Skip to content
2000
Volume 25, Issue 24
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Liver cancer is the sixth most commonly diagnosed cancer globally, accounting for approximately 50% of all diagnosed cases and associated mortalities. The principal therapeutic strategies for liver cancer presently include surgical intervention, radiotherapy, and laser ablation therapies. All these therapies are effective for liver cancer at an early stage and have limited efficacy for advanced-stage cancer due to severe side effects and drug resistance. The plant-derived natural product, . phyto-constituents, has been evaluated as a potential anticancer drug due to low side effects and antitumor efficacy. Many studies support the effectiveness of active phytoconstituents found in various plants such as garlic, turmeric, tomatoes, grapes, pomegranates, plums, black currants, French beans, cruciferous vegetables, ginger, and asparagus. These plants are reported to have very diversified groups of compounds such as alkaloids, flavonoids, phenolics, terpenoids, coumarin, ., attributed to medicinal values and biological activities such as antiviral, antioxidant, anti-inflammatory, anticancer, . These plants provide important nutrients and help to maintain health, thereby reducing the risk of disease. Almost 50 drugs are directly or indirectly derived from natural sources because of minimum side effects and diversified chemical compounds. In this review, the anticancer properties of edible plants-derived phytomolecules, such as glycyrrhizin, triptolide, celastrol, berberine hydrochloride, curcumin, stilbenes, ., against Hepatocellular Carcinoma (HCC) are discussed in detail. Phytomolecules discussed in this review for HCC could be promising leads or drugs as anticancer agents from economical and easily available plant sources.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266321814250228070642
2025-04-21
2025-12-13
Loading full text...

Full text loading...

References

  1. BaloghJ. VictorD.III AshamE.H. BurroughsS.G. BoktourM. SahariaA. LiX. GhobrialM. MonsourH. Jr Hepatocellular carcinoma: A review.J. Hepatocell. Carcinoma20163415310.2147/JHC.S61146 27785449
    [Google Scholar]
  2. MarquardtJ.U. AndersenJ.B. ThorgeirssonS.S. Functional and genetic deconstruction of the cellular origin in liver cancer.Nat. Rev. Cancer2015151165366710.1038/nrc4017 26493646
    [Google Scholar]
  3. TorreL.A. BrayF. SiegelR.L. FerlayJ. Lortet-TieulentJ. JemalA. Global cancer statistics, 2012.CA Cancer J. Clin.20156528710810.3322/caac.21262 25651787
    [Google Scholar]
  4. de JongM.C. NathanH. SotiropoulosG.C. PaulA. AlexandrescuS. MarquesH. PulitanoC. BarrosoE. ClaryB.M. AldrighettiL. FerroneC.R. ZhuA.X. BauerT.W. WaltersD.M. GamblinT.C. NguyenK.T. TurleyR. PopescuI. HubertC. MeyerS. SchulickR.D. ChotiM.A. GigotJ.F. MenthaG. PawlikT.M. Intrahepatic cholangiocarcinoma: An international multi-institutional analysis of prognostic factors and lymph node assessment.J. Clin. Oncol.201129233140314510.1200/JCO.2011.35.6519 21730269
    [Google Scholar]
  5. ChatterjeeR. MitraA. An overview of effective therapies and recent advances in biomarkers for chronic liver diseases and associated liver cancer.Int. Immunopharmacol.201524233534510.1016/j.intimp.2014.12.024 25560752
    [Google Scholar]
  6. WangH. LuZ. ZhaoX. Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer.J. Hematol. Oncol.201912113310.1186/s13045‑019‑0806‑6 30606227
    [Google Scholar]
  7. DarveshA.S. BishayeeA. Chemopreventive and therapeutic potential of tea polyphenols in hepatocellular cancer.Nutr. Cancer201365332934410.1080/01635581.2013.767367 23530632
    [Google Scholar]
  8. HaH.L. ShinH.J. FeitelsonM.A. YuD.Y. Oxidative stress and antioxidants in hepatic pathogenesis.World J. Gastroenterol.201016486035604310.3748/wjg.v16.i48.6035 21182217
    [Google Scholar]
  9. KlaunigJ.E. KamendulisL.M. The role of oxidative stress in carcinogenesis.Annu. Rev. Pharmacol. Toxicol.200444123926710.1146/annurev.pharmtox.44.101802.121851 14744246
    [Google Scholar]
  10. PangR. TseE. PoonR.T.P. Molecular pathways in hepatocellular carcinoma.Cancer Lett.2006240215716910.1016/j.canlet.2005.08.031 16239065
    [Google Scholar]
  11. WongC.M. NgI.O.L. Molecular pathogenesis of hepatocellular carcinoma.Liver Int.200828216017410.1111/j.1478‑3231.2007.01637.x 18069974
    [Google Scholar]
  12. FrauM. BiasiF. FeoF. PascaleR.M. Prognostic markers and putative therapeutic targets for hepatocellular carcinoma.Mol. Aspects Med.201031217919310.1016/j.mam.2010.02.007 20176048
    [Google Scholar]
  13. SingalA.G. El-SeragH.B. Hepatocellular carcinoma from epidemiology to prevention: Translating knowledge into practice.Clin. Gastroenterol. Hepatol.201513122140215110.1016/j.cgh.2015.08.014 26284591
    [Google Scholar]
  14. GomesM.A. PriolliD.G. TralhãoJ.G. BotelhoM.F. Hepatocellular carcinoma: Epidemiology, biology, diagnosis, and therapies.Rev. Assoc. Med. Bras.201359551452410.1016/j.ramb.2013.03.005 24041910
