Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Transient receptor potential vanilloid (TRPV) channels are a member of the TRP superfamily, which consists of six proteins and is expressed in many neuronal and non-neuronal cells. Among them, TRPV1-4 are non-selective cation channels that are highly sensitive to temperature changes, while TRPV5-6 are channels that are highly selective to Ca2+. These cation channels have attracted great interest academically, especially from a pharmacological perspective. TRPV channels play a vital role in many physiological processes and can be regulated by a variety of endogenous stimuli as well as a range of natural and synthetic compounds. The regulation of their activities can lead to a variety of diseases and disorders, such as neurodegenerative diseases, pain, cancer, and skin diseases. In fact, several TRPV1 and TRPV3 modulators have been developed for clinical use. Therefore, the development of TRPV channel modulators has important clinical significance and value. Herein, we focused on and summarized the latest research progress of endogenous and exogenous ligands of six TRPV channels and their pharmacological effects on related diseases.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266294569241115053420
2025-01-02
2025-10-03
Loading full text...

Full text loading...

References

  1. MinkeB. WuC.F. PakW.L. Induction of photoreceptor voltage noise in the dark in Drosophila mutant.Nature19752585530848710.1038/258084a0810728
    [Google Scholar]
  2. ChungM.K. JungS.J. OhS.B. Role of TRP channels in pain sensation.Adv. Exp. Med. Biol.201170461563610.1007/978‑94‑007‑0265‑3_3321290319
    [Google Scholar]
  3. RamseyI.S. DellingM. ClaphamD.E. An introduction to TRP channels.Annu. Rev. Physiol.200668161964710.1146/annurev.physiol.68.040204.10043116460286
    [Google Scholar]
  4. PumroyR.A. FluckE.C.III AhmedT. Moiseenkova-BellV.Y. Structural insights into the gating mechanisms of TRPV channels.Cell Calcium20208710216810.1016/j.ceca.2020.10216832004816
    [Google Scholar]
  5. BaylieR.L. BraydenJ.E. TRPV channels and vascular function.Acta Physiol.201120319911610.1111/j.1748‑1716.2010.02217.x21062421
    [Google Scholar]
  6. NiliusB. VennekensR. OwsianikG. Vanilloid transient receptor potential cation channels: an overview.Curr. Pharm. Des.2008141183110.2174/13816120878333076318220815
    [Google Scholar]
  7. MorganM. NenciniS. ThaiJ. IvanusicJ.J. TRPV1 activation alters the function of Aδ and C fiber sensory neurons that innervate bone.Bone201912316817510.1016/j.bone.2019.03.04030936039
    [Google Scholar]
  8. GoretzkiB. GuhlC. TebbeF. HarderJ.M. HellmichU.A. Unstructural biology of TRP ion channels: the role of intrinsically disordered regions in channel function and regulation.J. Mol. Biol.20214331716693110.1016/j.jmb.2021.16693133741410
    [Google Scholar]
  9. LishkoP.V. ProckoE. JinX. PhelpsC.B. GaudetR. The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity.Neuron200754690591810.1016/j.neuron.2007.05.02717582331
    [Google Scholar]
  10. PobleteH. OyarzúnI. OliveroP. ComerJ. ZuñigaM. SepulvedaR.V. Báez-NietoD. González LeonC. González-NiloF. LatorreR. Molecular determinants of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) binding to transient receptor potential V1 (TRPV1) channels.J. Biol. Chem.201529042086209810.1074/jbc.M114.61362025425643
    [Google Scholar]
  11. CavanaughD.J. CheslerA.T. JacksonA.C. SigalY.M. YamanakaH. GrantR. O’DonnellD. NicollR.A. ShahN.M. JuliusD. BasbaumA.I. Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells.J. Neurosci.201131135067507710.1523/JNEUROSCI.6451‑10.201121451044
    [Google Scholar]
  12. AbbasM.A. Modulation of TRPV1 channel function by natural products in the treatment of pain.Chem. Biol. Interact.202033010917810.1016/j.cbi.2020.10917832738201
    [Google Scholar]
  13. Benítez-AngelesM. Morales-LázaroS.L. Juárez-GonzálezE. RosenbaumT. TRPV1: structure, endogenous agonists, and mechanisms.Int. J. Mol. Sci.20202110342110.3390/ijms2110342132408609
    [Google Scholar]
  14. GunthorpeM.J. ChizhB.A. Clinical development of TRPV1 antagonists: targeting a pivotal point in the pain pathway.Drug Discov. Today2009141-2566710.1016/j.drudis.2008.11.00519063991
    [Google Scholar]
  15. SugiyamaY. IshidaK. YoshiyamaY. TanakaS. KawamataM. TRPV1 is involved in abdominal hyperalgesia in a mouse model of lipopolysaccharide-induced peritonitis and influences the immune response via peripheral noradrenergic neurons.Life Sci.202331712147210.1016/j.lfs.2023.12147236750138
    [Google Scholar]
  16. ChizhB.A. O’DonnellM.B. NapolitanoA. WangJ. BrookeA.C. AylottM.C. BullmanJ.N. GrayE.J. LaiR.Y. WilliamsP.M. ApplebyJ.M. The effects of the TRPV1 antagonist SB-705498 on TRPV1 receptor-mediated activity and inflammatory hyperalgesia in humans.Pain2007132113214110.1016/j.pain.2007.06.00617659837
    [Google Scholar]
  17. ParsonsW.H. CalvoR.R. CheungW. LeeY.K. PatelS. LiuJ. YoungmanM.A. DaxS.L. StoneD. QinN. HutchinsonT. LubinM.L. ZhangS.P. FinleyM. LiuY. BrandtM.R. FloresC.M. PlayerM.R. Benzo[d]imidazole transient receptor potential vanilloid 1 antagonists for the treatment of pain: discovery of trans-2-(2-{2-[2-(4-trifluoromethyl-phenyl)-vinyl]-1H-benzimidazol-5-yl}-phenyl)-propan-2-ol (mavatrep).J. Med. Chem.20155893859387410.1021/acs.jmedchem.5b0013225850459
    [Google Scholar]
  18. Arendt-NielsenL. HarrisS. WhitesideG.T. HummelM. KnappenbergerT. O’KeefeS. KapilR. KyleD. A randomized, double-blind, positive-controlled, 3-way cross-over human experimental pain study of a TRPV1 antagonist (V116517) in healthy volunteers and comparison with preclinical profile.Pain201615792057206710.1097/j.pain.000000000000061027168361
    [Google Scholar]
  19. KittakaH. TominagaM. The molecular and cellular mechanisms of itch and the involvement of TRP channels in the peripheral sensory nervous system and skin.Allergol. Int.2017661223010.1016/j.alit.2016.10.00328012781
    [Google Scholar]
  20. PernerC. FlayerC.H. ZhuX. AderholdP.A. DewanZ.N.A. VoisinT. CamireR.B. ChowO.A. ChiuI.M. SokolC.L. SubstanceP. Substance P Release by Sensory Neurons Triggers Dendritic Cell Migration and Initiates the Type-2 Immune Response to Allergens.Immunity202053510631077.e710.1016/j.immuni.2020.10.00133098765
    [Google Scholar]
  21. ThorntonT. MillsD. BlissE. Capsaicin: a potential treatment to improve cerebrovascular function and cognition in obesity and ageing.Nutrients2023156153710.3390/nu1506153736986266
    [Google Scholar]
  22. PhanT.X. TonH.T. GulyásH. PórszászR. TóthA. RussoR. KayM.W. SahibzadaN. AhernG.P. TRPV1 expressed throughout the arterial circulation regulates vasoconstriction and blood pressure.J. Physiol.2020598245639565910.1113/JP27990932944976
    [Google Scholar]
  23. LiQ. GarryM.G. A murine model of the exercise pressor reflex.J. Physiol.2020598153155317110.1113/JP27760232406099
    [Google Scholar]
  24. Mayo-YáñezM. Díaz-DíazA. Calvo-HenríquezC. LechienJ.R. VairaL.A. FigueroaA. Diamine oxidase activity deficit and idiopathic rhinitis: a new subgroup of non-allergic rhinitis?Life (Basel)202313124010.3390/life1301024036676189
    [Google Scholar]
  25. LiF. JiangH. ShenX. YangW. GuoC. WangZ. XiaoM. CuiL. LuoW. KimB.S. ChenZ. HuangA.J.W. LiuQ. Sneezing reflex is mediated by a peptidergic pathway from nose to brainstem.Cell20211841437623773.e1010.1016/j.cell.2021.05.01734133943
    [Google Scholar]
  26. ChoiJ.Y. LeeH.Y. HurJ. KimK.H. KangJ.Y. RheeC.K. LeeS.Y. TRPV1 Blocking Alleviates Airway Inflammation and Remodeling in a Chronic Asthma Murine Model.Allergy Asthma Immunol. Res.201810321622410.4168/aair.2018.10.3.21629676068
    [Google Scholar]
  27. WangS. LiS. WuH. ZhangT. ChenY. ZhuY. WenS. ShiC. YuL. XuX. A randomized, double-blinded, placebo-controlled clinical trial of duloxetine hydrochloride enteric-coated tablets in the treatment of refractory chronic cough.BMC Pulm. Med.202323128210.1186/s12890‑023‑02575‑537533019
    [Google Scholar]
  28. KhalidS. MurdochR. NewlandsA. SmartK. KelsallA. HoltK. DockryR. WoodcockA. SmithJ.A. Transient receptor potential vanilloid 1 (TRPV1) antagonism in patients with refractory chronic cough: A double-blind randomized controlled trial.J. Allergy Clin. Immunol.201413415662.e410.1016/j.jaci.2014.01.03824666696
    [Google Scholar]
  29. Aghazadeh TabriziM. BaraldiP.G. BaraldiS. GessiS. MerighiS. BoreaP.A. Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists.Med. Res. Rev.201737493698310.1002/med.2142727976413
    [Google Scholar]
  30. IglesiasL.P. AguiarD.C. MoreiraF.A. TRPV1 blockers as potential new treatments for psychiatric disorders.Behav. Pharmacol.202233121410.1097/FBP.000000000000060333136616
    [Google Scholar]
  31. ZygmuntP.M. PeterssonJ. AnderssonD.A. ChuangH. SørgårdM. Di MarzoV. JuliusD. HögestättE.D. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide.Nature1999400674345245710.1038/2276110440374
    [Google Scholar]
  32. ZhongB. WangD.H. N -oleoyldopamine, a novel endogenous capsaicin-like lipid, protects the heart against ischemia-reperfusion injury via activation of TRPV1.Am. J. Physiol. Heart Circ. Physiol.20082952H728H73510.1152/ajpheart.00022.200818567714
    [Google Scholar]
  33. SextonA. McDonaldM. CaylaC. ThiemermannC. AhluwaliaA. 12‐Lipoxygenase‐derived eicosanoids protect against myocardial ischemia/reperfusion injury via activation of neuronal TRPV1.FASEB J.200721112695270310.1096/fj.06‑7828com17470568
    [Google Scholar]
