongY. Discovery of novel TLR4/MD-2 inhibitors: Receptor structure-based virtual screening studies and anti-inflammatory evaluation.Bioorg. Chem.202314110688010.1016/j.bioorg.2023.106880 37783098
    [Google Scholar]
  49. HeineH. ZamyatinaA. Therapeutic targeting of TLR4 for inflammation, infection, and cancer: A perspective for disaccharide lipid a mimetics.Pharmaceuticals20221612310.3390/ph16010023 36678520
    [Google Scholar]
  50. PanwarU. MuraliA. KhanM.A. SelvarajC. SinghS.K. Virtual screening process: A guide in modern drug designing.Methods Mol. Biol.20242714213110.1007/978‑1‑0716‑3441‑7_2 37676591
    [Google Scholar]
  51. LiJ. CsakaiA. JinJ. ZhangF. YinH. Therapeutic developments targeting toll‐like receptor‐4‐mediated neuroinflammation.ChemMedChem201611215416510.1002/cmdc.201500188 26136385
    [Google Scholar]
  52. LeeH-H. ShinJ-S. ChungK-S. KimJ-M. JungS-H. YooH-S. HassanA.H.E. LeeJ.K. InnK.S. LeeS. KimN.J. LeeK.T. 3′,4′-Dihydroxyflavone mitigates inflammatory responses by inhibiting LPS and TLR4/MD2 interaction.Phytomedicine202310915455310.1016/j.phymed.2022.154553 36610153
    [Google Scholar]
  53. UedaH. Prothymosin α plays role as a brain guardian through Ecto-F1 ATPase-P2Y12 complex and TLR4/MD2.Cells202312349610.3390/cells12030496 36766838
    [Google Scholar]
  54. ChenH. YanT. SongZ. YingS. WuB. JuX. YangX. QuJ. WuW. ZhangZ. WangY. MD2 blockade prevents modified LDL-induced retinal injury in diabetes by suppressing NADPH oxidase-4 interaction with Toll-like receptor-4.Exp. Mol. Med.202153468169410.1038/s12276‑021‑00607‑w 33875782
    [Google Scholar]
  55. KimH.M. ParkB.S. KimJ.I. KimS.E. LeeJ. OhS.C. EnkhbayarP. MatsushimaN. LeeH. YooO.J. LeeJ.O. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran.Cell2007130590691710.1016/j.cell.2007.08.002 17803912
    [Google Scholar]
  56. ArtnerD. OblakA. IttigS. GarateJ.A. HorvatS. ArrieumerlouC. HofingerA. OostenbrinkC. JeralaR. KosmaP. ZamyatinaA. Conformationally constrained lipid A mimetics for exploration of structural basis of TLR4/MD-2 activation by lipopolysaccharide.ACS Chem. Biol.20138112423243210.1021/cb4003199 23952219
    [Google Scholar]
  57. CochetF. FacchiniF.A. ZaffaroniL. BillodJ.M. CoelhoH. HolgadoA. BraunH. BeyaertR. JeralaR. Jimenez-BarberoJ. Martin-SantamariaS. PeriF. Novel carboxylate-based glycolipids: TLR4 antagonism, MD-2 binding and self-assembly properties.Sci. Rep.20199191910.1038/s41598‑018‑37421‑w 30696900
    [Google Scholar]
  58. TafazzolA. DuanY. Key residues in TLR4-MD2 tetramer formation identified by free energy simulations.PLOS Comput. Biol.20191510e100722810.1371/journal.pcbi.1007228 31609969
    [Google Scholar]
  59. WangY. ShanX. DaiY. JiangL. ChenG. ZhangY. WangZ. DongL. WuJ. GuoG. LiangG. curcumin analog l48h37 prevents lipopolysaccharide-induced TLR4 signaling pathway activation and sepsis via targeting MD2.J. Pharmacol. Exp. Ther.2015353353955010.1124/jpet.115.222570 25862641