    [Google Scholar]
  15. FinnR.S. Emerging targeted strategies in advanced hepatocellular carcinoma.Semin. Liver Dis.201333S 01S11S1910.1055/s‑0033‑1333632
    [Google Scholar]
  16. OkudaK. Hepatocellular carcinoma.J. Hepatol.2000321Suppl.22523710.1016/S0168‑8278(00)80428‑6 10728807
    [Google Scholar]
  17. TakayasuK. MuramatsuY. MoriyamaN. HasegawaH. MakuuchiM. OkazakiN. HirohashiS. TsuganeS. Clinical and radiologic assessments of the results of hepatectomy for small hepatocellular carcinoma and therapeutic arterial embolization for postoperative recurrence.Cancer19896491848185210.1002/1097‑0142(19891101)64:9<1848:AID‑CNCR2820640916>3.0.CO;2‑5 2477137
    [Google Scholar]
  18. SatoM. WatanabeY. UedaS. IsekiS. AbeY. SatoN. KimuraS. OkuboK. OnjiM. Microwave coagulation therapy for hepatocellular carcinoma.Gastroenterology199611051507151410.1053/gast.1996.v110.pm8613057 8613057
    [Google Scholar]
  19. LlovetJ.M. BurroughsA. BruixJ. Hepatocellular carcinoma.Lancet200336293991907191710.1016/S0140‑6736(03)14964‑1 14667750
    [Google Scholar]
  20. DaiX.Z. YinH.T. SunL.F. HuX. ZhouC. ZhouY. ZhangW. HuangX.E. LiX.C. Potential therapeutic efficacy of curcumin in liver cancer.Asian Pac. J. Cancer Prev.20131463855385910.7314/APJCP.2013.14.6.3855 23886196
    [Google Scholar]
  21. XiaJ. GaoJ.J. InagakiY. KokudoN. NakataM. TangW. Flavonoids as potential anti-hepatocellular carcinoma agents: Recent approaches using HepG2 cell line.Drug Discov. Ther.2013711810.5582/ddt.2013.v7.1.1 23524937
    [Google Scholar]
  22. MokdadA.A. LopezA.D. ShahrazS. LozanoR. MokdadA.H. StanawayJ. MurrayC.J.L. NaghaviM. Liver cirrhosis mortality in 187 countries between 1980 and 2010: A systematic analysis.BMC Med.201412114510.1186/s12916‑014‑0145‑y 25242656
    [Google Scholar]
  23. RehmJ. MathersC. PopovaS. ThavorncharoensapM. TeerawattananonY. PatraJ. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders.Lancet200937396822223223310.1016/S0140‑6736(09)60746‑7 19560604
    [Google Scholar]
  24. Department of Mental HealthSubstance Abuse. Global status report on alcohol 2004.World Health Organization2004
    [Google Scholar]
  25. Global status report on alcohol and health 2018; World Health Organization2018
    [Google Scholar]
  26. SteinE. Cruz-LeminiM. AltamiranoJ. NduggaN. CouperD. AbraldesJ.G. BatallerR. Heavy daily alcohol intake at the population level predicts the weight of alcohol in cirrhosis burden worldwide.J. Hepatol.2016655998100510.1016/j.jhep.2016.06.018 27392424
    [Google Scholar]
  27. PetroniM.L. BrodosiL. BugianesiE. MarchesiniG. Management of non-alcoholic fatty liver disease.BMJ2021372m474710.1136/bmj.m4747 33461969
    [Google Scholar]
  28. FlegalK.M. CarrollM.D. KitB.K. OgdenC.L. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010.JAMA2012307549149710.1001/jama.2012.39 22253363
    [Google Scholar]
  29. RinellaM. CharltonM. The globalization of nonalcoholic fatty liver disease: Prevalence and impact on world health.Hepatology2016641192210.1002/hep.28524 26926530
    [Google Scholar]
  30. MurrayC.J.L. VosT. LozanoR. NaghaviM. FlaxmanA.D. MichaudC. EzzatiM. ShibuyaK. SalomonJ.A. AbdallaS. AboyansV. AbrahamJ. AckermanI. AggarwalR. AhnS.Y. AliM.K. AlMazroaM.A. AlvaradoM. AndersonH.R. AndersonL.M. AndrewsK.G. AtkinsonC. BaddourL.M. BahalimA.N. Barker-ColloS. BarreroL.H. BartelsD.H. BasáñezM-G. BaxterA. BellM.L. BenjaminE.J. BennettD. BernabéE. BhallaK. BhandariB. BikbovB. AbdulhakA.B. BirbeckG. BlackJ.A. BlencoweH. BloreJ.D. BlythF. BolligerI. BonaventureA. BoufousS. BourneR. BoussinesqM. BraithwaiteT. BrayneC. BridgettL. BrookerS. BrooksP. BrughaT.S. Bryan-HancockC. BucelloC. BuchbinderR. BuckleG. BudkeC.M. BurchM. BurneyP. BursteinR. CalabriaB. CampbellB. CanterC.E. CarabinH. CarapetisJ. CarmonaL. CellaC. CharlsonF. ChenH. ChengA.T-A. ChouD. ChughS.S. CoffengL.E. ColanS.D. ColquhounS. ColsonK.E. CondonJ. ConnorM.D. CooperL.T. CorriereM. CortinovisM. de VaccaroK.C. CouserW. CowieB.C. CriquiM.H. CrossM. DabhadkarK.C. DahiyaM. DahodwalaN. Damsere-DerryJ. DanaeiG. DavisA. LeoD.D. DegenhardtL. DellavalleR. DelossantosA. DenenbergJ. DerrettS. Des JarlaisD.C. DharmaratneS.D. DheraniM. Diaz-TorneC. DolkH. DorseyE.R. DriscollT. DuberH. EbelB. EdmondK. ElbazA. AliS.E. ErskineH. ErwinP.J. EspindolaP. EwoigbokhanS.E. FarzadfarF. FeiginV. FelsonD.T. FerrariA. FerriC.P. FèvreE.M. FinucaneM.M. FlaxmanS. FloodL. ForemanK. ForouzanfarM.H. FowkesF.G.R. FransenM. FreemanM.K. GabbeB.J. GabrielS.E. GakidouE. GanatraH.A. GarciaB. GaspariF. GillumR.F. GmelG. Gonzalez-MedinaD. GosselinR. GraingerR. GrantB. GroegerJ. GuilleminF. GunnellD. GuptaR. HaagsmaJ. HaganH. HalasaY.A. HallW. HaringD. HaroJ.M. HarrisonJ.E. HavmoellerR. HayR.J. HigashiH. HillC. HoenB. HoffmanH. HotezP.J. HoyD. HuangJ.J. IbeanusiS.E. JacobsenK.H. JamesS.L. JarvisD. JasrasariaR. JayaramanS. JohnsN. JonasJ.B. KarthikeyanG. KassebaumN. KawakamiN. KerenA. KhooJ-P. KingC.H. KnowltonL.M. KobusingyeO. KorantengA. KrishnamurthiR. LadenF. LallooR. LaslettL.L. LathleanT. LeasherJ.L. LeeY.Y. LeighJ. LevinsonD. LimS.S. LimbE. LinJ.K. LipnickM. LipshultzS.E. LiuW. LoaneM. OhnoS.L. LyonsR. MabweijanoJ. MacIntyreM.F. MalekzadehR. MallingerL. ManivannanS. MarcenesW. MarchL. MargolisD.J. MarksG.B. MarksR. MatsumoriA. MatzopoulosR. MayosiB.M. McAnultyJ.H. McDermottM.M. McGillN. McGrathJ. Medina-MoraM.E. MeltzerM. MemishZ.A. MensahG.A. MerrimanT.R. MeyerA-C. MiglioliV. MillerM. MillerT.R. MitchellP.B. MockC. MocumbiA.O. MoffittT.E. MokdadA.A. MonastaL. MonticoM. Moradi-LakehM. MoranA. MorawskaL. MoriR. MurdochM.E. MwanikiM.K. NaidooK. NairM.N. NaldiL. NarayanK.M.V. NelsonP.K. NelsonR.G. NevittM.C. NewtonC.R. NolteS. NormanP. NormanR. O’DonnellM. O’HanlonS. OlivesC. OmerS.B. OrtbladK. OsborneR. OzgedizD. PageA. PahariB. PandianJ.D. RiveroA.P. PattenS.B. PearceN. PadillaR.P. Perez-RuizF. PericoN. PesudovsK. PhillipsD. PhillipsM.R. PierceK. PionS. PolanczykG.V. PolinderS. PopeC.A.III PopovaS. PorriniE. PourmalekF. PrinceM. PullanR.L. RamaiahK.D. RanganathanD. RazaviH. ReganM. RehmJ.T. ReinD.B. RemuzziG. RichardsonK. RivaraF.P. RobertsT. RobinsonC. De LeònF.R. RonfaniL. RoomR. RosenfeldL.C. RushtonL. SaccoR.L. SahaS. SampsonU. Sanchez-RieraL. SanmanE. SchwebelD.C. ScottJ.G. Segui-GomezM. ShahrazS. ShepardD.S. ShinH. ShivakotiR. SilberbergD. SinghD. SinghG.M. SinghJ.A. SingletonJ. SleetD.A. SliwaK. SmithE. SmithJ.L. StapelbergN.J.C. SteerA. SteinerT. StolkW.A. StovnerL.J. SudfeldC. SyedS. TamburliniG. TavakkoliM. TaylorH.R. TaylorJ.A. TaylorW.J. ThomasB. ThomsonW.M. ThurstonG.D. TleyjehI.M. TonelliM. TowbinJ.A. TruelsenT. TsilimbarisM.K. UbedaC. UndurragaE.A. van der WerfM.J. van OsJ. VavilalaM.S. VenketasubramanianN. WangM. WangW. WattK. WeatherallD.J. WeinstockM.A. WeintraubR. WeisskopfM.G. WeissmanM.M. WhiteR.A. WhitefordH. WiebeN. WiersmaS.T. WilkinsonJ.D. WilliamsH.C. WilliamsS.R.M. WittE. WolfeF. WoolfA.D. WulfS. YehP-H. ZaidiA.K.M. ZhengZ-J. ZoniesD. LopezA.D. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010.Lancet201238098592197222310.1016/S0140‑6736(12)61689‑4 23245608
    [Google Scholar]
  31. StanawayJ.D. FlaxmanA.D. NaghaviM. FitzmauriceC. VosT. AbubakarI. Abu-RaddadL.J. AssadiR. BhalaN. CowieB. ForouzanfourM.H. GroegerJ. HanafiahK.M. JacobsenK.H. JamesS.L. MacLachlanJ. MalekzadehR. MartinN.K. MokdadA.A. MokdadA.H. MurrayC.J.L. PlassD. RanaS. ReinD.B. RichardusJ.H. SanabriaJ. SaylanM. ShahrazS. SoS. VlassovV.V. WeiderpassE. WiersmaS.T. YounisM. YuC. El Sayed ZakiM. CookeG.S. The global burden of viral hepatitis from 1990 to 2013: Findings from the global burden of disease study 2013.Lancet2016388100491081108810.1016/S0140‑6736(16)30579‑7 27394647
    [Google Scholar]
  32. FrancoE. MeleleoC. SerinoL. SorbaraD. ZarattiL. HepatitisA. HepatitisA. Epidemiology and prevention in developing countries.World J. Hepatol.201243687310.4254/wjh.v4.i3.68 22489258
    [Google Scholar]
  33. JacobsenK.H. WiersmaS.T. Hepatitis A virus seroprevalence by age and world region, 1990 and 2005.Vaccine201028416653665710.1016/j.vaccine.2010.08.037 20723630
    [Google Scholar]
  34. PapatheodoridisG.V. SypsaV. DalekosG. YurdaydinC. van BoemmelF. ButiM. GoulisJ. CallejaJ.L. ChiH. ManolakopoulosS. LoglioA. SiakavellasS. GatselisN. KeskınO. LehretzM. SavvidouS. de la RevillaJ. HansenB.E. KourikouA. VlachogiannakosI. GalanisK. IdilmanR. ColomboM. EstebanR. JanssenH.L.A. BergT. LamperticoP. Eight-year survival in chronic hepatitis B patients under long-term entecavir or tenofovir therapy is similar to the general population.J. Hepatol.20186861129113610.1016/j.jhep.2018.01.031 29427727
    [Google Scholar]
  35. PapatheodoridisG.V. IdilmanR. DalekosG.N. ButiM. ChiH. van BoemmelF. CallejaJ.L. SypsaV. GoulisJ. ManolakopoulosS. LoglioA. SiakavellasS. KeskınO. GatselisN. HansenB.E. LehretzM. de la RevillaJ. SavvidouS. KourikouA. VlachogiannakosI. GalanisK. YurdaydinC. BergT. ColomboM. EstebanR. JanssenH.L.A. LamperticoP. The risk of hepatocellular carcinoma decreases after the first 5 years of entecavir or tenofovir in Caucasians with chronic hepatitis B.Hepatology20176651444145310.1002/hep.29320 28622419
    [Google Scholar]
  36. BrooméU. OlssonR. LööfL. BodemarG. HultcrantzR. DanielssonA. PrytzH. Sandberg-GertzénH. WallerstedtS. LindbergG. Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis.Gut199638461061510.1136/gut.38.4.610 8707097
    [Google Scholar]
  37. NegroF. Natural history of hepatic and extrahepatic hepatitis C virus diseases and impact of interferon-free HCV therapy.Cold Spring Harb. Perspect. Med.2020104a03692110.1101/cshperspect.a036921 31636094
    [Google Scholar]
  38. KanwalF. HoangT. KramerJ.R. AschS.M. GoetzM.B. ZeringueA. RichardsonP. El-SeragH.B. Increasing prevalence of HCC and cirrhosis in patients with chronic hepatitis C virus infection.Gastroenterology2011140411821188.e110.1053/j.gastro.2010.12.032 21184757
    [Google Scholar]
