Skip to content
2000
Volume 25, Issue 26
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Anacardic acids are natural compounds found in various plant families, such as and , among others. Several activities have been reported regarding these compounds, including antibacterial, antioxidant, anticancer, anti-inflammatory, and antiviral activities, showing the potential therapeutic applicability of these compounds. From a chemical point of view, they are structurally made up of salicylic acids substituted by an alkyl chain containing unsaturated bonds, which can vary in number and position, determining their bioactivity and differentiating them from the various existing forms. Our work aimed to explore the potential of anacardic acids, based on studies that address the bioactivity of these compounds, as well as to establish a greater understanding of the structure-activity relationship of these compounds through methods, with a focus on the elucidation of a possible drug target through the application of computer-aided drug design, CADD. Thus, here was shown the potential of anacardic acids as a drug, providing results against viruses, bacteria, fungi, parasites, and mainly against inflammation. Several drug targets are related to its biological potential, and to explore it, we performed molecular docking and dynamics against the mPGES-1, a possible target of anacardic acids highlighted by several works. Thus, the analog provides interactions with the critical residues Ser127, Thr131, Leu135, and Ala138 and the molecular dynamics simulations show the complex stability through the RMSD, RMSF, R, SASA, and H-bonds. Furthermore, the MM-PBSA shows that the free binding energy of the is better than the standard compound. Finally, our findings showed the potential of anacardic acids against several diseases and proposed a biological drug target that can be explored in further works of drug design to discover new anti-inflammatory drugs.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266319575240905164313
2024-09-18
2025-12-15
Loading full text...

Full text loading...

References

  1. ChenZ. CuiQ. CooperL. ZhangP. LeeH. ChenZ. WangY. LiuX. RongL. DuR. Ginkgolic acid and anacardic acid are specific covalent inhibitors of SARS-CoV-2 cysteine proteases.Cell Biosci.20211114510.1186/s13578‑021‑00564‑x33640032
    [Google Scholar]
  2. GényC. RivièreG. BignonJ. BirlirakisN. GuittetE. AwangK. LitaudonM. RoussiF. DumontetV. Anacardic Acids from Knema hookeriana as Modulators of Bcl-xL/Bak and Mcl-1/Bid Interactions.J. Nat. Prod.201679483884410.1021/acs.jnatprod.5b0091527008174
    [Google Scholar]
  3. GrazziniR. HeskD. HeiningerE. HildenbrandtG. ReddyC.C. Cox-FosterD. MedfordJ. CraigR. MummaR.O. Inhibition of lipoxygenase and prostaglandin endoperoxide synthase by anacardic acids.Biochem. Biophys. Res. Commun.1991176277578010.1016/S0006‑291X(05)80252‑91902673
    [Google Scholar]
  4. HamadF. MubofuE. Potential biological applications of bio-based anacardic acids and their derivatives.Int. J. Mol. Sci.20151648569859010.3390/ijms1604856925894225
    [Google Scholar]
  5. GraceM.H. EspositoD. TimmersM.A. XiongJ. YousefG. KomarnytskyS. LilaM.A. Chemical composition, antioxidant and anti-inflammatory properties of pistachio hull extracts.Food Chem.2016210859510.1016/j.foodchem.2016.04.08827211624
    [Google Scholar]