  34. AlsalemM. WongA. MillnsP. AryaP.H. ChanM.S.L. BennettA. BarrettD.A. ChapmanV. KendallD.A. The contribution of the endogenous TRPV1 ligands 9‐ HODE and 13‐ HODE to nociceptive processing and their role in peripheral inflammatory pain mechanisms.Br. J. Pharmacol.201316881961197410.1111/bph.1209223278358
    [Google Scholar]
  35. WooD.H. JungS.J. ZhuM.H. ParkC.K. KimY.H. OhS.B. LeeC.J. Direct activation of transient receptor potential vanilloid 1(TRPV1) by diacylglycerol (DAG).Mol. Pain200841744-8069-4-4210.1186/1744‑8069‑4‑4218826653
    [Google Scholar]
  36. AmbrosinoP. SoldovieriM.V. RussoC. TaglialatelaM. Activation and desensitization of TRPV1 channels in sensory neurons by the PPARα agonist palmitoylethanolamide.Br. J. Pharmacol.201316861430144410.1111/bph.1202923083124
    [Google Scholar]
  37. Morales-LázaroS.L. Serrano-FloresB. LlorenteI. Hernández-GarcíaE. González-RamírezR. BanerjeeS. MillerD. GududuruV. FellsJ. NormanD. TigyiG. Escalante-AlcaldeD. RosenbaumT. Structural determinants of the transient receptor potential 1 (TRPV1) channel activation by phospholipid analogs.J. Biol. Chem.201428935240792409010.1074/jbc.M114.57250325035428
    [Google Scholar]
  38. NersesyanY. DemirkhanyanL. Cabezas-BratescoD. OakesV. KusudaR. DawsonT. SunX. CaoC. CohenA.M. ChelluboinaB. VeeravalliK.K. ZimmermannK. DomeneC. BrauchiS. ZakharianE. Oxytocin Modulates Nociception as an Agonist of Pain-Sensing TRPV1.Cell Rep.20172161681169110.1016/j.celrep.2017.10.06329117570
    [Google Scholar]
  39. MaioneS. De PetrocellisL. de NovellisV. MorielloA.S. PetrosinoS. PalazzoE. RossiF.S. WoodwardD.F. Di MarzoV. Analgesic actions of N ‐arachidonoyl‐serotonin, a fatty acid amide hydrolase inhibitor with antagonistic activity at vanilloid TRPV1 receptors.Br. J. Pharmacol.2007150676678110.1038/sj.bjp.070714517279090
    [Google Scholar]
  40. De, La, Roche, J.; Walther, I.; Leonow, W.; Hage, A.; Eberhardt, M.; Fischer, M.; Reeh, P.W.; Sauer, S.; Leffler, A. Lactate is a potent inhibitor of the capsaicin receptor TRPV1.Sci. Rep.2016636740[J]. [https://doi.org/10.1038/srep36740]. [PMID: 27827430].
    [Google Scholar]
  41. LongW. FatehiM. SoniS. PanigrahiR. PhilippaertK. YuY. KellyR. BoonenB. BarrA. GolecD. CampbellS.A. OndrusovaK. HubertM. BaldwinT. LemieuxM.J. LightP.E. Vitamin D is an endogenous partial agonist of the transient receptor potential vanilloid 1 channel.J. Physiol.2020598194321433810.1113/JP27996132721035
    [Google Scholar]
  42. IftincaM. DefayeM. AltierC. TRPV1-targeted drugs in development for human pain conditions.Drugs202181172710.1007/s40265‑020‑01429‑233165872
    [Google Scholar]
  43. SzallasiA. SzabóT. BíróT. ModarresS. BlumbergP.M. KrauseJ.E. CortrightD.N. AppendinoG. Resiniferatoxin‐type phorboid vanilloids display capsaicin‐like selectivity at native vanilloid receptors on rat DRG neurons and at the cloned vanilloid receptor VR1.Br. J. Pharmacol.1999128242843410.1038/sj.bjp.070281010510454
    [Google Scholar]
  44. McNamaraF.N. RandallA. GunthorpeM.J. Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1).Br. J. Pharmacol.2005144678179010.1038/sj.bjp.070604015685214
    [Google Scholar]
  45. YinY. DongY. VuS. YangF. Yarov-YarovoyV. TianY. ZhengJ. Structural mechanisms underlying activation of TRPV1 channels by pungent compounds in gingers.Br. J. Pharmacol.2019176173364337710.1111/bph.1476631207668
    [Google Scholar]
  46. XuH. BlairN.T. ClaphamD.E. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism.J. Neurosci.200525398924893710.1523/JNEUROSCI.2574‑05.200516192383
    [Google Scholar]
  47. YangB.H. PiaoZ.G. KimY.B. LeeC.H. LeeJ.K. ParkK. KimJ.S. OhS.B. Activation of vanilloid receptor 1 (VR1) by eugenol.J. Dent. Res.2003821078178510.1177/15440591030820100414514756
    [Google Scholar]
  48. WangS. YamamotoS. KogureY. ZhangW. NoguchiK. DaiY. Partial activation and inhibition of TRPV1 channels by evodiamine and rutaecarpine, two major components of the fruits of Evodia rutaecarpa.J. Nat. Prod.20167951225123010.1021/acs.jnatprod.5b0059927159637
    [Google Scholar]
  49. WangT. WangY. YamashitaH. Evodiamine inhibits adipogenesis via the EGFR–PKCα–ERK signaling pathway.FEBS Lett.2009583223655365910.1016/j.febslet.2009.10.04619854188
    [Google Scholar]
  50. YangJ.Y. KimJ.B. LeeP. KimS.H. Evodiamine Inhibits Helicobacter pylori Growth and Helicobacter pylori-Induced Inflammation.Int. J. Mol. Sci.2021227338510.3390/ijms2207338533806161
    [Google Scholar]
  51. PandaM. TripathiS.K. ZenginG. BiswalB.K. Evodiamine as an anticancer agent: a comprehensive review on its therapeutic application, pharmacokinetic, toxicity, and metabolism in various cancers.Cell Biol. Toxicol.202339113110.1007/s10565‑022‑09772‑836138312
    [Google Scholar]
  52. KoizumiK. IwasakiY. NarukawaM. IitsukaY. FukaoT. SekiT. ArigaT. WatanabeT. Diallyl sulfides in garlic activate both TRPA1 and TRPV1.Biochem. Biophys. Res. Commun.2009382354554810.1016/j.bbrc.2009.03.06619298793
    [Google Scholar]
  53. De PetrocellisL. OrlandoP. MorielloA.S. AvielloG. StottC. IzzoA.A. Di MarzoV. Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation.Acta Physiol. (Oxf.)2012204225526610.1111/j.1748‑1716.2011.02338.x21726418
    [Google Scholar]
  54. ChenX. SunW. GianarisN.G. RileyA.M. CumminsT.R. FehrenbacherJ.C. ObukhovA.G. Furanocoumarins are a novel class of modulators for the transient receptor potential vanilloid type 1 (TRPV1) channel.J. Biol. Chem.2014289149600961010.1074/jbc.M113.53686224569998
    [Google Scholar]
  55. BaeC. KaliaJ. SongI. YuJ. KimH.H. SwartzK.J. KimJ.I. High yield production and refolding of the double-knot toxin, an activator of TRPV1 channels.PLoS One2012712e5151610.1371/journal.pone.005151623240036
    [Google Scholar]
  56. SinghY. SarkarD. DuariS. GS. Indra GuruP.K. M vH. SinghD. BhardwajS. KaliaJ. Dissecting the contributions of membrane affinity and bivalency of the spider venom protein DkTx to its sustained mode of TRPV1 activation.J. Biol. Chem.2023299710490310.1016/j.jbc.2023.10490337302551
    [Google Scholar]
  57. DessaintJ. YuW. KrauseJ.E. YueL. Yohimbine inhibits firing activities of rat dorsal root ganglion neurons by blocking Na+ channels and vanilloid VR1 receptors.Eur. J. Pharmacol.20044851-3112010.1016/j.ejphar.2003.11.03914757119
    [Google Scholar]
  58. RossatoM.F. TrevisanG. WalkerC.I.B. KlafkeJ.Z. de OliveiraA.P. VillarinhoJ.G. ZanonR.B. RoyesL.F.F. AthaydeM.L. GomezM.V. FerreiraJ. Eriodictyol: A flavonoid antagonist of the TRPV1 receptor with antioxidant activity.Biochem. Pharmacol.201181454455110.1016/j.bcp.2010.11.00421087598
    [Google Scholar]
  59. AdamanteG. de AlmeidaA.S. RigoF.K. da Silva SilveiraE. CoelhoY.O. De PráS.D.T. MilioliA.M. CamponogaraC. CasotiR. BellinasoF. DesideriA.V. SantosM.F.C. FerreiraJ. OliveiraS.M. TrevisanG. Diosmetin as a novel transient receptor potential vanilloid 1 antagonist with antinociceptive activity in mice.Life Sci.201921621522610.1016/j.lfs.2018.11.02930447303
    [Google Scholar]
  60. CamponogaraC. BrumE.S. PegoraroN.S. BruscoI. BruckerN. OliveiraS.M. Diosmetin, a novel transient receptor potential vanilloid 1 antagonist, alleviates the UVB radiation-induced skin inflammation in mice.Inflammopharmacology202129387989510.1007/s10787‑021‑00802‑133751333
    [Google Scholar]
  61. TrevisanG. RossatoM.F. WalkerC.I.B. KlafkeJ.Z. RosaF. OliveiraS.M. TonelloR. GuerraG.P. BoligonA.A. ZanonR.B. AthaydeM.L. FerreiraJ. Identification of the plant steroid α-spinasterol as a novel transient receptor potential vanilloid 1 antagonist with antinociceptive properties.J. Pharmacol. Exp. Ther.2012343225826910.1124/jpet.112.19590922837009
    [Google Scholar]
  62. BensoB. BustosD. ZarragaM.O. GonzalezW. CaballeroJ. BrauchiS. Chalcone derivatives as non-canonical ligands of TRPV1.Int. J. Biochem. Cell Biol.2019112182310.1016/j.biocel.2019.04.01031026506
    [Google Scholar]
  63. LiuZ. WangP. LuS. GuoR. GaoW. TongH. YinY. HanX. LiuT. ChenX. ZhuM.X. YangZ. Liquiritin, a novel inhibitor of TRPV1 and TRPA1, protects against LPS-induced acute lung injury.Cell Calcium20208810219810.1016/j.ceca.2020.10219832388008
    [Google Scholar]
  64. TakahashiK. YoshidaT. WakamoriM. Mode-selective inhibitory effects of eugenol on the mouse TRPV1 channel.Biochem. Biophys. Res. Commun.202155615616210.1016/j.bbrc.2021.03.12633839411
    [Google Scholar]
  65. KorolkovaY. MakarievaT. TabakmakherK. ShubinaL. KudryashovaE. AndreevY. MosharovaI. LeeH.S. LeeY.J. KozlovS. Marine cyclic guanidine alkaloids monanchomycalin B and urupocidin A act as inhibitors of TRPV1, TRPV2 and TRPV3, but not TRPA1 receptors.Mar. Drugs20171548710.3390/md1504008728333079
    [Google Scholar]
  66. ZhangW. YuG. ZhangM. ARA 290 relieves pathophysiological pain by targeting TRPV1 channel: Integration between immune system and nociception.Peptides201676737910.1016/j.peptides.2016.01.00326774587
    [Google Scholar]
  67. KitaguchiT. SwartzK.J. An inhibitor of TRPV1 channels isolated from funnel Web spider venom.Biochemistry20054447155441554910.1021/bi051494l16300403
    [Google Scholar]
  68. RitaP. E.M.; Souza, J.M.; Carobin, N.V.; Silva, J.F.; Santos, D.C.; Silva Júnior, C.A.; Binda, N.S.; Borges, M.H.; Pinto Nagem, R.A.; Kushmerick, C.; Ferreira, J.; Castro Junior, C.J.; Ribeiro, F.M.; Gomez, M.V. Phoneutria toxin PnTx3-5 inhibits TRPV1 channel with antinociceptive action in an orofacial pain model.Neuropharmacology2020162107826[J]. [https://doi.org/10.1016/j.neuropharm.2019.107826]. [PMID: 31647972].
