Skip to content
2000
image of Nanoencapsulation of Essential Oil: A Tailored System of Green Therapeutic Potential

Abstract

Essential oils (EOs) are at the forefront of the pharmaceutical industry today and have been rekindled as natural drugs with innovative techniques. However, many factors related to their volatility and deterioration can be captured by encapsulation. The nanoencapsulation of EO is a novel development to protect EOs from environmental factors in order to retain their biochemical and pharmacological properties, thus leading toward sustainable health advancement. Nanoencapsulation of essential oil (EO) is a fascinating technique to solve the instability problem of EOs in the presence of light, air, moisture, and temperature variations. In addition to this, this process ensures safer handling with controlled release, along with improved efficacy and bioavailability. This review outlines the most outstanding methods for the nanoencapsulation of EOs and their mechanism of action against disease pathogenesis.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266342801250303004033
2025-04-24
2025-09-13
Loading full text...

Full text loading...

References

  1. Fadel D.R. History of the perfume industry in greco-roman Egypt. Int. J. Hist. Cult Stud 2020 6 4 26 45 10.20431/2454‑7654.0604003
    [Google Scholar]
  2. Rizvi S.A.A. Einstein G.P. Tulp O.L. Sainvil F. Branly R. Introduction to traditional medicine and their role in prevention and treatment of emerging and re-emerging diseases. Biomolecules 2022 12 10 1442 10.3390/biom12101442 36291651
    [Google Scholar]
  3. Posada E. The ayurveda natural medicine system and its environmental implications. Environ. Sci. Indian J. 2017 13 4 144
    [Google Scholar]
  4. Patwardhan B. Bridging Ayurveda with evidence-based scientific approaches in medicine. EPMA J. 2014 5 1 19 10.1186/1878‑5085‑5‑19 25395997
    [Google Scholar]
  5. Swathi K. Sundaravadivelu S. Ayurveda and transdisciplinary approaches: A way forward towards personalized and preventive medicine. Indian J. Pharm. Sci. 2023 85 6 1574 1585
    [Google Scholar]
  6. Blanco-Padilla A. Soto K.M. Hernández Iturriaga M. Mendoza S. Food antimicrobials nanocarriers. ScientificWorldJournal 2014 2014 1 11 10.1155/2014/837215 24995363
    [Google Scholar]
  7. Yousefi S. Weisany W. Hosseini S.E. Ghasemlou M. Mechanisms of nanoencapsulation to boost the antimicrobial efficacy of essential oils: A review. Food Hydrocoll. 2024 150 109655 10.1016/j.foodhyd.2023.109655
    [Google Scholar]
  8. Kedia A. Dubey N.K. Nanoencapsulation of essential oils: A possible way for an eco-friendly strategy to control postharvest spoilage of food commodities from pests. In:Nanomaterials in Plants, Algae, and Microorganisms. Academic Press 2018 501 522 10.1016/B978‑0‑12‑811487‑2.00022‑0
    [Google Scholar]
  9. Plati F. Paraskevopoulou A. Micro- and nano-encapsulation as tools for essential oils advantages’ exploitation in food applications: The case of oregano essential oil. Food Bioprocess Technol. 2022 15 5 949 977 10.1007/s11947‑021‑02746‑4
    [Google Scholar]
  10. Bazana M.T. Codevilla C.F. de Menezes C.R. Nanoencapsulation of bioactive compounds: Challenges and perspectives. Curr. Opin. Food Sci. 2019 26 47 56 10.1016/j.cofs.2019.03.005
    [Google Scholar]
  11. Albuquerque P.M. Azevedo S.G. de Andrade C.P. D’Ambros N.C.S. Pérez M.T.M. Manzato L. Biotechnological applications of nanoencapsulated essential oils: A review. Polymers 2022 14 24 5495 10.3390/polym14245495 36559861
    [Google Scholar]