  39. HughesS.A. WedemeyerH. HarrisonP.M. Hepatitis delta virus.Lancet20113789785738510.1016/S0140‑6736(10)61931‑9 21511329
    [Google Scholar]
  40. PascarellaS. NegroF. Hepatitis D virus: An update.Liver Int.201131172110.1111/j.1478‑3231.2010.02320.x 20880077
    [Google Scholar]
  41. FriedmanLS MartinP. Handbook of liver disease.Elsevier Health Sciences2017
    [Google Scholar]
  42. Global hepatitis report 2017; World Health Organization2017
    [Google Scholar]
  43. AsraniS.K. DevarbhaviH. EatonJ. KamathP.S. Burden of liver diseases in the world.J. Hepatol.201970115117110.1016/j.jhep.2018.09.014 30266282
    [Google Scholar]
  44. ParkinD.M. Global cancer statistics in the year 2000.Lancet Oncol.20012953354310.1016/S1470‑2045(01)00486‑7 11905707
    [Google Scholar]
  45. MitraA. SatelliA. XiaX. CutreraJ. MishraL. LiS. Cell‐surface V imentin: A mislocalized protein for isolating CSV imentin +CD 133 − novel stem‐like hepatocellular carcinoma cells expressing EMT markers.Int. J. Cancer2015137249149610.1002/ijc.29382 25487874
    [Google Scholar]
  46. ArzumanyanA. ReisH.M.G.P.V. FeitelsonM.A. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma.Nat. Rev. Cancer201313212313510.1038/nrc3449 23344543
    [Google Scholar]
  47. LiaoX. BuY. JiaQ. Traditional Chinese medicine as supportive care for the management of liver cancer: Past, present, and future.Genes Dis.20207337037910.1016/j.gendis.2019.10.016 32884991
    [Google Scholar]
  48. ChintanaP. Role of curcumin on tumor angiogenesis in hepatocellular carcinoma.Naresuan Univ. J. Sci. Technol.2008163239254
    [Google Scholar]
  49. LeeE.O. LeeH.J. HwangH.S. AhnK.S. ChaeC. KangK.S. LuJ. KimS.H. Potent inhibition of Lewis lung cancer growth by heyneanol A from the roots of Vitis amurensis through apoptotic and anti-angiogenic activities.Carcinogenesis200627102059206910.1093/carcin/bgl055 16675471
    [Google Scholar]
  50. KhanN. AfaqF. MukhtarH. Cancer chemoprevention through dietary antioxidants: Progress and promise.Antioxid. Redox Signal.200810347551010.1089/ars.2007.1740 18154485
    [Google Scholar]
  51. YangC.S. LandauJ.M. HuangM.T. NewmarkH.L. Inhibition of carcinogenesis by dietary polyphenolic compounds.Annu. Rev. Nutr.200121138140610.1146/annurev.nutr.21.1.381 11375442
    [Google Scholar]
  52. MannC.D. NealC.P. GarceaG. MansonM.M. DennisonA.R. BerryD.P. Phytochemicals as potential chemopreventive and chemotherapeutic agents in hepatocarcinogenesis.Eur. J. Cancer Prev.2009181132510.1097/CEJ.0b013e3282f0c090 19077560
    [Google Scholar]
  53. MazzoccoliG. MieleL. ObenJ. GriecoA. VinciguerraM. Biology, epidemiology, clinical aspects of hepatocellular carcinoma and the role of sorafenib.Curr. Drug Targets201617778379910.2174/1389450117666151209120831 26648069
    [Google Scholar]
  54. van MalensteinH. DekervelJ. VerslypeC. Van CutsemE. WindmoldersP. NevensF. van PeltJ. Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-to-mesenchymal transition, increased invasion and risk of rebound growth.Cancer Lett.20133291748310.1016/j.canlet.2012.10.021 23111106
    [Google Scholar]
  55. LlovetJ.M. MontalR. VillanuevaA. Randomized trials and endpoints in advanced HCC: Role of PFS as a surrogate of survival.J. Hepatol.20197061262127710.1016/j.jhep.2019.01.028 30943423
    [Google Scholar]
  56. ReghupatyS.C. SarkarD. Current status of gene therapy in hepatocellular carcinoma.Cancers2019119126510.3390/cancers11091265 31466358
    [Google Scholar]
  57. TaiW.T. ChuP.Y. ShiauC.W. ChenY.L. LiY.S. HungM.H. ChenL.J. ChenP.L. SuJ.C. LinP.Y. YuH.C. ChenK.F. STAT3 mediates regorafenib-induced apoptosis in hepatocellular carcinoma.Clin. Cancer Res.201420225768577610.1158/1078‑0432.CCR‑14‑0725 25248379
    [Google Scholar]
  58. BruixJ. QinS. MerleP. GranitoA. HuangY.H. BodokyG. PrachtM. YokosukaO. RosmorducO. BrederV. GerolamiR. MasiG. RossP.J. SongT. BronowickiJ.P. Ollivier-HourmandI. KudoM. ChengA.L. LlovetJ.M. FinnR.S. LeBerreM.A. BaumhauerA. MeinhardtG. HanG. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial.Lancet201738910064566610.1016/S0140‑6736(16)32453‑9 27932229
    [Google Scholar]
  59. ZhuX.D. TangZ.Y. SunH.C. Targeting angiogenesis for liver cancer: Past, present, and future.Genes Dis.20207332833510.1016/j.gendis.2020.03.010 32884987
    [Google Scholar]
  60. ZhouY. LiY. ZhouT. ZhengJ. LiS. LiH.B. Dietary natural products for prevention and treatment of liver cancer.Nutrients20168315610.3390/nu8030156 26978396
    [Google Scholar]
  61. JavaidA. ChaudhuryF.A. KhanI.H. FerdosiM.F.H. Potential health-related phytoconstituents in leaves of Chenopodium quinoa.Adv. Life Sci.202294574578
    [Google Scholar]
  62. FerdosiM.F.H. JavaidA. KhanI.H. FerdosiM.F.A. MunirA. Bioactive components in methanolic flower extract of Ageratum conyzoides.Pak. J. Weed Sci. Res.202127218119010.28941/pjwsr.v27i2.954
    [Google Scholar]
  63. NaqviS.F. KhanI.H. JavaidA. Hexane soluble bioactive components of Chenopodium murale STEM.Pak. J. Weed Sci. Res.202127242543210.28941/pjwsr.v26i4.875