    [Google Scholar]
  69. HuH.Z. GuQ. WangC. ColtonC.K. TangJ. Kinoshita-KawadaM. LeeL.Y. WoodJ.D. ZhuM.X. 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3.J. Biol. Chem.200427934357413574810.1074/jbc.M40416420015194687
    [Google Scholar]
  70. ChungM.K. LeeH. MizunoA. SuzukiM. CaterinaM.J. 2-aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3.J. Neurosci.200424225177518210.1523/JNEUROSCI.0934‑04.200415175387
    [Google Scholar]
  71. AnnJ. KimH.S. ThoratS.A. KimH. HaH.J. ChoiK. KimY.H. KimM. HwangS.W. PearceL.V. EschT.E. TurciosN.A. BlumbergP.M. LeeJ. Discovery of Nonpungent Transient Receptor Potential Vanilloid 1 (TRPV1) Agonist as Strong Topical Analgesic.J. Med. Chem.202063141842410.1021/acs.jmedchem.9b0104631702924
    [Google Scholar]
  72. DuarteY. CáceresJ. SepúlvedaR.V. ArriagadaD. OlivaresP. Díaz-FranulicI. StehbergJ. González-NiloF. Novel TRPV1 channel agonists with faster and more potent analgesic properties than capsaicin.Front. Pharmacol.202011104010.3389/fphar.2020.0104032760273
    [Google Scholar]
  73. LiangQ. QiaoZ. ZhouQ. XueD. WangK. ShaoL. Discovery of potent and selective transient receptor potential vanilloid 1 (TRPV1) agonists with analgesic effects in vivo based on the functional conversion induced by altering the orientation of the indazole Core.J. Med. Chem.20226517116581167810.1021/acs.jmedchem.2c0046936008373
    [Google Scholar]
  74. AielloF. BadolatoM. PessinaF. SticozziC. MaestriniV. AldinucciC. LuongoL. GuidaF. LigrestiA. ArteseA. AllaràM. CostaG. FrosiniM. Schiano MorielloA. De PetrocellisL. ValacchiG. AlcaroS. MaioneS. Di MarzoV. CorelliF. BrizziA. Badolato, M.; Pessina, F.; Sticozzi, C.; Maestrini, V.; Aldinucci, C.; Luongo, L.; Guida, F.; Ligresti, A.; Artese, A.; Allarà, M.; Costa, G.; Frosini, M.; Schiano Moriello, A.; De Petrocellis, L.; Valacchi, G.; Alcaro, S.; Maione, S.; Di Marzo, V.; Corelli, F.; Brizzi, A. Design and synthesis of new transient receptor potential vanilloid type-1 (TRPV1) channel modulators: identification, molecular modeling analysis, and pharmacological characterization of the N-(4-hydroxy-3-methoxybenzyl)-4-(thiophen-2-yl)butanamide, a small molecule endowed with agonist TRPV1 activity and protective effects against oxidative stress.ACS Chem. Neurosci.20167673774810.1021/acschemneuro.5b0033326942555
    [Google Scholar]
  75. RomeoI. BrizziA. PessinaF. AmbrosioF.A. AielloF. BelardoC. CarulloG. CostaG. De PetrocellisL. FrosiniM. LuongoL. MaramaiS. PaolinoM. MorielloA.S. MugnainiC. ScorzelliF. MaioneS. CorelliF. Di MarzoV. AlcaroS. ArteseA. In silico-guided rational drug design and synthesis of novel 4-(thiophen-2-yl)butanamides as potent and selective TRPV1 agonists.J. Med. Chem.202366106994701510.1021/acs.jmedchem.3c0044737192374
    [Google Scholar]
  76. DickensonA.H. DrayA. Selective antagonism of capsaicin by capsazepine: evidence for a spinal receptor site in capsaicin‐induced antinociception.Br. J. Pharmacol.199110441045104910.1111/j.1476‑5381.1991.tb12547.x1810591
    [Google Scholar]
  77. ParkH. ChoiJ. ChoiS. ParkM. LeeJ. SuhY. ChoH. OhU. LeeJ. KangS.U. LeeJ. KimH.D. ParkY.H. Su JeongY. Kyu ChoiJ. JewS. N-4-Substituted-benzyl-N′-tert-butylbenzyl thioureas as vanilloid receptor ligands: investigation on the role of methanesulfonamido group in antagonistic activity.Bioorg. Med. Chem. Lett.200414378779110.1016/j.bmcl.2003.11.01914741290
    [Google Scholar]
  78. JakabB. HelyesZ. VargaA. BölcskeiK. SzabóÁ. SándorK. ElekesK. BörzseiR. KeszthelyiD. PintérE. PethőG. NémethJ. SzolcsányiJ. Pharmacological characterization of the TRPV1 receptor antagonist JYL1421 (SC0030) in vitro and in vivo in the rat.Eur. J. Pharmacol.20055171-2354410.1016/j.ejphar.2005.05.00215978575
    [Google Scholar]
  79. TóthA. BlumbergP.M. ChenZ. KozikowskiA.P. Design of a high-affinity competitive antagonist of the vanilloid receptor selective for the calcium entry-linked receptor population.Mol. Pharmacol.200465228229110.1124/mol.65.2.28214742669
    [Google Scholar]
  80. RamiH.K. ThompsonM. WymanP. JermanJ.C. EgertonJ. BroughS. StevensA.J. RandallA.D. SmartD. GunthorpeM.J. DavisJ.B. Discovery of small molecule antagonists of TRPV1.Bioorg. Med. Chem. Lett.200414143631363410.1016/j.bmcl.2004.05.02815203132
    [Google Scholar]
  81. RamiH.K. ThompsonM. StempG. FellS. JermanJ.C. StevensA.J. SmartD. SargentB. SandersonD. RandallA.D. GunthorpeM.J. DavisJ.B. Discovery of SB-705498: A potent, selective and orally bioavailable TRPV1 antagonist suitable for clinical development.Bioorg. Med. Chem. Lett.200616123287329110.1016/j.bmcl.2006.03.03016580202
    [Google Scholar]
  82. El KouhenR. SurowyC.S. BianchiB.R. NeelandsT.R. McDonaldH.A. NiforatosW. GomtsyanA. LeeC.H. HonoreP. SullivanJ.P. JarvisM.F. FaltynekC.R. A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel and selective transient receptor potential type V1 receptor antagonist, blocks channel activation by vanilloids, heat, and acid.J. Pharmacol. Exp. Ther.2005314140040910.1124/jpet.105.08410315837819
    [Google Scholar]
  83. GomtsyanA. BayburtE.K. SchmidtR.G. SurowyC.S. HonoreP. MarshK.C. HannickS.M. McDonaldH.A. WetterJ.M. SullivanJ.P. JarvisM.F. FaltynekC.R. LeeC.H. Identification of ( R )-1-(5- tert -Butyl-2,3-dihydro-1 H -inden-1-yl)-3-(1 H -indazol-4-yl)urea (ABT-102) as a Potent TRPV1 Antagonist for Pain Management.J. Med. Chem.200851339239510.1021/jm701007g18183945
    [Google Scholar]
  84. OthmanA.A. NothaftW. AwniW.M. DuttaS. Effects of the TRPV 1 antagonist ABT ‐102 on body temperature in healthy volunteers: pharmacokinetic/ pharmacodynamic analysis of three phase 1 trials.Br. J. Clin. Pharmacol.20137541029104010.1111/j.1365‑2125.2012.04405.x22966986
    [Google Scholar]
  85. BrownB.S. KeddyR. PernerR.J. DiDomenicoS. KoenigJ.R. JinkersonT.K. HannickS.M. McDonaldH.A. BianchiB.R. HonoreP. PuttfarckenP.S. MorelandR.B. MarshK.C. FaltynekC.R. LeeC.H. Discovery of TRPV1 antagonist ABT-116.Bioorg. Med. Chem. Lett.201020113291329410.1016/j.bmcl.2010.04.04720457518
    [Google Scholar]
  86. VoightE.A. GomtsyanA.R. DaanenJ.F. PernerR.J. SchmidtR.G. BayburtE.K. DiDomenicoS. McDonaldH.A. PuttfarckenP.S. ChenJ. NeelandsT.R. BianchiB.R. HanP. ReillyR.M. FranklinP.H. SegretiJ.A. NelsonR.A. SuZ. KingA.J. PolakowskiJ.S. BakerS.J. GauvinD.M. LewisL.R. MikusaJ.P. JoshiS.K. FaltynekC.R. KymP.R. KortM.E. Discovery of (R)-1-(7-chloro-2,2-bis(fluoromethyl)chroman-4-yl)-3-(3-methylisoquinolin-5-yl)urea (A-1165442): a temperature-neutral transient receptor potential vanilloid-1 (TRPV1) antagonist with analgesic efficacy.J. Med. Chem.201457177412742410.1021/jm500916t25100568
    [Google Scholar]
  87. PernerR.J. DiDomenicoS. KoenigJ.R. GomtsyanA. BayburtE.K. SchmidtR.G. DrizinI. ZhengG.Z. TurnerS.C. JinkersonT. BrownB.S. KeddyR.G. LukinK. McDonaldH.A. HonoreP. MikusaJ. MarshK.C. WetterJ.M. GeorgeK.S. JarvisM.F. FaltynekC.R. LeeC.H. In vitro structure-activity relationship and in vivo characterization of 1-(aryl)-3-(4-(amino)benzyl)urea transient receptor potential vanilloid 1 antagonists.J. Med. Chem.200750153651366010.1021/jm070276i17583335
    [Google Scholar]
  88. UrbahnsK. YuraT. GuptaJ.B. TajimiM. FujishimaH. MasudaT. YamamotoN. IkegamiY. MarumoM. YasoshimaK. YoshidaN. MoriwakiT. MadgeD. ChanF. MogiM. Tetrahydro-naphthols as orally available TRPV1 inhibitors.Bioorg. Med. Chem. Lett.201222103408341110.1016/j.bmcl.2012.03.10822525313
    [Google Scholar]