  12. Gómez-Guillén M.C. Montero M.P. Enhancement of oral bioavailability of natural compounds and probiotics by mucoadhesive tailored biopolymer-based nanoparticles: A review. Food Hydrocoll. 2021 118 106772 10.1016/j.foodhyd.2021.106772
    [Google Scholar]
  13. Liu Q. Huang H. Chen H. Lin J. Wang Q. Food-grade nanoemulsions: Preparation, stability and application in encapsulation of bioactive compounds. Molecules 2019 24 23 4242 10.3390/molecules24234242 31766473
    [Google Scholar]
  14. Soni M. Yadav A. Maurya A. Das S. Dubey N.K. Dwivedy A.K. Advances in designing essential oil nanoformulations: An integrative approach to mathematical modeling with potential application in food preservation. Foods 2023 12 21 4017 10.3390/foods12214017 37959136
    [Google Scholar]
  15. Oprea I. Fărcaș A.C. Leopold L.F. Diaconeasa Z. Coman C. Socaci S.A. Nano-encapsulation of citrus essential oils: Methods and applications of interest for the food sector. Polymers 2022 14 21 4505 10.3390/polym14214505 36365499
    [Google Scholar]
  16. Mathai R.V. Jindal M.K. Mitra J.C. Sar S.K. COVID-19 and medicinal plants: A critical perspective. Forensic Sci. Int. Anim. Environ. 2022 2 100043 10.1016/j.fsiae.2022.100043 35187518
    [Google Scholar]
  17. Atanasov A.G. Waltenberger B. Pferschy-Wenzig E.M. Linder T. Wawrosch C. Uhrin P. Temml V. Wang L. Schwaiger S. Heiss E.H. Rollinger J.M. Schuster D. Breuss J.M. Bochkov V. Mihovilovic M.D. Kopp B. Bauer R. Dirsch V.M. Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015 33 8 1582 1614 10.1016/j.biotechadv.2015.08.001 26281720
    [Google Scholar]
  18. Mohamed I. Shuid A. Borhanuddin B. Fozi N. The application of phytomedicine in modern drug development. Internet J. Herb Plant. Med. 2012 1 2
    [Google Scholar]
  19. Robinson M.M. Xiaorui Z. The World Medicines Situation (Traditional Medicines: Global Situation, Issues Andchallenges). Geneva, Switzerland World Heal Organization 2011
    [Google Scholar]
  20. Sharifi-Rad J. Sureda A. Tenore G. Daglia M. Sharifi-Rad M. Valussi M. Tundis R. Sharifi-Rad M. Loizzo M. Ademiluyi A. Sharifi-Rad R. Ayatollahi S. Iriti M. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 2017 22 1 70 10.3390/molecules22010070 28045446
    [Google Scholar]
  21. Bakkali F. Averbeck S. Averbeck D. Idaomar M. Biological effects of essential oils – A review. Food Chem. Toxicol. 2008 46 2 446 475 10.1016/j.fct.2007.09.106 17996351
    [Google Scholar]
  22. Raut J.S. Karuppayil S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod. 2014 62 250 264 10.1016/j.indcrop.2014.05.055
    [Google Scholar]
  23. Adorjan B. Buchbauer G. Biological properties of essential oils: An updated review. Flavour Fragrance J. 2010 25 6 407 426 10.1002/ffj.2024
    [Google Scholar]
  24. Karnwal A. Malik T. Exploring the untapped potential of naturally occurring antimicrobial compounds: Novel advancements in food preservation for enhanced safety and sustainability. Front. Sustain. Food Syst. 2024 8 1307210 10.3389/fsufs.2024.1307210
    [Google Scholar]
  25. Tisserand R. Young R. Essential Oil Safety—E-Book: A Guide for Health. Care Professionals. 2nd ed Amsterdam, The Netherlands Elsevier 2014
    [Google Scholar]
  26. Shukla A.C. Essential oils as green pesticides for postharvest disease management. Acta Hortic. 2018 1210 199 206 10.17660/ActaHortic.2018.1210.28
    [Google Scholar]
  27. Debonne E. Van Bockstaele F. Samapundo S. Eeckhout M. Devlieghere F. The use of essential oils as natural antifungal preservatives in bread products. J. Essent. Oil Res. 2018 30 5 309 318 10.1080/10412905.2018.1486239
    [Google Scholar]
  28. Bajpai V.K. Baek K.H. Kang S.C. Control of Salmonella in foods by using essential oils: A review. Food Res. Int. 2012 45 2 722 734 10.1016/j.foodres.2011.04.052