    [Google Scholar]
  64. IqbalJ. AbbasiB.A. MahmoodT. KanwalS. AliB. ShahS.A. KhalilA.T. Plant-derived anticancer agents: A green anticancer approach.Asian Pac. J. Trop. Biomed.20177121129115010.1016/j.apjtb.2017.10.016
    [Google Scholar]
  65. SchuppanD. JiaJ.D. BrinkhausB. HahnE.G. Herbal products for liver diseases: A therapeutic challenge for the new millennium.Hepatology19993041099110410.1002/hep.510300437 10498665
    [Google Scholar]
  66. LukJ.M. WangX. LiuP. WongK.F. ChanK.L. TongY. HuiC.K. LauG.K. FanS.T. Traditional Chinese herbal medicines for treatment of liver fibrosis and cancer: From laboratory discovery to clinical evaluation.Liver Int.200727787989010.1111/j.1478‑3231.2007.01527.x 17696925
    [Google Scholar]
  67. SatoH. GotoW. YamamuraJ. KurokawaM. KageyamaS. TakaharaT. WatanabeA. ShirakiK. Therapeutic basis of glycyrrhizin on chronic hepatitis B.Antiviral Res.1996302-317117710.1016/0166‑3542(96)00942‑4 8783808
    [Google Scholar]
  68. CranceJ.M. LévêqueF. BiziagosE. van Cuyck-GandréH. JouanA. DeloinceR. Studies on mechanism of action of glycyrrhizin against hepatitis a virus replication in vitro.Antiviral Res.1994231637610.1016/0166‑3542(94)90033‑7 8141593
    [Google Scholar]
  69. MelhemA. SternM. ShiboletO. IsraeliE. AckermanZ. PappoO. HemedN. RoweM. OhanaH. ZabreckyG. CohenR. IlanY. Treatment of chronic hepatitis C virus infection via antioxidants: Results of a phase I clinical trial.J. Clin. Gastroenterol.200539873774210.1097/01.mcg.0000174023.73472.29 16082287
    [Google Scholar]
  70. HibasamiH. IwaseH. YoshiokaK. TakahashiH. Glycyrrhetic acid (a metabolic substance and aglycon of glycyrrhizin) induces apoptosis in human hepatoma, promyelotic leukemia and stomach cancer cells.Int. J. Mol. Med.200617221521910.3892/ijmm.17.2.215 16391818
    [Google Scholar]
  71. HsiangC.Y. LaiI.L. ChaoD.C. HoT.Y. Differential regulation of activator protein 1 activity by glycyrrhizin.Life Sci.200270141643165610.1016/S0024‑3205(01)01556‑9 11991252
    [Google Scholar]
  72. ChenS.R. DaiY. ZhaoJ. LinL. WangY. WangY. A mechanistic overview of triptolide and celastrol, natural products from Tripterygium wilfordii Hook F.Front. Pharmacol.2018910410.3389/fphar.2018.00104 29491837
    [Google Scholar]
  73. KupchanS.M. CourtW.A. DaileyR.G.Jr GilmoreC.J. BryanR.F. Tumor inhibitors. LXXIV. Triptolide and tripdiolide, novel antileukemic diterpenoid triepoxides from Tripterygium wilfordii.J. Am. Chem. Soc.197294207194719510.1021/ja00775a078 5072337
    [Google Scholar]
  74. KupchanS.M. SchubertR.M. Selective alkylation: A biomimetic reaction of the antileukemic triptolides?Science1974185415379179310.1126/science.185.4153.791 4843378
    [Google Scholar]
  75. ShamonL.A. PezzutoJ.M. GravesJ.M. MehtaR.R. WangcharoentrakulS. SangsuwanR. ChaichanaS. TuchindaP. CleasonP. ReutrakulV. Evaluation of the mutagenic, cytotoxic, and antitumor potential of triptolide, a highly oxygenated diterpene isolated from Tripterygium wilfordii.Cancer Lett.1997112111311710.1016/S0304‑3835(96)04554‑5 9029176
    [Google Scholar]
  76. LeeK.Y. ChangW. QiuD. KaoP.N. RosenG.D. PG490 (triptolide) cooperates with tumor necrosis factor-α to induce apoptosis in tumor cells.J. Biol. Chem.199927419134511345510.1074/jbc.274.19.13451 10224110
    [Google Scholar]
  77. Wai-ChangChan E.; Chak-Sum Cheng, S.; Wan-Yee Sin, F.; Xie, Y. Triptolide induced cytotoxic effects on human promyelocytic leukemia, T cell lymphoma and human hepatocellular carcinoma cell lines.Toxicol. Lett.20011221818710.1016/S0378‑4274(01)00353‑8 11397559
    [Google Scholar]
  78. FengL. ZhangD. FanC. MaC. YangW. MengY. WuW. GuanS. JiangB. YangM. LiuX. GuoD. ER stress-mediated apoptosis induced by celastrol in cancer cells and important role of glycogen synthase kinase-3β in the signal network.Cell Death Dis.201347e71510.1038/cddis.2013.222 23846217
    [Google Scholar]
  79. ChangW. HeW. LiP.P. SongS.S. YuanP.F. LuJ.T. WeiW. Protective effects of Celastrol on diethylnitrosamine-induced hepatocellular carcinoma in rats and its mechanisms.Eur. J. Pharmacol.201678417318010.1016/j.ejphar.2016.04.045 27181068
    [Google Scholar]
  80. ShenY. ZhangX. WangY. CaoF. UzanG. PengB. ZhangD. Celastrol targets IRAKs to block Toll-like receptor 4-mediated nuclear factor-κB activation.J. Integr. Med.201614320320810.1016/S2095‑4964(16)60257‑1 27181127
    [Google Scholar]
  81. YanY.Y. GuoY. ZhangW. MaC.G. ZhangY.X. WangC. WangH.X. Celastrol enhanced the anticancer effect of lapatinib in human hepatocellular carcinoma cells in vitro.JBUON2014192412418 24965400
    [Google Scholar]
  82. TanW. LiY. ChenM. WangY. Berberine hydrochloride: Anticancer activity and nanoparticulate delivery system.Int. J. Nanomedicine201161773177710.2147/IJN.S22683 21931477
    [Google Scholar]
  83. MaitiM. KumarG.S. Polymorphic nucleic Acid binding of bioactive isoquinoline alkaloids and their role in cancer.J. Nucleic Acids20102010159340810.4061/2010/593408 20814427
    [Google Scholar]