  89. AnnJ. SunW. ZhouX. JungA. BaekJ. LeeS. KimC. YoonS. HongS. ChoiS. TurciosN.A. HeroldB.K.A. EschT.E. LewinN.E. AbramovitzA. PearceL.V. BlumbergP.M. LeeJ. Discovery of N-(3-fluoro-4-methylsulfonamidomethylphenyl)urea as a potent TRPV1 antagonistic template.Bioorg. Med. Chem. Lett.201626153603360710.1016/j.bmcl.2016.06.01027317643
    [Google Scholar]
  90. KangJ.M. KwonS.O. AnnJ. BlumbergP.M. HaH. YooY.D. Frank-FoltynR. LeschB. BahrenbergG. StockhausenH. ChristophT. LeeJ. Discovery of 1-(1H-indazol-4-yl)-3-((1-phenyl-1H-pyrazol-5-yl)methyl) ureas as potent and thermoneutral TRPV1 antagonists.Bioorg. Med. Chem. Lett.2020302312754810.1016/j.bmcl.2020.12754832931910
    [Google Scholar]
  91. HeberS. CiotuC.I. HartnerG. Gold-BinderM. NinidzeN. GleissA. KressH.G. FischerM.J.M. TRPV1 antagonist BCTC inhibits pH 6.0-induced pain in human skin.Pain202016171532154110.1097/j.pain.000000000000184832107360
    [Google Scholar]
  92. SwansonD.M. DubinA.E. ShahC. NasserN. ChangL. DaxS.L. JetterM. BreitenbucherJ.G. LiuC. MazurC. LordB. GonzalesL. HoeyK. RizzolioM. BogenstaetterM. CoddE.E. LeeD.H. ZhangS.P. ChaplanS.R. CarruthersN.I. Identification and biological evaluation of 4-(3-trifluoromethylpyridin-2-yl)piperazine-1-carboxylic acid (5-trifluoromethylpyridin-2-yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist.J. Med. Chem.20054861857187210.1021/jm049507115771431
    [Google Scholar]
  93. OgnyanovV.I. BalanC. BannonA.W. BoY. DominguezC. FotschC. GoreV.K. KlionskyL. MaV.V. QianY.X. TamirR. WangX. XiN. XuS. ZhuD. GavvaN.R. TreanorJ.J.S. NormanM.H. Design of potent, orally available antagonists of the transient receptor potential vanilloid 1. Structure-activity relationships of 2-piperazin-1-yl-1H-benzimidazoles.J. Med. Chem.200649123719374210.1021/jm060065y16759115
    [Google Scholar]
  94. TafesseL. KanemasaT. KuroseN. YuJ. AsakiT. WuG. IwamotoY. YamaguchiY. NiC. EngelJ. TsunoN. PatelA. ZhouX. ShintaniT. BrownK. HasegawaT. ShetM. IsoY. KatoA. KyleD.J. Structure-activity relationship studies and discovery of a potent transient receptor potential vanilloid (TRPV1) antagonist 4-[3-chloro-5-[(1S)-1,2-dihydroxyethyl]-2-pyridyl]-N-[5-(trifluoromethyl)-2-pyridyl]-3,6-dihydro-2H-pyridine-1-carboxamide (V116517) as a clinical candidate for pain management.J. Med. Chem.201457156781679410.1021/jm500818a25057800
    [Google Scholar]
  95. ShaoB. HuangJ. SunQ. ValenzanoK.J. SchmidL. NolanS. 4-(2-Pyridyl)piperazine-1-benzimidazoles as potent TRPV1 antagonists.Bioorg. Med. Chem. Lett.200515371972310.1016/j.bmcl.2004.11.02115664844
    [Google Scholar]
  96. CongiuC. OnnisV. BalboniG. Schiano-MorielloA. Di MarzoV. De PetrocellisL. TRPV1 modulators: Synthesis and in vitro evaluation of 1-heteroaryl piperidinecarboxamide and piperazinylurea derivatives.Eur. J. Med. Chem.201510012913810.1016/j.ejmech.2015.05.04126079089
    [Google Scholar]
  97. HuJ. GaoM. ZhangY. WangY. QiaoZ. ZhangW. WangQ. YanL. QianH. Novel piperazine urea derivatives as highly potent transient receptor potential vanilloid 1 (TRPV1) antagonists.Bioorg. Chem.202111510522910.1016/j.bioorg.2021.10522934364049
    [Google Scholar]
  98. GunthorpeM.J. RamiH.K. JermanJ.C. SmartD. GillC.H. SoffinE.M. Luis HannanS. LappinS.C. EgertonJ. SmithG.D. WorbyA. HowettL. OwenD. NasirS. DaviesC.H. ThompsonM. WymanP.A. RandallA.D. DavisJ.B. Identification and characterisation of SB-366791, a potent and selective vanilloid receptor (VR1/TRPV1) antagonist.Neuropharmacology200446113314910.1016/S0028‑3908(03)00305‑814654105
    [Google Scholar]
  99. GavvaN.R. TamirR. QuY. KlionskyL. ZhangT.J. ImmkeD. WangJ. ZhuD. VanderahT.W. PorrecaF. DohertyE.M. NormanM.H. WildK.D. BannonA.W. LouisJ.C. TreanorJ.J.S. AMG 9810 [( E )-3-(4- t -Butylphenyl)- N -(2,3-dihydrobenzo[ b ][1,4] dioxin-6-yl)acrylamide], a Novel Vanilloid Receptor 1 (TRPV1) Antagonist with Antihyperalgesic Properties.J. Pharmacol. Exp. Ther.2005313147448410.1124/jpet.104.07985515615864
    [Google Scholar]
  100. KimM.S. RyuH. KangD.W. ChoS.H. SeoS. ParkY.S. KimM.Y. KwakE.J. KimY.S. BhondweR.S. KimH.S. ParkS. SonK. ChoiS. DeAndrea-LazarusI.A. PearceL.V. BlumbergP.M. FrankR. BahrenbergG. StockhausenH. KögelB.Y. SchieneK. ChristophT. LeeJ. 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides as potent transient receptor potential vanilloid 1 (TRPV1) antagonists: structure-activity relationships of 2-amino derivatives in the N-(6-trifluoromethylpyridin-3-ylmethyl) C-region.J. Med. Chem.201255198392840810.1021/jm300780p22957803
    [Google Scholar]
  101. RyuH. SeoS. LeeJ.Y. HaT.H. LeeS. JungA. AnnJ. KimS.E. YoonS. HongM. BlumbergP.M. Frank-FoltynR. BahrenbergG. SchieneK. StockhausenH. ChristophT. FrormannS. LeeJ. Pyridine C-region analogs of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides as potent TRPV1 antagonists.Eur. J. Med. Chem.20159310110810.1016/j.ejmech.2015.02.00125659771
    [Google Scholar]
  102. KimC. AnnJ. LeeS. SunW. BlumbergP.M. Frank-FoltynR. BahrenbergG. StockhausenH. ChristophT. LeeJ. Discovery of 2-(3,5-difluoro-4-methylsulfonaminophenyl)propanamides as potent TRPV1 antagonists.Bioorg. Med. Chem. Lett.201828142539254210.1016/j.bmcl.2018.05.04329884534
    [Google Scholar]
  103. LeeS. KimC. AnnJ. ThoratS.A. KimE. ParkJ. ChoiS. BlumbergP.M. Frank-FoltynR. BahrenbergG. StockhausenH. ChristophT. LeeJ. Pyrazole C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides as potent TRPV1 antagonists.Bioorg. Med. Chem. Lett.201727184383438810.1016/j.bmcl.2017.08.02028838698
    [Google Scholar]
  104. AhnS. KimY.S. KimM.S. AnnJ. HaH. YooY.D. KimY.H. BlumbergP.M. Frank-FoltynR. BahrenbergG. StockhausenH. ChristophT. LeeJ. Discovery of indane propanamides as potent and selective TRPV1 antagonists.Bioorg. Med. Chem. Lett.202030312683810.1016/j.bmcl.2019.12683831864799
    [Google Scholar]
  105. KangJ.M. KwonS.O. AnnJ. LeeS. KimC. DoN. JeongJ.J. BlumbergP.M. HaH. VuT.N.L. YoonS. ChoiS. Frank-FoltynR. LeschB. BahrenbergG. StockhausenH. ChristophT. LeeJ. 2-(Halogenated Phenyl) acetamides and propanamides as potent TRPV1 antagonists.Bioorg. Med. Chem. Lett.20214812826610.1016/j.bmcl.2021.12826634273488
    [Google Scholar]
  106. SakuO. IshidaH. AtsumiE. SugimotoY. KodairaH. KatoY. ShirakuraS. NakasatoY. Discovery of novel 5,5-diarylpentadienamides as orally available transient receptor potential vanilloid 1 (TRPV1) antagonists.J. Med. Chem.20125573436345110.1021/jm300101n22394104
    [Google Scholar]
  107. QiaoY. ZhangY. QiaoZ. HeW. ChenY. SongD. WangG. GuoN. ShaoL. TianZ. WangQ. YanL. QianH. Discovery of (S)–N-(3-isopropylphenyl)-2-(5-phenylthiazol-2-yl)pyrrolidine-1-carboxamide as potent and brain-penetrant TRPV1 antagonist.Eur. J. Med. Chem.202223311419110.1016/j.ejmech.2022.11419135263708
    [Google Scholar]
  108. DohertyE.M. FotschC. BannonA.W. BoY. ChenN. DominguezC. FalseyJ. GavvaN.R. KatonJ. NixeyT. OgnyanovV.I. PettusL. RzasaR.M. StecM. SurapaneniS. TamirR. ZhuJ. TreanorJ.J.S. NormanM.H. Novel vanilloid receptor-1 antagonists: 2. Structure-activity relationships of 4-oxopyrimidines leading to the selection of a clinical candidate.J. Med. Chem.200750153515352710.1021/jm070190p17585750
    [Google Scholar]
  109. NormanM.H. ZhuJ. FotschC. BoY. ChenN. ChakrabartiP. DohertyE.M. GavvaN.R. NishimuraN. NixeyT. OgnyanovV.I. RzasaR.M. StecM. SurapaneniS. TamirR. ViswanadhanV.N. TreanorJ.J.S. Novel vanilloid receptor-1 antagonists: 1. Conformationally restricted analogues of trans-cinnamides.J. Med. Chem.200750153497351410.1021/jm070189q17585749
    [Google Scholar]