    [Google Scholar]
  29. Fisher K. Phillips C. Potential antimicrobial uses of essential oils in food: Is citrus the answer? Trends Food Sci. Technol. 2008 19 3 156 164 10.1016/j.tifs.2007.11.006
    [Google Scholar]
  30. Guinoiseau E. Luciani A. Rossi P.G. Quilichini Y. Ternengo S. Bradesi P. Berti L. Cellular effects induced by Inula graveolens and Santolina corsica essential oils on Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 2010 29 7 873 879 10.1007/s10096‑010‑0943‑x 20490884
    [Google Scholar]
  31. Friedly E.C. Crandall P.G. Ricke S.C. Roman M. O’Bryan C. Chalova V.I. In vitro antilisterial effects of citrus oil fractions in combination with organic acids. J. Food Sci. 2009 74 2 M67 M72 10.1111/j.1750‑3841.2009.01056.x 19323760
    [Google Scholar]
  32. Saritha G.N.G. Anju T. Kumar A. Nanotechnology - Big impact: How nanotechnology is changing the future of agriculture? J. Agric. Food Res. 2022 10 100457 10.1016/j.jafr.2022.100457
    [Google Scholar]
  33. Preedy V.R. Essential Oils in Food. Preservation, Flavor and Safety. New York, NY, USA Elsevier Science Publishing Co Inc. 2016
    [Google Scholar]
  34. Turek C. Stintzing F.C. Stability of essential oils: A review. Compr. Rev. Food Sci. Food Saf. 2013 12 1 40 53 10.1111/1541‑4337.12006
    [Google Scholar]
  35. Bilia A.R. Guccione C. Isacchi B. Righeschi C. Firenzuoli F. Bergonzi M.C. Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach. Evid. Based Complement. Alternat. Med. 2014 2014 1 651593 10.1155/2014/651593 24971152
    [Google Scholar]
  36. Pedro A.S. Santo I.E. Silva C.V. Detoni C. Albuquerque E. Méndez-Vilas A. The use of nanotechnology as an approach for essential oil-based formulations with antimicrobial activity In:Microbial pathogens and strategies for combating them: science, technology and education Formatex 2013 2 1364 1374
    [Google Scholar]
  37. Sousa V.I. Parente J.F. Marques J.F. Forte M.A. Tavares C.J. Microencapsulation of essential oils: A review. Polymers 2022 14 9 1730 10.3390/polym14091730 35566899
    [Google Scholar]
  38. Kumar A. Kanwar R. Mehta S.K. Nanoemulsion as an effective delivery vehicle for essential oils: Properties, formulation methods, destabilizing mechanisms and applications in agri-food sector. Next Nanotechnology 2025 7 100096 10.1016/j.nxnano.2024.100096
    [Google Scholar]
  39. Vishwakarma G.S. Gautam N. Babu J.N. Mittal S. Jaitak V. Polymeric encapsulates of essential oils and their constituents: A review of preparation techniques, characterization, and sustainable release mechanisms. Polym. Rev 2016 56 4 668 701 10.1080/15583724.2015.1123725
    [Google Scholar]
  40. Bakry A.M. Abbas S. Ali B. Majeed H. Abouelwafa M.Y. Mousa A. Liang L. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Compr. Rev. Food Sci. Food Saf. 2016 15 1 143 182 10.1111/1541‑4337.12179 33371581
    [Google Scholar]
  41. Mahdi A.A. Al-Maqtari Q.A. Mohammed J.K. Al-Ansi W. Aqeel S.M. Cui H. Lin L. Nanoencapsulation of mandarin essential oil: Fabrication, characterization, and storage stability. Foods 2021 11 1 54 10.3390/foods11010054 35010180
    [Google Scholar]
  42. Jummes B. Sganzerla W.G. da Rosa C.G. Noronha C.M. Nunes M.R. Bertoldi F.C. Barreto P.L.M. Antioxidant and antimicrobial poly-ε-caprolactone nanoparticles loaded with Cymbopogon martinii essential oil. Biocatal. Agric. Biotechnol. 2020 23 101499 10.1016/j.bcab.2020.101499
    [Google Scholar]
  43. Ephrem E. Greige-Gerges H. Fessi H. Charcosset C. Optimisation of rosemary oil encapsulation in polycaprolactone and scale-up of the process. J. Microencapsul. 2014 31 8 746 753 10.3109/02652048.2014.918669 24963962