  6. Gomes JúniorA.L. IslamM.T. NicolauL.A.D. de SouzaL.K.M. AraújoT.S.L. Lopes de OliveiraG.A. de Melo NogueiraK. da Silva LopesL. MedeirosJ.V.R. MubarakM.S. Melo-CavalcanteA.A.C. Anti-inflammatory, antinociceptive, and antioxidant properties of anacardic acid in experimental models.ACS Omega2020531195061951510.1021/acsomega.0c0177532803044
    [Google Scholar]
  7. Coates, nigel j. (A Novel).J. Org. Chem.19945712211222
    [Google Scholar]
  8. ReaA. SchmidtJ.M. SetzerW.N. SibandaS. TaylorC. GwebuE.T. Cytotoxic activity of Ozoroa insignis from Zimbabwe.Fitoterapia2003747-873273510.1016/j.fitote.2003.08.00714630185
    [Google Scholar]
  9. Castillo-JuárezI. Rivero-CruzF. CelisH. RomeroI. Anti-Helicobacter pylori activity of anacardic acids from Amphipterygium adstringens .J. Ethnopharmacol.20071141727710.1016/j.jep.2007.07.02217768020
    [Google Scholar]
  10. CorreiaS.J. DavidJ.P. DavidJ.M. Secondary metabolites from Anacardiaceae species.Quim Nova20062961287130010.1590/S0100‑40422006000600026
    [Google Scholar]
  11. Galot-LinaldiJ. Hernández-SánchezK.M. Estrada-MuñizE. VegaL. Anacardic acids from Amphipterygium adstringens confer cytoprotection against 5-fluorouracil and carboplatin induced blood cell toxicity while increasing antitumoral activity and survival in an animal model of breast cancer.Molecules20212611324110.3390/molecules2611324134071241
    [Google Scholar]
  12. KuboI. MasuokaN. HaT.J. TsujimotoK. Antioxidant activity of anacardic acids.Food Chem.200699355556210.1016/j.foodchem.2005.08.023
    [Google Scholar]
  13. MoraisT.C. PintoN.B. CarvalhoK.M.M.B. RiosJ.B. RicardoN.M.P.S. TrevisanM.T.S. RaoV.S. SantosF.A. Protective effect of anacardic acids from cashew (Anacardium occidentale ) on ethanol-induced gastric damage in mice.Chem. Biol. Interact.2010183126426910.1016/j.cbi.2009.10.00819853593
    [Google Scholar]
  14. BalasubramanyamK. SwaminathanV. RanganathanA. KunduT.K. Small molecule modulators of histone acetyltransferase p300.J. Biol. Chem.200327821191341914010.1074/jbc.M30158020012624111
    [Google Scholar]
  15. LiuY. YangE.J. ShiC. MouP.K. ZhangB. WuC. LyuJ. ShimJ.S. Histone Acetyltransferase (HAT) P300/CBP inhibitors induce synthetic lethality in PTEN-deficient colorectal cancer cells through destabilizing AKT.Int. J. Biol. Sci.202016111774178410.7150/ijbs.4219732398948
    [Google Scholar]
  16. QuenonC. HennebelleT. ButaudJ.F. HoR. SamaillieJ. NeutC. LehartelT. RivièreC. SiahA. BonneauN. SahpazS. AnthérieuS. LebegueN. RaharivelomananaP. RoumyV. Antimicrobial properties of compounds isolated from Syzygium malaccense (L.) Merr. and L.M. perry and medicinal plants used in French Polynesia.Life (Basel)202212573310.3390/life1205073335629400
    [Google Scholar]
  17. SajeevanS.E. ChatterjeeM. PaulV. BaranwalG. KumarV.A. BoseC. BanerjiA. NairB.G. PrasanthB.P. BiswasR. Impregnation of catheters with anacardic acid from cashew nut shell prevents Staphylococcus aureus biofilm development.J. Appl. Microbiol.201812551286129510.1111/jam.1404029972893
    [Google Scholar]
  18. SaedtlerM. FörtigN. OhlsenK. FaberF. MasotaN. KowalickK. HolzgrabeU. MeinelL. Antibacterial anacardic acid derivatives.ACS Infect. Dis.2020671674168510.1021/acsinfecdis.9b0037832519844
    [Google Scholar]
  19. Castillo-JuárezI. García-ContrerasR. Velázquez-GuadarramaN. Soto-HernándezM. Martínez-VázquezM. Amphypterygium adstringens anacardic acid mixture inhibits quorum sensing-controlled virulence factors of Chromobacterium violaceum and Pseudomonas aeruginosa .Arch. Med. Res.201344748849410.1016/j.arcmed.2013.10.00424126126