  84. BhadraK. KumarG.S. Therapeutic potential of nucleic acid‐binding isoquinoline alkaloids: Binding aspects and implications for drug design.Med. Res. Rev.201131682186210.1002/med.20202 20077560
    [Google Scholar]
  85. PengPL KuoWH TsengHC ChouFP Synergistic tumor-killing effect of radiation and berberine combined treatment in lung cancer: The contribution of autophagic cell death.Int. J. Radiat. Oncol. Biol. Phys.2008Feb70252954210.1016/j.ijrobp.2007.08.034
    [Google Scholar]
  86. MengZ. LiT. MaX. WangX. Van NessC. GanY. ZhouH. TangJ. LouG. WangY. WuJ. YenY. XuR. HuangW. Berbamine inhibits the growth of liver cancer cells and cancer-initiating cells by targeting Ca2+/calmodulin-dependent protein kinase II.Mol. Cancer Ther.201312102067207710.1158/1535‑7163.MCT‑13‑0314 23960096
    [Google Scholar]
  87. SharmaS. TanwarA. GuptaD.K. Curcumin: An adjuvant therapeutic remedy for liver cancer.Hepatoma Res.201623627010.20517/2394‑5079.2015.59
    [Google Scholar]
  88. CuiS.X. QuX.J. XieY.Y. ZhouL. NakataM. MakuuchiM. TangW. Curcumin inhibits telomerase activity in human cancer cell lines.Int. J. Mol. Med.200618222723110.3892/ijmm.18.2.227 16820928
    [Google Scholar]
  89. NasrM. SelimaE. HamedO. KazemA. Targeting different angiogenic pathways with combination of curcumin, leflunomide and perindopril inhibits diethylnitrosamine-induced hepatocellular carcinoma in mice.Eur. J. Pharmacol.201472326727510.1016/j.ejphar.2013.11.022 24291100
    [Google Scholar]
  90. ZieglerD.S. KungA.L. Therapeutic targeting of apoptosis pathways in cancer.Curr. Opin. Oncol.20082019710310.1097/CCO.0b013e3282f310f6 18043263
    [Google Scholar]
  91. LiuH. LiangY. WangL. TianL. SongR. HanT. PanS. LiuL. In vivo and in vitro suppression of hepatocellular carcinoma by EF24, a curcumin analog.PLoS One2012710e4807510.1371/journal.pone.0048075 23118928
    [Google Scholar]
  92. YuJ. ZhouX. HeX. DaiM. ZhangQ. Curcumin induces apoptosis involving bax/bcl-2 in human hepatoma SMMC-7721 cells.Asian Pac. J. Cancer Prev.201112819251929 22292626
    [Google Scholar]
  93. CaoJ. JiaL. ZhouH.M. LiuY. ZhongL.F. Mitochondrial and nuclear DNA damage induced by curcumin in human hepatoma G2 cells.Toxicol. Sci.200691247648310.1093/toxsci/kfj153 16537656
    [Google Scholar]
  94. El KhawandT. CourtoisA. VallsJ. RichardT. KrisaS. A review of dietary stilbenes: Sources and bioavailability.Phytochem. Rev.20181751007102910.1007/s11101‑018‑9578‑9
    [Google Scholar]
  95. AjaI. Ruiz-LarreaM.B. CourtoisA. KrisaS. RichardT. Ruiz-SanzJ.I. Screening of natural stilbene oligomers from Vitis vinifera for anticancer activity on human hepatocellular carcinoma cells.Antioxidants20209646910.3390/antiox9060469 32492881
    [Google Scholar]
  96. LiaoS. LiuJ. XuM. ZhengJ. Evaluation of the liver cancer prevention of anthocyanin extracts from mulberry (Morus alba L.) variety PR-01.Adv. Biosci. Biotechnol.20189942344210.4236/abb.2018.99030
    [Google Scholar]
  97. LiD. WangP. LuoY. ZhaoM. ChenF. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade.Crit. Rev. Food Sci. Nutr.20175781729174110.1080/10408398.2015.1030064 26192537
    [Google Scholar]
  98. BimonteS. CascellaM. SchiavoneV. Mehrabi-KermaniF. CuomoA. The roles of epigallocatechin-3-gallate in the treatment of neuropathic pain: An update on preclinical in vivo studies and future perspectives.Drug Des. Devel. Ther.2017112737274210.2147/DDDT.S142475 29066865
    [Google Scholar]
  99. LiuA.B. TaoS. LeeM.J. HuQ. MengX. LinY. YangC.S. Effects of gut microbiota and time of treatment on tissue levels of green tea polyphenols in mice.Biofactors201844434836010.1002/biof.1430 29740891
    [Google Scholar]
  100. BimonteS. AlbinoV. PiccirilloM. NastoA. MolinoC. PalaiaR. CascellaM. Epigallocatechin-3-gallate in the prevention and treatment of hepatocellular carcinoma: experimental findings and translational perspectives.Drug Des. Devel. Ther.20191361162110.2147/DDDT.S180079 30858692
    [Google Scholar]
  101. NambiarD.M. KumariJ. AryaG.C. SinghA.K. BishtN.C. A cell suspension based uptake method to study high affinity glucosinolate transporters.Plant Methods20201617510.1186/s13007‑020‑00618‑0 32489397
    [Google Scholar]
  102. GuH. MaoX. DuM. Metabolism, absorption, and anti-cancer effects of sulforaphane: An update.Crit. Rev. Food Sci. Nutr.202262133437345210.1080/10408398.2020.1865871 33393366
    [Google Scholar]
  103. MastuoT. MiyataY. YunoT. MukaeY. OtsuboA. MitsunariK. OhbaK. SakaiH. Molecular mechanisms of the anti-cancer effects of isothiocyanates from cruciferous vegetables in bladder cancer.Molecules202025357510.3390/molecules25030575 32013065
    [Google Scholar]
  104. MitsiogianniM. KoutsidisG. MavroudisN. TrafalisD.T. BotaitisS. FrancoR. ZoumpourlisV. AmeryT. GalanisA. PappaA. PanayiotidisM.I. The role of isothiocyanates as cancer chemo-preventive, chemo-therapeutic and anti-melanoma agents.Antioxidants20198410610.3390/antiox8040106 31003534
    [Google Scholar]