    [Google Scholar]
  44. Esfandyari-Manesh M. Ghaedi Z. Asemi M. Khanavi M. Manayi A. Jamalifar H. Atyabi F. Dinarvand R. Study of antimicrobial activity of anethole and carvone loaded PLGA nanoparticles. J. Pharm. Res. 2013 7 4 290 295 10.1016/j.jopr.2013.04.019
    [Google Scholar]
  45. Pina-Barrera A.M. Alvarez-Roman R. Baez-Gonzalez J.G. Amaya-Guerra C.A. Rivas-Morales C. Gallardo-Rivera C.T. Galindo-Rodriguez S.A. Application of a multisystem coating based on polymeric nanocapsules containing essential oil of Thymus vulgaris L. to increase the shelf life of table grapes (Vitis vinifera L.). IEEE Trans. Nanobiosci. 2019 18 4 549 557 10.1109/TNB.2019.2941931 31562097
    [Google Scholar]
  46. Froiio F. Ginot L. Paolino D. Lebaz N. Bentaher A. Fessi H. Elaissari A. Essential oils-loaded polymer particles: Preparation, characterization and antimicrobial property. Polymers 2019 11 6 1017 10.3390/polym11061017 31181851
    [Google Scholar]
  47. Silva-Flores P.G. Pérez-López L.A. Rivas-Galindo V.M. Paniagua-Vega D. Galindo-Rodríguez S.A. Álvarez-Román R. Simultaneous GC-FID quantification of main components of Rosmarinus officinalis L. and Lavandula dentata L. essential oils in polymeric nanocapsules for antioxidant application. J. Anal. Methods Chem. 2019 2019 1 9 10.1155/2019/2837406 30881726
    [Google Scholar]
  48. Liakos I.L. Iordache F. Carzino R. Scarpellini A. Oneto M. Bianchini P. Grumezescu A.M. Holban A.M. Mihai A. Maria A. Cellulose acetate - essential oil nanocapsules with antimicrobial activity for biomedical applications. Colloids Surf. B Biointerfaces 2018 172 471 479 10.1016/j.colsurfb.2018.08.069 30199764
    [Google Scholar]
  49. Chávez-Magdaleno M.E. Luque-Alcaraz A.G. Gutierrez-Martınez P. Cortez-Rocha M.O. Burgos-Hernandez A. Lizardi-Mendoza J. Plascencia-Jatomea M. Effect of chitosan-pepper tree (Schinus molle) essential oil biocomposites on the growth kinetics, viability and membrane integrity of Colletotrichum gloeosporioides. Rev. Mex. Ing. Quim. 2017 17 1 29 45 10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Chavez
    [Google Scholar]
  50. Sotelo-Boyás M. Correa-Pacheco Z. Bautista-Baños S. Gómez y Gómez Y. Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria. Int. J. Biol. Macromol. 2017 103 409 414 10.1016/j.ijbiomac.2017.05.063 28526346
    [Google Scholar]
  51. Luque-Alcaraz A.G. Cortez-Rocha M.O. Velázquez-Contreras C.A. Acosta-Silva A.L. Santacruz-Ortega H.C. Burgos-Hernández A. Argüelles-Monal W.M. Plascencia-Jatomea M. Enhanced antifungal effect of chitosan/pepper tree (Schinus molle L.) essential oil bionanocomposites on the viability of Aspergillus parasiticus spores. J. Nanomater. 2016 2016 1 10 10.1155/2016/6060137
    [Google Scholar]
  52. Asbahani A.E. Miladi K. Addi E.H.A. Bitar A. Casabianca H. Mousadik A.E. Hartmann D.J. Jilale A. Renaud F.N.R. Elaissari A. Antimicrobial activity of nano-encapsulated essential oils: Comparison to non-encapsulated essential oils. J. Colloid Sci. Biotechnol. 2015 4 1 39 48 10.1166/jcsb.2015.1118
    [Google Scholar]
  53. Fessi H. Puisieux F. Devissaguet J.P. Ammoury N. Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 1989 55 1 R1 R4 10.1016/0378‑5173(89)90281‑0
    [Google Scholar]
  54. Mora-Huertas C.E. Fessi H. Elaissari A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 2010 385 1-2 113 142 10.1016/j.ijpharm.2009.10.018 19825408
    [Google Scholar]
  55. Lammari N. Louaer O. Meniai A.H. Elaissari A. Encapsulation of essential oils via nanoprecipitation process: Overview, progress, challenges and prospects. Pharmaceutics 2020 12 5 431 10.3390/pharmaceutics12050431 32392726