    [Google Scholar]
  20. YangG. ZhangC. WangN. MengY. WangY. Anacardic acid suppresses fibroblast-like synoviocyte proliferation and invasion and ameliorates collagen-induced arthritis in a mouse model.Cytokine201811135035610.1016/j.cyto.2018.09.00830273785
    [Google Scholar]
  21. UmeharaE. Costa SilvaT.A. MendesV.M. GuadagninR.C. SartorelliP. TemponeA.G. LagoJ.H.G. Differential lethal action of C17:2 and C17:0 anacardic acid derivatives in Trypanosoma cruzi – A mechanistic study.Bioorg. Chem.202010210406810.1016/j.bioorg.2020.10406832653609
    [Google Scholar]
  22. Barazorda-CcahuanaH.L. Goyzueta-MamaniL.D. Candia PumaM.A. Simões de FreitasC. de Sousa Vieria TavaresG. Pagliara LageD. Ferraz CoelhoE.A. Chávez-FumagalliM.A. Computer-aided drug design approaches applied to screen natural product’s structural analogs targeting arginase in Leishmania spp.F1000 Res.2023129310.12688/f1000research.129943.2
    [Google Scholar]
  23. de SousaN.F. ScottiL. de MouraÉ.P. dos Santos MaiaM. RodriguesG.C.S. de MedeirosH.I.R. LopesS.M. ScottiM.T. Computer aided drug design methodologies with natural products in the drug research against Alzheimer’s disease.Curr. Neuropharmacol.202220585788510.2174/1570159X1966621100514595234636299
    [Google Scholar]
  24. YuW. MacKerellA.D. Computer-aided drug design methods.Methods Mol Biol201715208510610.1007/978‑1‑4939‑6634‑9_5
    [Google Scholar]
  25. dos Santos NascimentoI.J. de AquinoT.M. da Silva JúniorE.F. Computer-aided drug design of anti-inflammatory agents targeting microsomal prostaglandin E 2 synthase-1 (mPGES-1).Curr. Med. Chem.202229335397541910.2174/092986732966622031712294835301943
    [Google Scholar]
  26. dos Santos NascimentoI.J. da Silva RodriguesÉ.E. da SilvaM.F. de Araújo-JúniorJ.X. de MouraR.O. Advances in computational methods to discover new ns2b-ns3 inhibitors useful against Dengue and Zika viruses.Curr. Top. Med. Chem.202222292435246210.2174/156802662366622112212133036415099
    [Google Scholar]
  27. NascimentoI.J.S. de AquinoT.M. da Silva-JúniorE.F. The new era of drug discovery: The power of Computer-aided Drug Design (CADD).Lett. Drug Des. Discov.2022191195195510.2174/1570180819666220405225817
    [Google Scholar]
  28. NascimentoI.J.S. CavalcantiM.A.T. de MouraR.O. Exploring N-myristoyltransferase as a promising drug target against parasitic neglected tropical diseases.Eur. J. Med. Chem.202325811555010.1016/j.ejmech.2023.11555037336067
    [Google Scholar]
  29. SchultzD.J. WickramasingheN.S. KlingeC.M. Anacardic acid biosynthesis and bioactivity.Recent Advances in Phytochemistry20064013115610.1016/S0079‑9920(06)80040‑7.
    [Google Scholar]
  30. PopovaM. TrushevaB. ChimshirovaR. AntonovaD. GechovskaK. ThanhL.N. LienN.T.P. PhuongD.T.L. BankovaV. Chemical profile and antioxidant capacity of propolis from Tetragonula, Lepidotrigona, Lisotrigona and Homotrigona stingless bee species in Vietnam.Molecules20222722783410.3390/molecules2722783436431935
    [Google Scholar]
  31. WaltersD.S. CraigR. MummaR. Fatty acid incorporation in the biosynthesis of anacardic acids of geraniums.Phytochemistry19902961815182210.1016/0031‑9422(90)85022‑8.
    [Google Scholar]
  32. ManderL LiuH.W. Comprehensive Natural Products II20102
    [Google Scholar]
  33. GellermanJ.L. AndersonW.H. SchlenkH. Biosynthesis of anacardic acids from acetate in Ginkgo biloba.Lipids1974972272510.1007/BF02532182.