  105. ZhangY. HuangH. JinL. LinS. Anticarcinogenic effects of isothiocyanates on hepatocellular carcinoma.Int. J. Mol. Sci.202223221383410.3390/ijms232213834 36430307
    [Google Scholar]
  106. MekuriaA.N. TuraA.K. HagosB. SisayM. AbdelaJ. MishoreK.M. MotbaynorB. Anti-cancer effects of lycopene in animal models of hepatocellular carcinoma: A systematic review and meta-analysis.Front. Pharmacol.202011130610.3389/fphar.2020.01306 32982734
    [Google Scholar]
  107. SticeC.P. XiaH. WangX.D. Tomato lycopene prevention of alcoholic fatty liver disease and hepatocellular carcinoma development.Chronic Dis. Transl. Med.20184421122410.1016/j.cdtm.2018.11.001 30603740
    [Google Scholar]
  108. SticeC.P. LiuC. AizawaK. GreenbergA.S. AusmanL.M. WangX.D. Dietary tomato powder inhibits alcohol-induced hepatic injury by suppressing cytochrome p450 2E1 induction in rodent models.Arch. Biochem. Biophys.2015572818810.1016/j.abb.2015.01.004 25592162
    [Google Scholar]
  109. XiangJ. XiangY. LinS. XinD. LiuX. WengL. ChenT. ZhangM. Anticancer effects of deproteinized asparagus polysaccharide on hepatocellular carcinoma in vitro and in vivo.Tumour Biol.20143543517352410.1007/s13277‑013‑1464‑x 24310501
    [Google Scholar]
  110. WengL.L. XiangJ.F. LinJ.B. YiS.H. YangL.T. LiY.S. ZengH.T. LinS.M. XinD.W. ZhaoH.L. QiuS.Q. ChenT. ZhangM.G. Asparagus polysaccharide and gum with hepatic artery embolization induces tumor growth and inhibits angiogenesis in an orthotopic hepatocellular carcinoma model.Asian Pac. J. Cancer Prev.20151524109491095510.7314/APJCP.2014.15.24.10949 25605207
    [Google Scholar]
  111. ChengW. ChengZ. XingD. ZhangM. Asparagus polysaccharide suppresses the migration, invasion, and angiogenesis of hepatocellular carcinoma cells partly by targeting the HIF-1 α/VEGF signalling pathway in vitro.Evid. Based Complement. Alternat. Med.20192019111010.1155/2019/3769879 31239858
    [Google Scholar]
  112. Al-FatlawiA.A. Al-FatlawiA.A. IrshadM. ZafaryabM. Alam RizviM.M. AhmadA. Rice bran phytic acid induced apoptosis through regulation of Bcl-2/Bax and p53 genes in HepG2 human hepatocellular carcinoma cells.Asian Pac. J. Cancer Prev.20141583731373610.7314/APJCP.2014.15.8.3731 24870784
    [Google Scholar]
  113. Al-FatlawiA.A. RizviM.M. AhmadA.Y. Anticarcinogenic activity of rice bran phytic acid against human breast cancer cell line (MCF-7).Asian J. Pharm. Clin. Res.201471151155
    [Google Scholar]
  114. AbdulwaliyuI. ArekemaseS.O. AduduJ.A. BatariM.L. EgbuleM.N. OkoduwaS.I.R. Investigation of the medicinal significance of phytic acid as an indispensable anti-nutrient in diseases.Clin. Nutr. Exp.201928426110.1016/j.yclnex.2019.10.002
    [Google Scholar]
  115. PujolA. SanchisP. GrasesF. MasmiquelL. Phytate intake, health and disease:“let thy food be thy medicine and medicine be thy food”.Antioxidants202312114610.3390/antiox12010146 36671007
    [Google Scholar]
  116. PrasadS. TyagiA.K. Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer.Gastroenterol. Res. Pract.20152015111110.1155/2015/142979 25838819
    [Google Scholar]
  117. GautamA.K. SharmaD. SharmaJ. SainiK.C. Legume lectins: Potential use as a diagnostics and therapeutics against the cancer.Int. J. Biol. Macromol.202014247448310.1016/j.ijbiomac.2019.09.119 31593731
    [Google Scholar]
  118. JianQ. YangZ. ShuJ. LiuX. ZhangJ. LiZ. Lectin BS‐I inhibits cell migration and invasion via AKT/GSK‐3β/β‐catenin pathway in hepatocellular carcinoma.J. Cell. Mol. Med.201822131532910.1111/jcmm.13320 28922551
    [Google Scholar]
  119. LeeT.K.W. CastilhoA. CheungV.C.H. TangK.H. MaS. NgI.O.L. Lupeol targets liver tumor-initiating cells through phosphatase and tensin homolog modulation.Hepatology201153116017010.1002/hep.24000 20979057
    [Google Scholar]
  120. EldohajiL.M. FayedB. HamodaA.M. ErshaidM. AbdinS. AlhamidiT.B. MohammadM.G. OmarH.A. SolimanS.S.M. Potential targeting of Hep3B liver cancer cells by lupeol isolated from Avicennia marina.Arch. Pharm.20213549210012010.1002/ardp.202100120 34085721
    [Google Scholar]
  121. WangL. HuangW. ZhanJ. Grape seed proanthocyanidins induce autophagy and modulate survivin in HepG2 cells and inhibit xenograft tumor growth in vivo.Nutrients20191112298310.3390/nu11122983 31817589
    [Google Scholar]
  122. WangL. ZhanJ. HuangW. Grape seed proanthocyanidins induce apoptosis and cell cycle arrest of HepG2 cells accompanied by induction of the MAPK pathway and NAG-1.Antioxidants2020912120010.3390/antiox9121200 33260632
    [Google Scholar]
  123. GongG. GuanY.Y. ZhangZ.L. RahmanK. WangS.J. ZhouS. LuanX. ZhangH. Isorhamnetin: A review of pharmacological effects.Biomed. Pharmacother.202012811030110.1016/j.biopha.2020.110301 32502837
    [Google Scholar]
  124. ZhangZ. ChenS. MeiH. XuanJ. GuoX. CouchL. DobrovolskyV.N. GuoL. MeiN. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells.Sci. Rep.2015511463310.1038/srep14633 26419945
    [Google Scholar]