    [Google Scholar]
  56. Joye I.J. McClements D.J. Production of nanoparticles by anti-solvent precipitation for use in food systems. Trends Food Sci. Technol. 2013 34 2 109 123 10.1016/j.tifs.2013.10.002
    [Google Scholar]
  57. Sugimoto T. Preparation of monodispersed colloidal particles. Adv. Colloid Interface Sci. 1987 28 65 108 10.1016/0001‑8686(87)80009‑X
    [Google Scholar]
  58. de Almeida Campos L.A. de Souza J.B. de Queiroz Macêdo H.L.R. Borges J.C. de Oliveira D.N. Cavalcanti I.M.F. Synthesis of polymeric nanoparticles by double emulsion and pH-driven: encapsulation of antibiotics and natural products for combating Escherichia coli infections. Appl. Microbiol. Biotechnol. 2024 108 1 351 10.1007/s00253‑024‑13114‑5 38819646
    [Google Scholar]
  59. Katouzian I. Jafari S.M. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci. Technol. 2016 53 34 48 10.1016/j.tifs.2016.05.002
    [Google Scholar]
  60. Januario A.C.C. Valle G.C.X. Nanoencapsulation of essential and vegetable oils to obtain polymeric nanoparticles for dermocosmetics application. Health. Sci. Sci. Discov 2023 10.56238/ciesaudesv1‑056
    [Google Scholar]
  61. Attallah O.A. Shetta A. Elshishiny F. Mamdouh W. Essential oil loaded pectin/chitosan nanoparticles preparation and optimization via Box–Behnken design against MCF-7 breast cancer cell lines. RSC Advances 2020 10 15 8703 8708 10.1039/C9RA10204C 35496538
    [Google Scholar]
  62. Lenetha G.G A brief overview on the essential oils’ encapsulation with biodegradable polymers 2022 9 1 415 422
    [Google Scholar]
  63. Taban A. Saharkhiz M.J. Khorram M. Formulation and assessment of nano-encapsulated bioherbicides based on biopolymers and essential oil. Ind. Crops Prod. 2020 149 112348 10.1016/j.indcrop.2020.112348
    [Google Scholar]
  64. Carvalho I.T. Estevinho B.N. Santos L. Application of microencapsulated essential oils in cosmetic and personal healthcare products – a review. Int. J. Cosmet. Sci. 2016 38 2 109 119 10.1111/ics.12232 25923295
    [Google Scholar]
  65. Maes C. Bouquillon S. Fauconnier M.L. Encapsulation of essential oils for the development of biosourced pesticides with controlled release: A review. Molecules 2019 24 14 2539 10.3390/molecules24142539 31336803
    [Google Scholar]
  66. Valencia-Sullca C. Ben Messaoud G. Sánchez-González L. Tehrany E.A. Vargas M. Atarés L. Chiralt A. Chitosan films containing encapsulated eugenol in alginate microspheres. Food Hydrocoll. 2024 151 109791 10.1016/j.foodhyd.2024.109791
    [Google Scholar]
  67. Kala S. Sogan N. Naik S.N. Agarwal A. Kumar J. Impregnation of pectin-cedarwood essential oil nanocapsules onto mini cotton bag improves larvicidal performances. Sci. Rep. 2020 10 1 14107 10.1038/s41598‑020‑70889‑z 32839484
    [Google Scholar]
  68. Jonassen H. Treves A. Kjøniksen A.L. Smistad G. Hiorth M. Preparation of ionically cross-linked pectin nanoparticles in the presence of chlorides of divalent and monovalent cations. Biomacromolecules 2013 14 10 3523 3531 10.1021/bm4008474 24004278
    [Google Scholar]
  69. Wang H. Sun X. Seib P. Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate. J. Appl. Polym. Sci. 2001 82 7 1761 1767 10.1002/app.2018
    [Google Scholar]
  70. Nazzaro F. Fratianni F. De Martino L. Coppola R. De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013 6 12 1451 1474 10.3390/ph6121451 24287491
    [Google Scholar]
  71. Chouhan S. Sharma K. Guleria S. Antimicrobial activity of some essential oils: Present status and future perspectives. Medicines 2017 4 3 58 10.3390/medicines4030058 28930272