    [Google Scholar]
  34. DewickP.M. Medicinal Natural Products: A Biosynthetic ApproachJohn Wiley & Sons200910.1002/9780470742761
    [Google Scholar]
  35. NarnoliyaL.K. KaushalG. SinghS.P. SangwanR.S. De novo transcriptome analysis of rose-scented geranium provides insights into the metabolic specificity of terpene and tartaric acid biosynthesis.BMC Genomics20171817410.1186/s12864‑016‑3437‑028086783
    [Google Scholar]
  36. StauntonJ. WeissmanK.J. Polyketide biosynthesis: A millennium review.Nat. Prod. Rep.200118438041610.1039/a909079g11548049
    [Google Scholar]
  37. HemshekharM. Sebastin SanthoshM. KemparajuK. GirishK.S. Emerging roles of anacardic acid and its derivatives: A pharmacological overview.Basic Clin. Pharmacol. Toxicol.2012110212213210.1111/j.1742‑7843.2011.00833.x22103711
    [Google Scholar]
  38. LegutM. LipkaD. FilipczakN. PiwoniA. KozubekA. GubernatorJ. Anacardic acid enhances the anticancer activity of liposomal mitoxantrone towards melanoma cell lines - In vitro studies.Int. J. Nanomedicine2014965366824489469
    [Google Scholar]
  39. PereiraJ.M. SeverinoR.P. VieiraP.C. FernandesJ.B. da SilvaM.F.G.F. ZottisA. AndricopuloA.D. OlivaG. CorrêaA.G. Anacardic acid derivatives as inhibitors of glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi .Bioorg. Med. Chem.200816198889889510.1016/j.bmc.2008.08.05718789702
    [Google Scholar]
  40. MuroiH. NiheiK. TsujimotoK. KuboI. Synergistic effects of anacardic acids and methicillin against methicillin resistant Staphylococcus aureus .Bioorg. Med. Chem.200412358358710.1016/j.bmc.2003.10.04614738968
    [Google Scholar]
  41. LüJ.M. YanS. JamaluddinS. WeakleyS.M. LiangZ. SiwakE.B. YaoQ. ChenC. Ginkgolic acid inhibits HIV protease activity and HIV infection in vitro .Med. Sci. Monit.2012188BR293BR29810.12659/MSM.88326122847190
    [Google Scholar]
  42. MedzhitovR. Origin and physiological roles of inflammation.Nature2008454720342843510.1038/nature0720118650913
    [Google Scholar]
  43. da Silva-JúniorE.F. dos Santos NascimentoI.J. TNF-α inhibitors from natural compounds: An overview, CADD approaches, and their exploration for anti-inflammatory agents.Comb. Chem. High Throughput Screen.202225142317234010.2174/138620732466621071516594334269666
    [Google Scholar]
  44. PatilK.R. MahajanU.B. UngerB.S. GoyalS.N. BelemkarS. SuranaS.J. OjhaS. PatilC.R. Animal models of inflammation for screening of anti-inflammatory drugs: Implications for the discovery and development.Int. J. Mol. Sci.201920
    [Google Scholar]
  45. MaiA. RotiliD. TarantinoD. OrnaghiP. TosiF. VicidominiC. SbardellaG. NebbiosoA. MiceliM. AltucciL. FileticiP. Small-molecule inhibitors of histone acetyltransferase activity: Identification and biological properties.J. Med. Chem.200649236897690710.1021/jm060601m17154519
    [Google Scholar]
  46. SungB. PandeyM.K. AnnK.S. YiT. ChaturvediM.M. LiuM. AggarwalB.B. Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis.Blood20081114880489110.1182/blood‑2007‑10‑11799418349320
    [Google Scholar]
  47. ZhaoK. JiaY. PengJ. PangC. ZhangT. HanW. JiangJ. LuX. ZhuJ. QianY. Anacardic acid inhibits RANKL‐induced osteoclastogenesis in vitro and prevents ovariectomy‐induced bone loss in vivo.FASEB J.20193389100911510.1096/fj.201802575RR31050917
    [Google Scholar]
  48. CarvalhoA.L.N. AnnoniR. TorresL.H.L. DurãoA.C.C.S. ShimadaA.L.B. AlmeidaF.M. HebedaC.B. LopesF.D.T.Q.S. DolhnikoffM. MartinsM.A. SilvaL.F.F. FarskyS.H.P. SaldivaP.H.N. UlrichC.M. OwenR.W. MarcourakisT. TrevisanM.T.S. MauadT. Anacardic acids from cashew nuts ameliorate lung damage induced by exposure to diesel exhaust particles in mice.Evid Based Complement Alternat Med2013201354987910.1155/2013/549879.