    [Google Scholar]
  60. LiJ. ChenY. LiR. ZhangX. ChenT. MeiF. LiuR. ChenM. GeY. HuH. WeiR. ChenZ. FanH. ZengZ. DengY. LuoH. HuS. CaiS. WuF. ShiN. WangZ. ZengY. XieM. JiangY. ChenZ. JiaW. ChenP. Gut microbial metabolite hyodeoxycholic acid targets the TLR4/MD2 complex to attenuate inflammation and protect against sepsis.Mol. Ther.20233141017103210.1016/j.ymthe.2023.01.018 36698311
    [Google Scholar]
  61. BaiG. MatsubaT. KikuchiH. Chagan-YasutanH. MotodaH. OzuruR. YamadaO. OshimaY. HattoriT. Inhibition of inflammatory-molecule synthesis in THP-1 cells stimulated with phorbol 12-myristate 13-acetate by brefelamide derivatives.Int. Immunopharmacol.20197510583110.1016/j.intimp.2019.105831 31437790
    [Google Scholar]
  62. BaiG. MotodaH. OzuruR. Chagan-YasutanH. HattoriT. MatsubaT. Synthesis of a cleaved form of osteopontin by THP-1 cells and its alteration by phorbol 12-Myristate 13-Acetate and BCG infection.Int. J. Mol. Sci.201819241810.3390/ijms19020418 29385060
    [Google Scholar]
  63. KongF. YeB. CaoJ. CaiX. LinL. HuangS. HuangW. HuangZ. Curcumin represses NLRP3 inflammasome activation via TLR4/MyD88/NF-κB and P2X7R signaling in PMA-Induced macrophages.Front. Pharmacol.2016736910.3389/fphar.2016.00369 27777559
    [Google Scholar]
  64. ZhouF. ChenY. JinC. QianC. ZhuB. ZhouY. DingZ. WangY. Polysaccharide isolated From Tetrastigma hemsleyanum activates TLR4 in macrophage cell lines and enhances immune responses in OVA-immunized and LLC-bearing mouse models.Front. Pharmacol.20211260905910.3389/fphar.2021.609059 33841142
    [Google Scholar]
  65. ZhangB. LianW. ZhaoJ. WangZ. LiuA. DuG. DL0410 Alleviates memory impairment in D‐Galactose‐induced aging rats by suppressing neuroinflammation via the TLR4/MyD88/NF‐ κ B pathway.Oxid. Med. Cell. Longev.202120211652114610.1155/2021/6521146 34650664
    [Google Scholar]
  66. HaoT. YangY. LiN. MiY. ZhangG. SongJ. LiangY. XiaoJ. ZhouD. HeD. HouY. Inflammatory mechanism of cerebral ischemia-reperfusion injury with treatment of stepharine in rats.Phytomedicine20207915335310.1016/j.phymed.2020.153353 33007731
    [Google Scholar]
  67. RehmanS.U. AliT. AlamS.I. UllahR. ZebA. LeeK.W. RuttenB.P.F. KimM.O. Ferulic acid rescues LPS-induced neurotoxicity via modulation of the TLR4 Receptor in the mouse hippocampus.Mol. Neurobiol.20195642774279010.1007/s12035‑018‑1280‑9 30058023
    [Google Scholar]
  68. HutchinsonM.R. NorthcuttA.L. HiranitaT. WangX. LewisS.S. ThomasJ. van SteegK. KopajticT.A. LoramL.C. SfregolaC. GalerE. MilesN.E. BlandS.T. AmatJ. RozeskeR.R. MaslanikT. ChapmanT.R. StrandK.A. FleshnerM. BachtellR.K. SomogyiA.A. YinH. KatzJ.L. RiceK.C. MaierS.F. WatkinsL.R. Opioid activation of toll-like receptor 4 contributes to drug reinforcement.J. Neurosci.20123233111871120010.1523/JNEUROSCI.0684‑12.2012 22895704
    [Google Scholar]
  69. ZhangT. LinC. WuS. JinS. LiX. PengY. WangX. ACT001 inhibits TLR4 signaling by targeting co-receptor MD2 and Attenuates neuropathic pain.Front. Immunol.20221387305410.3389/fimmu.2022.873054 35757727