    [Google Scholar]
  72. Zaman S.B. Hussain M.A. Nye R. Mehta V. Mamun K.T. Hossain N. A review on antibiotic resistance: Alarm bells are ringing. Cureus 2017 9 6 1403 10.7759/cureus.1403 28852600
    [Google Scholar]
  73. Bhavaniramya S. Vishnupriya S. Al-Aboody M.S. Vijayakumar R. Baskaran D. Role of essential oils in food safety: Antimicrobial and antioxidant applications 2019 2 2 49 55 10.1016/j.gaost.2019.03.001
    [Google Scholar]
  74. El-Sayed S.M. El-Sayed H.S. Antimicrobial nanoemulsion formulation based on thyme (Thymus vulgaris) essential oil for UF labneh preservation. J. Mater. Res. Technol. 2021 10 1029 1041 10.1016/j.jmrt.2020.12.073
    [Google Scholar]
  75. Chu Y. Cheng W. Feng X. Gao C. Wu D. Meng L. Zhang Y. Tang X. Fabrication, structure and properties of pullulan-based active films incorporated with ultrasound-assisted cinnamon essential oil nanoemulsions. Food Packag. Shelf Life 2020 25 100547 10.1016/j.fpsl.2020.100547
    [Google Scholar]
  76. Maurya A. Singh V.K. Das S. Prasad J. Kedia A. Upadhyay N. Dubey N.K. Dwivedy A.K. Essential oil nanoemulsion as eco-friendly and safe preservative: Bioefficacy against microbial food deterioration and toxin secretion, mode of action, and future opportunities. Front. Microbiol. 2021 12 751062 10.3389/fmicb.2021.751062 34912311
    [Google Scholar]
  77. Irshad M. Subhani M.A. Ali S. Hussain A. Biological importance of essential oils. In:Essential Oils − Oils of Nature. United Kingdom Books on Demand 2020 10.5772/intechopen.87198
    [Google Scholar]
  78. Shin J. Na K. Shin S. Seo S.M. Youn H.J. Park I.K. Hyun J. Biological activity of thyme white essential oil stabilized by cellulose nanocrystals. Biomolecules 2019 9 12 799 10.3390/biom9120799 31795185
    [Google Scholar]
  79. Saporito F. Sandri G. Bonferoni M.C. Rossi S. Boselli C. Icaro Cornaglia A. Mannucci B. Grisoli P. Vigani B. Ferrari F. Essential oil-loaded lipid nanoparticles for wound healing. Int. J. Nanomedicine 2017 13 175 186 10.2147/IJN.S152529 29343956
    [Google Scholar]
  80. Rozman N.A.S. Tong W.Y. Leong C.R. Anuar M.R. Karim S. Ong S.K. Yusof F.A.M. Tan W.N. Sulaiman B. Ooi M.L. Lee K.C. Homalomena pineodora essential oil nanoparticle inhibits diabetic wound pathogens. Sci. Rep. 2020 10 1 3307 10.1038/s41598‑020‑60364‑0 32094395
    [Google Scholar]
  81. Ghodrati M. Farahpour M.R. Hamishehkar H. Encapsulation of Peppermint essential oil in nanostructured lipid carriers: In-vitro antibacterial activity and accelerative effect on infected wound healing. Colloids Surf. A Physicochem. Eng. Asp. 2019 564 161 169 10.1016/j.colsurfa.2018.12.043
    [Google Scholar]
  82. Sugumar S. Mukherjee A. Chandrasekaran N. Eucalyptus oil nanoemulsion-impregnated chitosan film: Antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro Int.J Nanomedicine 2015 10 Suppl 1 67 75 Suppl. 1 26491308
    [Google Scholar]
  83. Alam P. Shakeel F. Anwer M.K. Foudah A.I. Alqarni M.H. Wound healing study of eucalyptus essential oil containing nanoemulsion in rat model. J. Oleo Sci. 2018 67 8 957 968 10.5650/jos.ess18005 30012898
    [Google Scholar]
  84. Nouri A. Chitosan nano-encapsulation improves the effects of mint, thyme, and cinnamon essential oils in broiler chickens. Br. Poult. Sci. 2019 60 5 530 538 10.1080/00071668.2019.1622078 31124697
    [Google Scholar]
  85. Amiri N. Afsharmanesh M. Salarmoini M. Meimandipour A. Hosseini S.A. Ebrahimnejad H. Nanoencapsulation (in vitro and in vivo) as an efficient technology to boost the potential of garlic essential oil as alternatives for antibiotics in broiler nutrition. Animal 2021 15 1 100022 10.1016/j.animal.2020.100022 33573947