    [Google Scholar]
  49. GnanaprakasamJ.N.R. Estrada-MuñizE. VegaL. The anacardic 6-pentadecyl salicylic acid induces macrophage activation via the phosphorylation of ERK1/2, JNK, P38 kinases and NF-κB.Int. Immunopharmacol.201529280881710.1016/j.intimp.2015.08.03826371858
    [Google Scholar]
  50. GaoY.H. ZhangY. GuoY.X. WangJ.Q. GaoM.Y. ZhaoZ.H. GaoR. SunY.N. WangL.B. LiX. Treatment with anacardic acid modulates dendritic cell activation and alleviates the disease development of autoimmune neuroinflammation in mice.Biochem. Biophys. Res. Commun.2022613344010.1016/j.bbrc.2022.04.11535526486
    [Google Scholar]
  51. Ljunggren-RoseÅ. NatarajanC. MattaP. PandeyA. UpenderI. SriramS. Anacardic acid induces IL-33 and promotes remyelination in CNS.Proc. Natl. Acad. Sci. USA202011735215272153510.1073/pnas.200656611732817520
    [Google Scholar]
  52. MunitaJ.M. AriasC.A. Mechanisms of antibiotic resistance.Microbiol Spectr20164210.1128/microbiolspec.VMBF‑0016‑2015.
    [Google Scholar]
  53. HauserA.R. MecsasJ. MoirD.T. Beyond antibiotics: New therapeutic approaches for bacterial infections.Clin. Infect. Dis.2016631899510.1093/cid/ciw20027025826
    [Google Scholar]
  54. GómezS. Querol-GarcíaJ. Sánchez-BarrónG. SubiasM. González-AlsinaÀ. Franco-HidalgoV. AlbertíS. Rodríguez de CórdobaS. FernándezF.J. VegaM.C. The antimicrobials anacardic acid and curcumin are not-competitive inhibitors of gram-positive bacterial pathogenic glyceraldehyde-3-phosphate dehydrogenase by a mechanism unrelated to human C5a anaphylatoxin binding.Front. Microbiol.20191032610.3389/fmicb.2019.0032630863383
    [Google Scholar]
  55. KuboI. NiheiK. TsujimotoK. Antibacterial action of anacardic acids against methicillin resistant Staphylococcus aureus (MRSA).J. Agric. Food Chem.200351267624762810.1021/jf034674f14664518
    [Google Scholar]
  56. OmanakuttanA. NambiarJ. HarrisR.M. BoseC. PanduranganN. VargheseR.K. KumarG.B. TainerJ.A. BanerjiA. PerryJ.J.P. NairB.G. Anacardic acid inhibits the catalytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9.Mol. Pharmacol.201282461462210.1124/mol.112.07902022745359
    [Google Scholar]
  57. HollandsA. CorridenR. GyslerG. DaheshS. OlsonJ. Raza AliS. KunkelM.T. LinA.E. ForliS. NewtonA.C. KumarG.B. NairB.G. PerryJ.J.P. NizetV. Natural product anacardic acid from cashew nut shells stimulates neutrophil extracellular trap production and bactericidal activity.J. Biol. Chem.201629127139641397310.1074/jbc.M115.69586627226531
    [Google Scholar]
  58. Rivero-CruzB.E. EsturauN. Sánchez-NietoS. RomeroI. Castillo-JuárezI. Rivero-CruzJ.F. Isolation of the new anacardic acid 6-[16′Z-nonadecenyl]-salicylic acid and evaluation of its antimicrobial activity against Streptococcus mutans and Porphyromonas gingivalis.Nat. Prod. Res.201125131282128710.1080/14786419.2010.53499621815722
    [Google Scholar]
  59. AnjumM.M. PatelK.K. PandeyN. TilakR. AgrawalA.K. SinghS. Development of anacardic acid/hydroxypropyl-β-cyclodextrin inclusion complex with enhanced solubility and antimicrobial activity.J. Mol. Liq.201929611208510.1016/j.molliq.2019.112085
    [Google Scholar]
  60. AraujoJ.T.C. Martin-PastorM. PérezL. PinazoA. SousaF.F.O. Development of anacardic acid-loaded zein nanoparticles: Physical chemical characterization, stability and antimicrobial improvement.J. Mol. Liq.202133211580810.1016/j.molliq.2021.115808
    [Google Scholar]
  61. HeardS.C. WuG. WinterJ.M. Antifungal natural products.Curr. Opin. Biotechnol.20216923224110.1016/j.copbio.2021.02.00133640596
    [Google Scholar]
  62. CampoyS. AdrioJ.L. Antifungals.Biochem. Pharmacol.2017133869610.1016/j.bcp.2016.11.01927884742
    [Google Scholar]