  110. WangH.L. KatonJ. BalanC. BannonA.W. BernardC. DohertyE.M. DominguezC. GavvaN.R. GoreV. MaV. NishimuraN. SurapaneniS. TangP. TamirR. ThielO. TreanorJ.J.S. NormanM.H. Novel vanilloid receptor-1 antagonists: 3. The identification of a second-generation clinical candidate with improved physicochemical and pharmacokinetic properties.J. Med. Chem.200750153528353910.1021/jm070191h17585751
    [Google Scholar]
  111. WangX. ChakrabartiP.P. OgnyanovV.I. PettusL.H. TamirR. TanH. TangP. TreanorJ.J.S. GavvaN.R. NormanM.H. Trisubstituted pyrimidines as transient receptor potential vanilloid 1 (TRPV1) antagonists with improved solubility.Bioorg. Med. Chem. Lett.200717236539654510.1016/j.bmcl.2007.09.08017937985
    [Google Scholar]
  112. LebsackA.D. RechJ.C. BranstetterB.J. HawrylukN.A. MeritJ.E. AllisonB. RynbergR. BumaJ. RizzolioM. SwansonN. AoH. MaherM.P. HerrmannM. FreedmanJ. ScottB.P. LuoL. BhattacharyaA. WangQ. ChaplanS.R. WickendenA.D. BreitenbucherJ.G. 1,2-Diamino-ethane-substituted-6,7,8,9-tetrahydro-5H-pyrimido[4,5-d]azepines as TRPV1 antagonists with improved properties.Bioorg. Med. Chem. Lett.201020237142714610.1016/j.bmcl.2010.09.00620932750
    [Google Scholar]
  113. García-MartínezC. Morenilla-PalaoC. Planells-CasesR. MerinoJ.M. Ferrer-MontielA. Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties.J. Biol. Chem.200027542325523255810.1074/jbc.M00239120010931826
    [Google Scholar]
  114. KrarupA.L. NyL. ÅstrandM. BajorA. Hvid-JensenF. HansenM.B. SimrénM. Funch-JensenP. DrewesA.M. Randomised clinical trial: the efficacy of a transient receptor potential vanilloid 1 antagonist AZD1386 in human oesophageal pain.Aliment. Pharmacol. Ther.201133101113112210.1111/j.1365‑2036.2011.04629.x21410733
    [Google Scholar]
  115. KortM.E. KymP.R. TRPV1 Antagonists.Prog. Med. Chem.201251577010.1016/B978‑0‑12‑396493‑9.00002‑922520471
    [Google Scholar]
  116. ChoiJ.K. ChoW. LeeJ.H. ChoiG. ParkM. A TRPV1 antagonist, PAC-14028 does not increase the risk of tumorigenesis in chemically induced mouse skin carcinogenesis.Regul. Toxicol. Pharmacol.202011210461310.1016/j.yrtph.2020.10461332044384
    [Google Scholar]
  117. CharruaA. CruzC.D. NarayananS. GharatL. GullapalliS. CruzF. AvelinoA. GRC-6211, a new oral specific TRPV1 antagonist, decreases bladder overactivity and noxious bladder input in cystitis animal models.J. Urol.2009181137938610.1016/j.juro.2008.08.12119010489
    [Google Scholar]
  118. KitagawaY. MiyaiA. UsuiK. HamadaY. DeaiK. WadaM. KogaY. SakataM. HayashiM. TominagaM. MatsushitaM. Pharmacological characterization of (3S)-3-(hydroxymethyl)-4-(5-methylpyridin-2-yl)-N-[6-(2,2,2-trifluoroethoxy)pyridin-3-yl]-3,4-dihydro-2H-benzo[b][1,4]oxazine-8-carboxamide (JTS-653), a novel transient receptor potential vanilloid 1 antagonist.J. Pharmacol. Exp. Ther.2012342252052810.1124/jpet.112.19402722588258
    [Google Scholar]
  119. KitagawaY. TamaiI. HamadaY. UsuiK. WadaM. SakataM. MatsushitaM. Orally administered selective TRPV1 antagonist, JTS-653, attenuates chronic pain refractory to non-steroidal anti-inflammatory drugs in rats and mice including post-herpetic pain.J. Pharmacol. Sci.2013122212813710.1254/jphs.12276FP23728381
    [Google Scholar]
  120. KitagawaY. WadaM. KanehisaT. MiyaiA. UsuiK. MaekawaM. SakataM. MatsuoA. HayashiM. MatsushitaM. JTS-653 blocks afferent nerve firing and attenuates bladder overactivity without affecting normal voiding function.J. Urol.201318931137114610.1016/j.juro.2012.09.05522999996
    [Google Scholar]
  121. RoundP. PriestleyA. RobinsonJ. An investigation of the safety and pharmacokinetics of the novel TRPV1 antagonist XEN‐D0501 in healthy subjects.Br. J. Clin. Pharmacol.201172692193110.1111/j.1365‑2125.2011.04040.x21676011
    [Google Scholar]
  122. LeeJ. KimB.H. YuK.S. KimH.S. KimJ.D. ChoJ.Y. LeeS. GuN. A first-in-human, double-blind, placebo-controlled, randomized, dose escalation study of DWP05195, a novel TRPV1 antagonist, in healthy volunteers.Drug Des. Devel. Ther.2017111301131310.2147/DDDT.S12872728479852
    [Google Scholar]
  123. WangY.Y. LeeK.T. LimM.C. ChoiJ.H. TRPV1 Antagonist DWP05195 Induces ER Stress-Dependent Apoptosis through the ROS-p38-CHOP Pathway in Human Ovarian Cancer Cells.Cancers (Basel)2020126170210.3390/cancers1206170232604833
    [Google Scholar]
  124. LiuC. MiaoR. RazaF. QianH. TianX. Research progress and challenges of TRPV1 channel modulators as a prospective therapy for diabetic neuropathic pain.Eur. J. Med. Chem.2023245Pt 111489310.1016/j.ejmech.2022.11489336395649
    [Google Scholar]
  125. Benitez-Del-CastilloJ.M. Moreno-MontañésJ. Jiménez-AlfaroI. Muñoz-NegreteF.J. TurmanK. PalumaaK. SádabaB. GonzálezM.V. RuzV. VargasB. PañedaC. MartínezT. BleauA.M. JimenezA.I. Safety and Efficacy Clinical Trials for SYL1001, a Novel Short Interfering RNA for the Treatment of Dry Eye Disease.Invest. Ophthalmol. Vis. Sci.201657146447645410.1167/iovs.16‑2030327893109
    [Google Scholar]
  126. ShibasakiK. Physiological significance of TRPV2 as a mechanosensor, thermosensor and lipid sensor.J. Physiol. Sci.201666535936510.1007/s12576‑016‑0434‑726841959
    [Google Scholar]
  127. Perálvarez-MarínA. Doñate-MacianP. GaudetR. What do we know about the transient receptor potential vanilloid 2 ( TRPV 2) ion channel?FEBS J.2013280215471548710.1111/febs.1230223615321
    [Google Scholar]
  128. SiveenK.S. PrabhuK.S. ParrayA.S. MerhiM. ArredouaniA. ChikriM. UddinS. DermimeS. MohammadR.M. SteinhoffM. JanahiI.A. AziziF. Evaluation of cationic channel TRPV2 as a novel biomarker and therapeutic target in Leukemia-Implications concerning the resolution of pulmonary inflammation.Sci. Rep.201991155410.1038/s41598‑018‑37469‑830733502
    [Google Scholar]
  129. CaprodossiS. LucciariniR. AmantiniC. NabissiM. CanesinG. BallariniP. Di SpilimbergoA. CardarelliM.A. ServiL. MammanaG. SantoniG. Transient receptor potential vanilloid type 2 (TRPV2) expression in normal urothelium and in urothelial carcinoma of human bladder: correlation with the pathologic stage.Eur. Urol.200854361262010.1016/j.eururo.2007.10.01617977643
    [Google Scholar]
  130. MorelliM.B. NabissiM. AmantiniC. FarfarielloV. Ricci-VitianiL. di MartinoS. PalliniR. LaroccaL.M. CaprodossiS. SantoniM. De MariaR. SantoniG. The transient receptor potential vanilloid‐2 cation channel impairs glioblastoma stem‐like cell proliferation and promotes differentiation.Int. J. Cancer20121317E1067E107710.1002/ijc.2758822492283
    [Google Scholar]
  131. ElbazM. AhirwarD. XiaoliZ. ZhouX. LustbergM. NasserM.W. ShiloK. GanjuR.K. TRPV2 is a novel biomarker and therapeutic target in triple negative breast cancer.Oncotarget2018971334593347010.18632/oncotarget.966330323891
    [Google Scholar]
  132. BaiH. ZhuH. YanQ. ShenX. LuX. WangJ. LiJ. ChenL. TRPV2-induced Ca2+-calcineurin-NFAT signaling regulates differentiation of osteoclast in multiple myeloma.Cell Commun. Signal.20181616810.1186/s12964‑018‑0280‑830326911
    [Google Scholar]
  133. MonetM. GkikaD. Lehen’kyiV. PourtierA. AbeeleF.V. BidauxG. JuvinV. RassendrenF. HumezS. PrevarsakayaN. Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation.Biochim. Biophys. Acta Mol. Cell Res.20091793352853910.1016/j.bbamcr.2009.01.00319321128
    [Google Scholar]
  134. ZhouK. ZhangS.S. YanY. ZhaoS. Overexpression of transient receptor potential vanilloid 2 is associated with poor prognosis in patients with esophageal squamous cell carcinoma.Med. Oncol.20143171710.1007/s12032‑014‑0017‑524878697
    [Google Scholar]