    [Google Scholar]
  86. Hosseini S.A. Meimandipour A. Feeding broilers with thyme essential oil loaded in chitosan nanoparticles: An efficient strategy for successful delivery. Br. Poult. Sci. 2018 59 6 669 678 10.1080/00071668.2018.1521511 30196710
    [Google Scholar]
  87. Ezhilarasi P.N. Karthik P. Chhanwal N. Anandharamakrishnan C. Nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess Technol. 2013 6 3 628 647 10.1007/s11947‑012‑0944‑0
    [Google Scholar]
  88. Luis A.I.S. Campos E.V.R. de Oliveira J.L. Guilger-Casagrande M. de Lima R. Castanha R.F. de Castro V.L.S.S. Fraceto L.F. Zein nanoparticles impregnated with eugenol and garlic essential oils for treating fish pathogens. ACS Omega 2020 5 25 15557 15566 10.1021/acsomega.0c01716 32637831
    [Google Scholar]
  89. Souza C.F. Baldissera M.D. Santos R.C.V. Raffin R.P. Baldisserotto B. Nanotechnology improves the therapeutic efficacy of Melaleuca alternifolia essential oil in experimentally infected Rhamdia quelen with Pseudomonas aeruginosa. Aquaculture 2017 473 169 171 10.1016/j.aquaculture.2017.02.014
    [Google Scholar]
  90. Suganya V. Anuradha V. Microencapsulation and nanoencapsulation: A review. Int. J. Pharm. Clin. Res. 2017 9 3 233 239 10.25258/ijpcr.v9i3.8324
    [Google Scholar]
  91. Bagheri R. Ariaii P. Motamedzadegan A. Characterization, antioxidant and antibacterial activities of chitosan nanoparticles loaded with nettle essential oil. J. Food Meas. Charact. 2021 15 2 1395 1402 10.1007/s11694‑020‑00738‑0
    [Google Scholar]
  92. Hadidi M. Pouramin S. Adinepour F. Haghani S. Jafari S.M. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydr. Polym. 2020 236 116075 10.1016/j.carbpol.2020.116075 32172888
    [Google Scholar]
  93. Jamil B. Abbasi R. Abbasi S. Imran M. Khan S.U. Ihsan A. Javed S. Bokhari H. Imran M. Encapsulation of cardamom essential oil in chitosan nano-composites: in-vitro efficacy on antibiotic-resistant bacterial pathogens and cytotoxicity studies. Front. Microbiol. 2016 7 7 1580 10.3389/fmicb.2016.01580 27757108
    [Google Scholar]
  94. Paula Zapelini de Melo A. Gonçalves da Rosa C. Sganzerla W.G. Synthesis and characterization of zein nanoparticles loaded with essential oil of Ocimum gratissimum and Pimenta racemosa. Mater. Res. Express 2019 6 095084
    [Google Scholar]
  95. Khezri K. Farahpour M.R. Mounesi Rad S. Efficacy of Mentha pulegium essential oil encapsulated into nanostructured lipid carriers as an in vitro antibacterial and infected wound healing agent. Colloids Surf. A Physicochem. Eng. Asp. 2020 589 124414 10.1016/j.colsurfa.2020.124414
    [Google Scholar]
  96. Cinteza L.O. Scomoroscenco C. Voicu S.N. Nistor C.L. Nitu S.G. Trica B. Jecu M.L. Petcu C. Chitosan-stabilized Ag nanoparticles with superior biocompatibility and their synergistic antibacterial effect in mixtures with essential oils. Nanomaterials 2018 8 10 826 10.3390/nano8100826 30322127
    [Google Scholar]
  97. Dupuis V. Cerbu C. Witkowski L. Potarniche A.V. Timar M.C. Żychska M. Sabliov C.M. Nanodelivery of essential oils as efficient tools against antimicrobial resistance: A review of the type and physical-chemical properties of the delivery systems and applications. Drug Deliv. 2022 29 1 1007 1024 10.1080/10717544.2022.2056663 35363104
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266342801250303004033
Loading
/content/journals/ctmc/10.2174/0115680266342801250303004033
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: nanoemulsion ; Nanoencapsulation ; nanoprecipitation ; polymer coating ; pathogenesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test