  63. PatilA. MajumdarS. Echinocandins in antifungal pharmacotherapy.J. Pharm. Pharmacol.201769121635166010.1111/jphp.1278028744860
    [Google Scholar]
  64. LimaS.L. ColomboA.L. de Almeida JuniorJ.N. Fungal cell wall: Emerging antifungals and drug resistance.Front. Microbiol.201910257310.3389/fmicb.2019.0257331824443
    [Google Scholar]
  65. SuH. HanL. HuangX. Potential targets for the development of new antifungal drugs.J. Antibiot. (Tokyo)2018711297899110.1038/s41429‑018‑0100‑930242283
    [Google Scholar]
  66. MoraisS. SilvaK. AraujoH. VieiraI. AlvesD. FontenelleR. SilvaA. Anacardic acid constituents from cashew nut shell liquid: NMR characterization and the effect of unsaturation on its biological activities.Pharmaceuticals (Basel)20171013110.3390/ph1001003128300791
    [Google Scholar]
  67. MuzaffarS. BoseC. BanerjiA. NairB.G. ChattooB.B. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae .Appl. Microbiol. Biotechnol.2016100132333510.1007/s00253‑015‑6915‑426381667
    [Google Scholar]
  68. MuzaffarS. ChattooB.B. Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae .Apoptosis201722346347410.1007/s10495‑016‑1330‑628012059
    [Google Scholar]
  69. BegumP. HashidokoY. Tofazzal IslamM. OgawaY. TaharaS. Zoosporicidal activities of anacardic acids against Aphanomyces cochlioides .Z. Naturforsch. C J. Biosci.2002579-1087488210.1515/znc‑2002‑9‑102012440727
    [Google Scholar]
  70. MafezoliJ. XuY. HilárioF. FreidhofB. Espinosa-ArtilesP. dos SantosL.C. de OliveiraM.C.F. GunatilakaA.A.L. Modulation of polyketide biosynthetic pathway of the endophytic fungus, Anteaglonium sp. FL0768, by copper (II) and anacardic acid.Phytochem. Lett.20182815716310.1016/j.phytol.2018.10.01131354886
    [Google Scholar]
  71. FerreiraR.C.S. RiffelA. Sant’AnaA.E.G. HIV: replication mechanism, pharmacological targets and inhibition by plant-derived products.Quim. Nova20103381743175510.1590/S0100‑40422010000800023
    [Google Scholar]
  72. ArumugamV.A. BalasubramanianB. MohandassK. KathirvelB. AluruP. MeyyazhaganA. NachiappanS. KuldeepD. MohammadI.Y. TiwariR. Medicinal Plants, Phytochemicals, and Herbs to Combat Viral Pathogens Including SARS-CoV-2.Molecules202126128
    [Google Scholar]
  73. LouZ. SunY. RaoZ. Current progress in antiviral strategies.Trends Pharmacol. Sci.20143528610210.1016/j.tips.2013.11.00624439476
    [Google Scholar]
  74. dos Santos NascimentoI.J. de MouraR.O. Would the development of a multitarget inhibitor of 3CLpro and TMPRSS2 be promising in the fight against SARS-CoV-2?Med. Chem.202319540541210.2174/157340641866622101109343936221875
    [Google Scholar]
  75. HuB. GuoH. ZhouP. ShiZ.L. Characteristics of SARS-CoV-2 and COVID-19.Nat. Rev. Microbiol.202119314115410.1038/s41579‑020‑00459‑733024307
    [Google Scholar]
  76. HundtJ. LiZ. LiuQ. The inhibitory effects of anacardic acid on hepatitis C virus life cycle.PLoS One2015102e011751410.1371/journal.pone.011751425658101
    [Google Scholar]
  77. KobialkaM.K. RuszkowskaW.D. GhizzoniM. DekkerF.J. PiwockaK. Inhibition of PCAF by anacardic acid derivative leads to apoptosis and breaks resistance to DNA damage in BCR-ABL-expressing cells.Anticancer. Agents Med. Chem.201313576276710.2174/187152061131305001023157591
    [Google Scholar]
  78. KanyaboonP. SaeleeT. SuroengritA. HengphasatpornK. RungrotmongkolT. ChavasiriW. BoonyasuppayakornS. Cardol triene inhibits dengue infectivity by targeting kl loops and preventing envelope fusion.Sci. Rep.2018811664310.1038/s41598‑018‑35035‑w30413789
    [Google Scholar]
  79. CamposD. NavarroS. Llamas-GonzálezYY. SugastiM. González-SantamaríaJ. Broad antiviral activity of ginkgolic acid against Chikungunya, Mayaro, Una, and Zika viruses.Viruses202012444910.3390/v12040449.