  125. RunhuanF. HaiyanW. Quantitative proteomic analysis of Isorhamnetin treatment in human liver cancer cells.J. Med. Plants Res.2018127778810.5897/JMPR2018.6561
    [Google Scholar]
  126. KoJ.H. SethiG. UmJ.Y. ShanmugamM.K. ArfusoF. KumarA.P. BishayeeA. AhnK.S. The role of resveratrol in cancer therapy.Int. J. Mol. Sci.20171812258910.3390/ijms18122589 29194365
    [Google Scholar]
  127. PolachiN. BaiG. LiT. ChuY. WangX. LiS. GuN. WuJ. LiW. ZhangY. ZhouS. SunH. LiuC. Modulatory effects of silibinin in various cell signaling pathways against liver disorders and cancer – A comprehensive review.Eur. J. Med. Chem.201612357759510.1016/j.ejmech.2016.07.070 27517806
    [Google Scholar]
  128. TiwariP. MishraK. Silibinin in cancer therapy: A promising prospect.Cancer Res. Front.20151330331810.17980/2015.303
    [Google Scholar]
  129. GuH.R. ParkS.C. ChoiS.J. LeeJ.C. KimY.C. HanC.J. KimJ. YangK.Y. KimY.J. NohG.Y. NoS.H. JeongJ.H. Combined treatment with silibinin and either sorafenib or gefitinib enhances their growth-inhibiting effects in hepatocellular carcinoma cells.Clin. Mol. Hepatol.2015211495910.3350/cmh.2015.21.1.49 25834802
    [Google Scholar]
  130. LiF. JiangT. LiQ. LingX. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: Did we miss something in CPT analogue molecular targets for treating human disease such as cancer?Am. J. Cancer Res.201771223502394 29312794
    [Google Scholar]
  131. KciukM. MarciniakB. KontekR. Irinotecan—still an important player in cancer chemotherapy: A comprehensive overview.Int. J. Mol. Sci.20202114491910.3390/ijms21144919 32664667
    [Google Scholar]
  132. CinelliM.A. MorrellA.E. DexheimerT.S. AgamaK. AgrawalS. PommierY. CushmanM. The structure–activity relationships of A-ring-substituted aromathecin topoisomerase I inhibitors strongly support a camptothecin-like binding mode.Bioorg. Med. Chem.201018155535555210.1016/j.bmc.2010.06.040 20630766
    [Google Scholar]
  133. BrandiG. BiascoG. MirarchiM.G. GolfieriR. Di PaoloA. BorghiA. FanelloS. DerenziniE. AgostiniV. GiampalmaE. CappelliA. PiniP. CostantiniS. DanesiR. BolondiL. PiscagliaF. A phase I study of continuous hepatic arterial infusion of Irinotecan in patients with locally advanced hepatocellular carcinoma.Dig. Liver Dis.201143121015102110.1016/j.dld.2011.08.005 21917536
    [Google Scholar]
  134. ZhangY. FengL. ZhongX. WangL. ChangJ. Vincristine and irinotecan in children with relapsed hepatoblastoma: A single-institution experience.Pediatr. Hematol. Oncol.2015321182510.3109/08880018.2014.909913 24852330
    [Google Scholar]
  135. ZsírosJ. BrugièresL. BrockP. RoebuckD. MaibachR. ChildM. MorlandB. CasanovaM. ParienteD. ParisC. CamargoB. RongheM. ZimmermannA. PlaschkesJ. CzaudernaP. PerilongoG. Efficacy of irinotecan single drug treatment in children with refractory or recurrent hepatoblastoma – A phase II trial of the childhood liver tumour strategy group (SIOPEL).Eur. J. Cancer201248183456346410.1016/j.ejca.2012.06.023 22835780
    [Google Scholar]
  136. NicolleD. FabreM. Simon-ComaM. GorseA. KapplerR. NonellL. MalloM. HaidarH. DéasO. MussiniC. GuettierC. RedonM.J. BrugièresL. GhignaM.R. FadelE. Galmiche-RollandL. ChardotC. JuddeJ.G. ArmengolC. BranchereauS. CairoS. Patient‐derived mouse xenografts from pediatric liver cancer predict tumor recurrence and advise clinical management.Hepatology20166441121113510.1002/hep.28621 27115099
    [Google Scholar]
  137. ZhaoH. GuoY. LiS. HanR. YingJ. ZhuH. WangY. YinL. HanY. SunL. WangZ. LinQ. BiX. JiaoY. JiaH. ZhaoJ. HuangZ. LiZ. ZhouJ. SongW. MengK. CaiJ. A novel anti-cancer agent Icaritin suppresses hepatocellular carcinoma initiation and malignant growth through the IL-6/Jak2/Stat3 pathway.Oncotarget2015631319273194310.18632/oncotarget.5578 26376676
    [Google Scholar]
  138. TanH.L. ChanK.G. PusparajahP. SaokaewS. DuangjaiA. LeeL.H. GohB.H. Anti-cancer properties of the naturally occurring aphrodisiacs: Icaritin and its derivatives.Front. Pharmacol.2016719110.3389/fphar.2016.00191 27445824
    [Google Scholar]
  139. FanY. First-in-class immune-modulating small molecule Icaritin in advanced hepatocellular carcinoma: Preliminary results of safety, durable survival and immune biomarkers.BMC Cancer20191911
    [Google Scholar]
  140. BaillyC. Molecular and cellular basis of the anticancer activity of the prenylated flavonoid icaritin in hepatocellular carcinoma.Chem. Biol. Interact.202032510912410.1016/j.cbi.2020.109124 32437694
    [Google Scholar]
  141. QinS.K. LiQ. Ming Xu J.; Liang, J.; Cheng, Y.; Fan, Y.; Jiang, J.; Ye, H.; Tao, H.; Li, L.; Zheng, L.; Wei, Z.; Li, S.; Meng, K.; Ye, B.; Sun, Y. Icaritin‐induced immunomodulatory efficacy in advanced hepatitis B virus‐related hepatocellular carcinoma: Immunodynamic biomarkers and overall survival.Cancer Sci.2020111114218423110.1111/cas.14641 32889778
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266321814250228070642
Loading
/content/journals/ctmc/10.2174/0115680266321814250228070642
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test