  135. LiuG. XieC. SunF. XuX. YangY. ZhangT. DengY. WangD. HuangZ. YangL. HuangS. WangQ. LiuG. ZhongD. MiaoX. Clinical significance of transient receptor potential vanilloid 2 expression in human hepatocellular carcinoma.Cancer Genet. Cytogenet.20101971545910.1016/j.cancergencyto.2009.08.00720113837
    [Google Scholar]
  136. O’ConnorB. RobbinsN. KochS.E. RubinsteinJ. TRPV2 channel-based therapies in the cardiovascular field. Molecular underpinnings of clinically relevant therapies.Prog. Biophys. Mol. Biol.202115911812510.1016/j.pbiomolbio.2020.06.00132565182
    [Google Scholar]
  137. IwataY. MatsumuraT. Blockade of TRPV2 is a Novel Therapy for Cardiomyopathy in Muscular Dystrophy.Int. J. Mol. Sci.20192016384410.3390/ijms2016384431394715
    [Google Scholar]
  138. HisanagaE. NagasawaM. UekiK. KulkarniR.N. MoriM. KojimaI. Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic beta-cells.Diabetes200958117418410.2337/db08‑086218984736
    [Google Scholar]
  139. StokesA.J. ShimodaL.M.N. Koblan-HubersonM. AdraC.N. TurnerH. A TRPV2-PKA signaling module for transduction of physical stimuli in mast cells.J. Exp. Med.2004200213714710.1084/jem.2003208215249591
    [Google Scholar]
  140. LinkT.M. ParkU. VonakisB.M. RabenD.M. SoloskiM.J. CaterinaM.J. TRPV2 has a pivotal role in macrophage particle binding and phagocytosis.Nat. Immunol.201011323223910.1038/ni.184220118928
    [Google Scholar]
  141. MiharaH. BoudakaA. ShibasakiK. YamanakaA. SugiyamaT. TominagaM. Involvement of TRPV2 activation in intestinal movement through nitric oxide production in mice.J. Neurosci.20103049165361654410.1523/JNEUROSCI.4426‑10.201021147993
    [Google Scholar]
  142. ShibasakiK. IshizakiY. MandadiS. Astrocytes express functional TRPV2 ion channels.Biochem. Biophys. Res. Commun.2013441232733210.1016/j.bbrc.2013.10.04624161738
    [Google Scholar]
  143. UchidaK. DezakiK. YoneshiroT. WatanabeT. YamazakiJ. SaitoM. YadaT. TominagaM. IwasakiY. Involvement of thermosensitive TRP channels in energy metabolism.J. Physiol. Sci.201767554956010.1007/s12576‑017‑0552‑x28656459
    [Google Scholar]
  144. QinN. NeeperM.P. LiuY. HutchinsonT.L. LubinM.L. FloresC.M. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons.J. Neurosci.200828246231623810.1523/JNEUROSCI.0504‑08.200818550765
    [Google Scholar]
  145. JuvinV. PennaA. CheminJ. LinY.L. RassendrenF.A. Pharmacological characterization and molecular determinants of the activation of transient receptor potential V2 channel orthologs by 2-aminoethoxydiphenyl borate.Mol. Pharmacol.20077251258126810.1124/mol.107.03704417673572
    [Google Scholar]
  146. BangS. KimK.Y. YooS. LeeS.H. HwangS.W. Transient receptor potential V2 expressed in sensory neurons is activated by probenecid.Neurosci. Lett.2007425212012510.1016/j.neulet.2007.08.03517850966
    [Google Scholar]
  147. IwataY. OhtakeH. SuzukiO. MatsudaJ. KomamuraK. WakabayashiS. Blockade of sarcolemmal TRPV2 accumulation inhibits progression of dilated cardiomyopathy.Cardiovasc. Res.201399476076810.1093/cvr/cvt16323786999
    [Google Scholar]
  148. IwataY. KatayamaY. OkunoY. WakabayashiS. Novel inhibitor candidates of TRPV2 prevent damage of dystrophic myocytes and ameliorate against dilated cardiomyopathy in a hamster model.Oncotarget2018918140421405710.18632/oncotarget.2444929581825
    [Google Scholar]
  149. Schiano MorielloA. López ChinarroS. Novo FernándezO. ErasJ. AmodeoP. Canela-GarayoaR. VitaleR.M. Di MarzoV. De PetrocellisL. A.; López, Chinarro, S.; Novo Fernández, O.; Eras, J.; Amodeo, P.; Canela-Garayoa, R.; Vitale, R.M.; Di Marzo, V.; De Petrocellis, L. Elongation of the hydrophobic chain as a molecular switch: discovery of capsaicin derivatives and endogenous lipids as potent transient receptor potential vanilloid channel 2 antagonists.J. Med. Chem.201861188255828110.1021/acs.jmedchem.8b0073430176215
    [Google Scholar]
  150. ChaiH. ChengX. ZhouB. ZhaoL. LinX. HuangD. LuW. LvH. TangF. ZhangQ. HuangW. LiY. YangH. Structure-Based Discovery of a Subtype-Selective Inhibitor Targeting a Transient Receptor Potential Vanilloid Channel.J. Med. Chem.20196231373138410.1021/acs.jmedchem.8b0149630620187
    [Google Scholar]
  151. ZhouQ. ShiY. QiH. LiuH. WeiN. JiangY. WangK. Identification of two natural coumarin enantiomers for selective inhibition of TRPV2 channels.FASEB J.2020349123381235310.1096/fj.201901541RRR32729134
    [Google Scholar]
  152. BluhmY. RaudszusR. WagnerA. UrbanN. SchaeferM. HillK. Valdecoxib blocks rat TRPV2 channels.Eur. J. Pharmacol.202291517470210.1016/j.ejphar.2021.17470234919887
    [Google Scholar]
  153. Van den EyndeC. HeldK. CipriettiM. De ClercqK. KerselaersS. MarchandA. ChaltinP. VoetsT. VriensJ. Loratadine, an antihistaminic drug, suppresses the proliferation of endometrial stromal cells by inhibition of TRPV2.Eur. J. Pharmacol.2022928175086[J]. [https://doi.org/10.1016/j.ejphar.2022.175086]. [PMID: 35714693].10.1016/j.ejphar.2022.175086
    [Google Scholar]
  154. RaudszusR. PauligA. UrbanN. DeckersA. GräßleS. VanderheidenS. JungN. BräseS. SchaeferM. HillK. Pharmacological inhibition of TRPV2 attenuates phagocytosis and lipopolysaccharide‐induced migration of primary macrophages.Br. J. Pharmacol.2023180212736274910.1111/bph.1615437254803
    [Google Scholar]
  155. ShimadaH. KusakizakoT. Dung NguyenT.H. NishizawaT. HinoT. TominagaM. NurekiO. The structure of lipid nanodisc-reconstituted TRPV3 reveals the gating mechanism.Nat. Struct. Mol. Biol.202027764565210.1038/s41594‑020‑0439‑z32572254
    [Google Scholar]
  156. LanskyS. BetancourtJ.M. ZhangJ. JiangY. KimE.D. PaknejadN. NimigeanC.M. YuanP. ScheuringS. A pentameric TRPV3 channel with a dilated pore.Nature2023621797720621410.1038/s41586‑023‑06470‑137648856
    [Google Scholar]
  157. NiliusB. BíróT. OwsianikG. TRPV3: time to decipher a poorly understood family member!J. Physiol.2014592229530410.1113/jphysiol.2013.25596823836684
    [Google Scholar]
  158. LuoJ. HuH. Thermally activated TRPV3 channels.Curr. Top. Membr.20147432536410.1016/B978‑0‑12‑800181‑3.00012‑925366242
    [Google Scholar]
  159. VyklickaL. BoukalovaS. MacikovaL. ChvojkaS. VlachovaV. The human transient receptor potential vanilloid 3 channel is sensitized via the ERK pathway.J. Biol. Chem.201729251210832109110.1074/jbc.M117.80116729084846
    [Google Scholar]
  160. ChengX. JinJ. HuL. ShenD. DongX. SamieM.A. KnoffJ. EisingerB. LiuM. HuangS.M. CaterinaM.J. DempseyP. MichaelL.E. DlugoszA.A. AndrewsN.C. ClaphamD.E. XuH. TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation.Cell2010141233134310.1016/j.cell.2010.03.01320403327
    [Google Scholar]
  161. SzöllősiA.G. VasasN. AngyalÁ. KistamásK. NánásiP.P. MihályJ. BékeG. Herczeg-LisztesE. SzegediA. KawadaN. YanagidaT. MoriT. KeményL. BíróT. Activation of TRPV3 Regulates Inflammatory Actions of Human Epidermal Keratinocytes.J. Invest. Dermatol.2018138236537410.1016/j.jid.2017.07.85228964718
    [Google Scholar]
  162. JainA. SahuR.P. GoswamiC. Olmsted syndrome causing point mutants of TRPV3 (G568C and G568D) show defects in intracellular Ca2+-mobilization and induce lysosomal defects.Biochem. Biophys. Res. Commun.2022628323910.1016/j.bbrc.2022.08.02636063600
    [Google Scholar]
  163. YadavM. GoswamiC. TRPV3 mutants causing Olmsted Syndrome induce impaired cell adhesion and nonfunctional lysosomes.Channels (Austin)201711319620810.1080/19336950.2016.124907627754757
    [Google Scholar]
  164. XiaoR. TianJ. TangJ. ZhuM.X. The TRPV3 mutation associated with the hairless phenotype in rodents is constitutively active.Cell Calcium200843433434310.1016/j.ceca.2007.06.00417706768
    [Google Scholar]