    [Google Scholar]
  70. MichalskaP. BuendiaI. DuarteP. FernandezMendivilC. NegredoP. CuadradoA. LópezM.G. LeonR. Melatonin-sulforaphane hybrid ITH12674 attenuates glial response in vivo by blocking LPS binding to MD2 and receptor oligomerization.Pharmacol. Res.202015210459710.1016/j.phrs.2019.104597 31838078
    [Google Scholar]
  71. ChenH. ZhangY. ZhangW. LiuH. SunC. ZhangB. BaiB. WuD. XiaoZ. LumH. ZhouJ. ChenR. LiangG. Inhibition of myeloid differentiation factor 2 by baicalein protects against acute lung injury.Phytomedicine20196315299710.1016/j.phymed.2019.152997 31254764
    [Google Scholar]
  72. ZengL. WangY. LiN. NiuM. WangY. ChenP. Protective effect of a novel (2S, 3R, 4S)-Chromene-3-Carboxamide derivative, Z20 against sepsis-induced organ injury.Inflammation20204341222123210.1007/s10753‑019‑01174‑z 32462546
    [Google Scholar]
  73. GratalP. MedieroA. LamuedraA. Matamoros-RecioA. HerenciaC. Herrero-BeaumontG. Martín-SantamaríaS. LargoR. 6‐Shogaol (enexasogoal) treatment improves experimental knee osteoarthritis exerting a pleiotropic effect over immune innate signalling responses in chondrocytes.Br. J. Pharmacol.2022179225089510810.1111/bph.15908 35760458
    [Google Scholar]
  74. YuZ. YueB. GaoR. ZhangB. GengX. LvC. WangH. WangZ. WangZ. DouW. Gastrodin Attenuates colitis and prevents tumorigenesis in mice by interrupting TLR4/MD2/NF-κB signaling transduction.Anticancer. Agents Med. Chem.2024241185386610.2174/0118715206286233240328045215 38584532
    [Google Scholar]
  75. HsuR.Y.C. ChanC.H.F. SpicerJ.D. RousseauM.C. GianniasB. RousseauS. FerriL.E. LPS-induced TLR4 signaling in human colorectal cancer cells increases beta1 integrin-mediated cell adhesion and liver metastasis.Cancer Res.20117151989199810.1158/0008‑5472.CAN‑10‑2833 21363926
    [Google Scholar]
  76. RajamanickamV. YanT. XuS. HuiJ. XuX. RenL. LiuZ. LiangG. WangO. WangY. Selective targeting of the TLR4 co-receptor, MD2, prevents colon cancer growth and lung metastasis.Int. J. Biol. Sci.20201681288130110.7150/ijbs.39098 32210720
    [Google Scholar]
  77. KanczkowskiW. TymoszukP. Ehrhart-BornsteinM. WirthM.P. ZacharowskiK. BornsteinS.R. Abrogation of TLR4 and CD14 expression and signaling in human adrenocortical tumors.J. Clin. Endocrinol. Metab.20109512E421E42910.1210/jc.2010‑1100 20826579
    [Google Scholar]
  78. Pérez-RegidorL. Guzmán-CaldenteyJ. OberhauserN. PunzónC. BaloghB. PedroJ.R. FalomirE. NurissoA. MátyusP. MenéndezJ.C. de AndrésB. FresnoM. Martín-SantamaríaS. Small molecules as toll-like receptor 4 modulators drug and In-House computational repurposing.Biomedicines2022109232610.3390/biomedicines10092326 36140427
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266345918250212144023
Loading
/content/journals/ctmc/10.2174/0115680266345918250212144023
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test