    [Google Scholar]
  80. KayserO. KiderlenA.F. CroftS.L. Natural products as antiparasitic drugs.Parasitol. Res.200390S55S6210.1007/s00436‑002‑0768‑312937967
    [Google Scholar]
  81. NascimentoI. AlbinoS. MenezesK. CavalcantiM. OliveiraM. MaliS. MouraR. Targeting SmCB1: Perspectives and insights to design antischistosomal drugs.Curr. Med. Chem.202331
    [Google Scholar]
  82. FreitasR.F. ProkopczykI.M. ZottisA. OlivaG. AndricopuloA.D. TrevisanM.T.S. VilegasW. SilvaM.G.V. MontanariC.A. Discovery of novel Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase inhibitors.Bioorg. Med. Chem.20091762476248210.1016/j.bmc.2009.01.07919254846
    [Google Scholar]
  83. CuiL. MiaoJ. FuruyaT. FanQ. LiX. RathodP.K. SuX. CuiL. Histone acetyltransferase inhibitor anacardic acid causes changes in global gene expression during in vitro Plasmodium falciparum development.Eukaryot. Cell2008771200121010.1128/EC.00063‑0818487348
    [Google Scholar]
  84. YuanM. SongX. LvW. XinQ. WangL. GaoQ. ZhangG. LiaoW. LianS. JingT. Effect of anacardic acid against echinococcosis through inhibition of VEGF-induced angiogenesis.Vet. Res.2019501310.1186/s13567‑019‑0621‑730642401
    [Google Scholar]
  85. RanjbarnejadT. SaidijamM. tafakhM. PourjafarM. TalebzadehF. NajafiR. Garcinol exhibits anti-proliferative activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells.Hum. Exp. Toxicol.201736769270010.1177/096032711666086527481098
    [Google Scholar]
  86. dos Santos NascimentoI.J. de AquinoT.M. da Silva JúniorE.F. de MouraR.O. Insights on microsomal prostaglandin E2 Synthase 1 (mPGES-1) inhibitors using molecular dynamics and MM/PBSA calculations.Lett. Drug Des. Discov.20242161033104710.2174/1570180820666230228105833
    [Google Scholar]
  87. NascimentoI.J. dos S. SantosM.B. MarinhoW.P.D.J. de MouraR.O. Insights to design new drugs against human african trypanosomiasis targeting rhodesain using covalent docking, molecular dynamics simulations, and mm-pbsa calculations.Curr. Comput. Aided. Drug Des.202420
    [Google Scholar]
  88. GürZ.T. ÇalışkanB. GarschaU.I. OlgaçA. SchubertU.S. GerstmeierJ. WerzO. BanogluE. Identification of multi-target inhibitors of leukotriene and prostaglandin E2 biosynthesis by structural tuning of the FLAP inhibitor BRP-7.Eur. J. Med. Chem.201815087689910.1016/j.ejmech.2018.03.04529597170
    [Google Scholar]
  89. ParkS.J. HanS.G. AhsanH.M. LeeK. LeeJ.Y. ShinJ.S. LeeK.T. KangN.S. YuY.G. Identification of novel mPGES-1 inhibitors through screening of a chemical library.Bioorg. Med. Chem. Lett.201222247335733910.1016/j.bmcl.2012.10.08523147075
    [Google Scholar]
  90. LeeK. PhamV.C. ChoiM.J. KimK.J. LeeK.T. HanS.G. YuY.G. LeeJ.Y. Fragment-based discovery of novel and selective mPGES-1 inhibitors Part 1: Identification of sulfonamido-1,2,3-triazole-4,5-dicarboxylic acid.Bioorg. Med. Chem. Lett.2013231758010.1016/j.bmcl.2012.11.01923218602
    [Google Scholar]