  165. SongZ. ChenX. ZhaoQ. StanicV. LinZ. YangS. ChenT. ChenJ. YangY. Hair Loss Caused by Gain-of-Function Mutant TRPV3 Is Associated with Premature Differentiation of Follicular Keratinocytes.J. Invest. Dermatol.202114181964197410.1016/j.jid.2020.11.03633675791
    [Google Scholar]
  166. DuchateletS. PruvostS. de VeerS. FraitagS. NitschkéP. Bole-FeysotC. BodemerC. HovnanianA. A new TRPV3 missense mutation in a patient with Olmsted syndrome and erythromelalgia.JAMA Dermatol.2014150330330610.1001/jamadermatol.2013.870924452206
    [Google Scholar]
  167. GrecoC. Leclerc-MercierS. ChaumonS. DozF. Hadj-RabiaS. MolinaT. BoucheixC. BodemerC. Use of Epidermal Growth Factor Receptor Inhibitor Erlotinib to Treat Palmoplantar Keratoderma in Patients With Olmsted Syndrome Caused by TRPV3 Mutations.JAMA Dermatol.2020156219119510.1001/jamadermatol.2019.412631895432
    [Google Scholar]
  168. YoshiokaT. ImuraK. AsakawaM. SuzukiM. OshimaI. HirasawaT. SakataT. HorikawaT. ArimuraA. Impact of the Gly573Ser substitution in TRPV3 on the development of allergic and pruritic dermatitis in mice.J. Invest. Dermatol.2009129371472210.1038/jid.2008.24518754035
    [Google Scholar]
  169. ImuraK. YoshiokaT. HirasawaT. SakataT. Role of TRPV3 in immune response to development of dermatitis.J. Inflamm. (Lond.)2009611710.1186/1476‑9255‑6‑1719463197
    [Google Scholar]
  170. SulkM. SeeligerS. AubertJ. SchwabV.D. CevikbasF. RivierM. NowakP. VoegelJ.J. BuddenkotteJ. SteinhoffM. Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea.J. Invest. Dermatol.201213241253126210.1038/jid.2011.42422189789
    [Google Scholar]
  171. ScottV.E. PatelH. WetterJ. EdlmayerR. NeelandsT. MillerL. HuangS. GauldS. TodorovićV. GomtsianA. DartM. HonoreP. KymP. 534 Defining a mechanistic link between TRPV3 activity and psoriasis through IL-1α and EGFR signaling pathways.J. Invest. Dermatol.20161365S94[J]. [https://doi.org/10.1016/j.jid.2016.02.572].10.1016/j.jid.2016.02.572
    [Google Scholar]
  172. QuY. WangG. SunX. WangK. Inhibition of the Warm Temperature–Activated Ca 2+ -Permeable Transient Receptor Potential Vanilloid TRPV3 Channel Attenuates Atopic Dermatitis.Mol. Pharmacol.201996339340010.1124/mol.119.11696231308264
    [Google Scholar]
  173. KimH.O. ChoY.S. ParkS.Y. KwakI.S. ChoiM.G. ChungB.Y. ParkC.W. LeeJ.Y. Increased activity of TRPV 3 in keratinocytes in hypertrophic burn scars with postburn pruritus.Wound Repair Regen.201624584185010.1111/wrr.1246927541952
    [Google Scholar]
  174. YangY. ChoS. ChoiM. ChoiY. KwakI. ParkC. KimH. Increased expression of three types of transient receptor potential channels (TRPA1, TRPV4 and TRPV3) in burn scars with post-burn pruritus.Acta Derm. Venereol.2015951202410.2340/00015555‑185824695993
    [Google Scholar]
  175. AijimaR. WangB. TakaoT. MiharaH. KashioM. OhsakiY. ZhangJ.Q. MizunoA. SuzukiM. YamashitaY. MasukoS. GotoM. TominagaM. KidoM.A. The thermosensitive TRPV3 channel contributes to rapid wound healing in oral epithelia.FASEB J.201529118219210.1096/fj.14‑25131425351988
    [Google Scholar]
  176. MoqrichA. HwangS.W. EarleyT.J. PetrusM.J. MurrayA.N. SpencerK.S.R. AndahazyM. StoryG.M. PatapoutianA. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin.Science200530757141468147210.1126/science.110860915746429
    [Google Scholar]
  177. BorbíróI. LisztesE. TóthB.I. CzifraG. OláhA. SzöllősiA.G. SzentandrássyN. NánásiP.P. PéterZ. PausR. KovácsL. BíróT. Activation of transient receptor potential vanilloid-3 inhibits human hair growth.J. Invest. Dermatol.201113181605161410.1038/jid.2011.12221593771
    [Google Scholar]
  178. YanK. SunX. WangG. LiuY. WangK. Pharmacological Activation of Thermo–Transient Receptor Potential Vanilloid 3 Channels Inhibits Hair Growth by Inducing Cell Death of Hair Follicle Outer Root Sheath.J. Pharmacol. Exp. Ther.2019370229930710.1124/jpet.119.25808731152005
    [Google Scholar]
  179. WangM. GuY. MengS. KangL. YangJ. SunD. LiuY. WanZ. ShanY. XueD. SuC. LiS. YanR. LiuY. ZhaoY. PanY. Association between TRP channels and glutamatergic synapse gene polymorphisms and migraine and the comorbidities anxiety and depression in a Chinese population.Front. Genet.202314115802810.3389/fgene.2023.115802837303955
    [Google Scholar]
  180. CarreñoO. CorominasR. Fernández-MoralesJ. CamiñaM. SobridoM.J. Fernández-FernándezJ.M. Pozo-RosichP. CormandB. MacayaA. SNP variants within the vanilloid TRPV1 and TRPV3 receptor genes are associated with migraine in the Spanish population.Am. J. Med. Genet. B. Neuropsychiatr. Genet.2012159B19410310.1002/ajmg.b.3200722162417
    [Google Scholar]
  181. GopinathP. WanE. HoldcroftA. FacerP. DavisJ.B. SmithG.D. BountraC. AnandP. Increased capsaicin receptor TRPV1 in skin nerve fibres and related vanilloid receptors TRPV3 and TRPV4 in keratinocytes in human breast pain.BMC Womens Health200551210.1186/1472‑6874‑5‑215755319
    [Google Scholar]
  182. GrossiV. HyamsJ.S. GliddenN.C. KnightB.E. YoungE.E. Characterizing Clinical Features and Creating a Gene Expression Profile Associated With Pain Burden in Children With Inflammatory Bowel Disease.Inflamm. Bowel Dis.20202681283129010.1093/ibd/izz24031627210
    [Google Scholar]
  183. SuW. QiaoX. WangW. HeS. LiangK. HongX. TRPV3: Structure, Diseases and Modulators.Molecules202328277410.3390/molecules2802077436677834
    [Google Scholar]
  184. McGaraughtyS. ChuK.L. XuJ. LeysL. RadekR.J. DartM.J. GomtsyanA. SchmidtR.G. KymP.R. BredersonJ.D. TRPV3 modulates nociceptive signaling through peripheral and supraspinal sites in rats.J. Neurophysiol.2017118290491610.1152/jn.00104.201728468993
    [Google Scholar]
  185. GongZ. XieJ. ChenL. TangQ. HuY. XuA. WangZ. Integrative analysis of TRPV family to prognosis and immune infiltration in renal clear cell carcinoma.Channels (Austin)2022161849610.1080/19336950.2022.205873335389815
    [Google Scholar]
  186. YuW. HuangJ. YuH. LinJ. FanF. XieR. ShenY. LinK. YeY. WengJ. TRPV3 inhibits colorectal cancer cell proliferation and migration by regulating the MAPK signaling pathway.J. Gastrointest. Oncol.20221352447245710.21037/jgo‑22‑93836388700
    [Google Scholar]
  187. DoB.H. KoizumiH. OhbuchiT. KawaguchiR. SuzukiH. Expressions of TRPVs in the cholesteatoma epithelium.Acta Otolaryngol.2017137101039104510.1080/00016489.2017.133679628599589
    [Google Scholar]
  188. LiX. ZhangQ. FanK. LiB. LiH. QiH. GuoJ. CaoY. SunH. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer.Int. J. Mol. Sci.201617443710.3390/ijms1704043727023518
    [Google Scholar]
  189. LiX. LiH. LiZ. WangT. YuD. JinH. CaoY. TRPV3 promotes the angiogenesis through HIF-1α-VEGF signaling pathway in A549 cells.Acta Histochem.2022124815195510.1016/j.acthis.2022.15195536423389
    [Google Scholar]
  190. WangJ. ChenX. HuangW. MicroRNA-369 attenuates hypoxia-induced cardiomyocyte apoptosis and inflammation via targeting TRPV3.Braz. J. Med. Biol. Res.2021543e1055010.1590/1414‑431x20201055033470394
    [Google Scholar]
  191. YanL. ZhangX. FuJ. LiuQ. LeiX. CaoZ. ZhangJ. ShaoY. TongQ. QinW. LiuX. LiuC. LiuZ. LiZ. LuJ. XuX. Inhibition of the transient receptor potential vanilloid 3 channel attenuates carbon tetrachloride-induced hepatic fibrosis.Biochem. Biophys. Res. Commun.2021558869310.1016/j.bbrc.2021.04.06533906111
    [Google Scholar]
  192. ChenX. ZhangJ. WangK. Inhibition of intracellular proton-sensitive Ca2+-permeable TRPV3 channels protects against ischemic brain injury.Acta Pharm. Sin. B20221252330234710.1016/j.apsb.2022.01.00135646518
    [Google Scholar]