  91. Santos NascimentoI.J. AquinoT.M. Silva-JúniorE.F. Repurposing FDA-approved Drugs Targeting SARS-CoV2 3CL pro : A study by applying virtual screening, molecular dynamics, MM-PBSA calculations and covalent docking.Lett. Drug Des. Discov.202219763765310.2174/1570180819666220106110133
    [Google Scholar]
  92. AlbinoS.L. da Silva MouraW.C. ReisM.M.L. SousaG.L.S. da SilvaP.R. de OliveiraM.G.C. BorgesT.K.S. AlbuquerqueL.F.F. de AlmeidaS.M.V. de LimaM.C.A. KuckelhausS.A.S. NascimentoI.J.S. JuniorF.J.B.M. da SilvaT.G. de MouraR.O. ACW-02 an acridine triazolidine derivative presents antileishmanial activity mediated by DNA interaction and immunomodulation.Pharmaceuticals (Basel)202316220410.3390/ph1602020437259353
    [Google Scholar]
  93. de BarrosW.A. NunesC.S. SouzaJ.A.C.R. NascimentoI.J.S. FigueiredoI.M. de AquinoT.M. VieiraL. FariasD. SantosJ.C.C. de FátimaÂ. The new psychoactive substances 25H-NBOMe and 25H-NBOH induce abnormal development in the zebrafish embryo and interact in the DNA major groove.Curr. Res. Toxicol.2021238639810.1016/j.crtox.2021.11.00234888530
    [Google Scholar]
  94. dos Santos NascimentoI.J. de AquinoT.M. da Silva-JúniorE.F. Molecular docking and dynamics simulation studies of a dataset of NLRP3 inflammasome inhibitors.Recent Adv. Inflamm. Allergy Drug Discov.2022152808610.2174/2772270816666220126103909
    [Google Scholar]
  95. GuptaA. ChaudharyN. AparoyP. MM-PBSA and per-residue decomposition energy studies on 7-Phenyl-imidazoquinolin-4(5H)-one derivatives: Identification of crucial site points at microsomal prostaglandin E synthase-1 (mPGES-1) active site.Int. J. Biol. Macromol.201811935235910.1016/j.ijbiomac.2018.07.05030031079
    [Google Scholar]
  96. JohnsonR.A. MuirM. RokhgarR. Anacardium Occidento.198966553557
    [Google Scholar]
  97. NagabhushanaK.S. RavindranathB. Efficient medium-scale chromatographic group separation of anacardic acids from solvent-extracted cashew nut (Anacardium occidentale ) shell liquid.J. Agric. Food Chem.19954392381238310.1021/jf00057a012
    [Google Scholar]
  98. ParamashivappaR. KumarP.P. VithayathilP.J. RaoA.S. Novel method for isolation of major phenolic constituents from cashew (Anacardium occidentale L.) nut shell liquid.J. Agric. Food Chem.20014952548255110.1021/jf001222j11368634
    [Google Scholar]
  99. MloweS.S. PullabhotlaR.R. MubofuE.E. NgassapaF.F. RevaprasaduN.N. Low temperature synthesis of anacardic-acid-capped cadmium chalcogenide nanoparticles.Int. Nano Lett.20144210610.1007/s40089‑014‑0106‑7
    [Google Scholar]
  100. CarvalhoA.L.N. AnnoniR. SilvaP.R.P. BorelliP. FockR.A. TrevisanM.T.S. MauadT. Acute, subacute toxicity and mutagenic effects of anacardic acids from cashew (Anacardium occidentale Linn.) in mice.J. Ethnopharmacol.2011135373073610.1016/j.jep.2011.04.00221511024
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266319575240905164313
Loading
/content/journals/ctmc/10.2174/0115680266319575240905164313
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test