  193. TokunagaT. NinomiyaT. KatoY. ImotoY. SakashitaM. TakabayashiT. NoguchiE. FujiedaS. The significant expression of TRPV3 in nasal polyps of eosinophilic chronic rhinosinusitis.Allergol. Int.201766461061610.1016/j.alit.2017.04.00228462829
    [Google Scholar]
  194. NguyenN.D. MemonT.A. BurrellK.L. Almestica-RobertsM. RappE. SunL. ScottA.F. RowerJ.E. Deering-RiceC.E. ReillyC.A. Transient Receptor Potential Ankyrin-1 and Vanilloid-3 Differentially Regulate Endoplasmic Reticulum Stress and Cytotoxicity in Human Lung Epithelial Cells After Pneumotoxic Wood Smoke Particle Exposure.Mol. Pharmacol.202098558659710.1124/molpharm.120.00004732938721
    [Google Scholar]
  195. KrolikA. DiamandakisD. ZychA. StafiejA. SalinskaE. The involvement of TRP channels in memory formation and task retrieval in a passive avoidance task in one-day old chicks.Neurobiol. Learn. Mem.202017110720910.1016/j.nlm.2020.10720932147584
    [Google Scholar]
  196. CheungS.Y. HuangY. KwanH.Y. ChungH.Y. YaoX. Activation of transient receptor potential vanilloid 3 channel suppresses adipogenesis.Endocrinology201515662074208610.1210/en.2014‑183125774551
    [Google Scholar]
  197. UchidaK. SunW. YamazakiJ. TominagaM. Role of Thermo-Sensitive Transient Receptor Potential Channels in Brown Adipose Tissue.Biol. Pharm. Bull.20184181135114410.1248/bpb.b18‑0006330068861
    [Google Scholar]
  198. SinghR. BansalY. SodhiR.K. KhareP. BishnoiM. KondepudiK.K. MedhiB. KuhadA. Role of TRPV1/TRPV3 channels in olanzapine-induced metabolic alteration: Possible involvement in hypothalamic energy-sensing, appetite regulation, inflammation and mesolimbic pathway.Toxicol. Appl. Pharmacol.202040211512410.1016/j.taap.2020.11512432652086
    [Google Scholar]
  199. OkadaY. Izutani-KitanoA. IchikawaK. ReinachP. SaikaS. Alteration of expression pattern of transient receptor potential vanilloid 2 and transient receptor potential vanilloid 3 in ocular surface neoplasm.Taiwan J. Ophthalmol.202010210611010.4103/tjo.tjo_12_2032874838
    [Google Scholar]
  200. MacphersonL.J. HwangS.W. MiyamotoT. DubinA.E. PatapoutianA. StoryG.M. More than cool: Promiscuous relationships of menthol and other sensory compounds.Mol. Cell. Neurosci.200632433534310.1016/j.mcn.2006.05.00516829128
    [Google Scholar]
  201. XuH. DellingM. JunJ.C. ClaphamD.E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels.Nat. Neurosci.20069562863510.1038/nn169216617338
    [Google Scholar]
  202. MoussaieffA. RimmermanN. BregmanT. StraikerA. FelderC.C. ShohamS. KashmanY. HuangS.M. LeeH. ShohamiE. MackieK. CaterinaM.J. WalkerJ.M. FrideE. MechoulamR. Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain.FASEB J.20082283024303410.1096/fj.07‑10186518492727
    [Google Scholar]
  203. PollastroF. GolinS. ChianeseG. PutraM.Y. Schiano MorielloA. De PetrocellisL. GarcíaV. MunozE. Taglialatela-ScafatiO. AppendinoG. Neuroactive and Anti-inflammatory Frankincense Cembranes: A Structure–Activity Study.J. Nat. Prod.20167971762176810.1021/acs.jnatprod.6b0014127352042
    [Google Scholar]
  204. GochmanA. TanX.F. BaeC. ChenH. SwartzK.J. Jara-OsegueraA. Cannabidiol sensitizes TRPV2 channels to activation by 2-APB.eLife202312e8616610.7554/eLife.8616637199723
    [Google Scholar]
  205. MullerC. MoralesP. ReggioP.H. Cannabinoid Ligands Targeting TRP Channels.Front. Mol. Neurosci.20191148710.3389/fnmol.2018.0048730697147
    [Google Scholar]
  206. StotzS.C. VriensJ. MartynD. ClardyJ. ClaphamD.E. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.PLoS One200835e208210.1371/journal.pone.000208218461159
    [Google Scholar]
  207. NamY. KimH.J. KimY.M. ChinY.W. KimY.K. BaeH.S. NamJ.H. KimW.K. Activation of transient receptor potential vanilloid 3 by the methanolic extract of Schisandra chinensis fruit and its chemical constituent γ-schisandrin.Korean J. Physiol. Pharmacol.201721330931610.4196/kjpp.2017.21.3.30928461773
    [Google Scholar]
  208. BangS. YooS. YangT.J. ChoH. HwangS.W. Farnesyl pyrophosphate is a novel pain-producing molecule via specific activation of TRPV3.J. Biol. Chem.201028525193621937110.1074/jbc.M109.08774220395302
    [Google Scholar]
  209. MaL. LeeB.H. CliftonH. SchaeferS. ZhengJ. Nicotinic acid is a common regulator of heat-sensing TRPV1-4 ion channels.Sci. Rep.201551890610.1038/srep0890625752528
    [Google Scholar]
  210. ChungM.K. GülerA.D. CaterinaM.J. Biphasic currents evoked by chemical or thermal activation of the heat-gated ion channel, TRPV3.J. Biol. Chem.200528016159281594110.1074/jbc.M50059620015722340
    [Google Scholar]
  211. Deering-RiceC.E. MitchellV.K. RomeroE.G. Abdel AzizM.H. RyskampD.A. KrižajD. VenkatR.G. ReillyC.A. Drofenine: a 2‐APB analog with improved selectivity for human TRPV3.Pharmacol. Res. Perspect.201425e0006210.1002/prp2.6225089200
    [Google Scholar]
  212. MaierM. OlthoffS. HillK. ZoselC. MagauerT. WeinL.A. SchaeferM. KS0365, a novel activator of the transient receptor potential vanilloid 3 (TRPV3) channel, accelerates keratinocyte migration.Br. J. Pharmacol.2022179245290530410.1111/bph.1593735916168
    [Google Scholar]
  213. BangS. YooS. YangT.J. ChoH. HwangS.W. Isopentenyl pyrophosphate is a novel antinociceptive substance that inhibits TRPV3 and TRPA1 ion channels.Pain201115251156116410.1016/j.pain.2011.01.04421353389
    [Google Scholar]
  214. SunX.Y. SunL.L. QiH. GaoQ. WangG.X. WeiN.N. WangK. Antipruritic Effect of Natural Coumarin Osthole through Selective Inhibition of Thermosensitive TRPV3 Channel in the Skin.Mol. Pharmacol.20189441164117310.1124/mol.118.11246630108138
    [Google Scholar]
  215. ZhangH. SunX. QiH. MaQ. ZhouQ. WangW. WangK. Pharmacological Inhibition of the Temperature-Sensitive and Ca 2+ -Permeable Transient Receptor Potential Vanilloid TRPV3 Channel by Natural Forsythoside B Attenuates Pruritus and Cytotoxicity of Keratinocytes.J. Pharmacol. Exp. Ther.20193681213110.1124/jpet.118.25404530377214
    [Google Scholar]
  216. SunX. QiH. WuH. QuY. WangK. Anti-pruritic and anti-inflammatory effects of natural verbascoside through selective inhibition of temperature-sensitive Ca2+-permeable TRPV3 channel.J. Dermatol. Sci.202097322923110.1016/j.jdermsci.2020.01.00431983608
    [Google Scholar]
  217. HanY. LuoA. KamauP.M. TakomthongP. HuJ. BoonyaratC. LuoL. LaiR. A plant‐derived TRPV3 inhibitor suppresses pain and itch.Br. J. Pharmacol.202117871669168310.1111/bph.1539033501656
    [Google Scholar]
  218. QiH. ShiY. WuH. NiuC. SunX. WangK. Inhibition of temperature-sensitive TRPV3 channel by two natural isochlorogenic acid isomers for alleviation of dermatitis and chronic pruritus.Acta Pharm. Sin. B202212272373410.1016/j.apsb.2021.08.00235256942
    [Google Scholar]
  219. WangY. TanL. JiaoK. XueC. TangQ. JiangS. RenY. ChenH. El-AzizT.M.A. AbdelazeemK.N.M. YuY. ZhaoF. ZhuM.X. CaoZ. Scutellarein attenuates atopic dermatitis by selectively inhibiting transient receptor potential vanilloid 3 channels.Br. J. Pharmacol.2022179204792480810.1111/bph.1591335771623
    [Google Scholar]
  220. DangT.H. KimJ.Y. KimH.J. KimB.J. KimW.K. NamJ.H. Alpha-Mangostin: A Potent Inhibitor of TRPV3 and Pro-Inflammatory Cytokine Secretion in Keratinocytes.Int. J. Mol. Sci.202324161293010.3390/ijms24161293037629111
    [Google Scholar]
  221. KimS. ChungE. VasilevaE. MishchenkoN. FedoreyevS. StonikV. KimH. NamJ. KimS. Multiple Effects of Echinochrome A on Selected Ion Channels Implicated in Skin Physiology.Mar. Drugs20232127810.3390/md2102007836827119
    [Google Scholar]
  222. SherkheliM.A. GisselmannG. HattH. Supercooling agent icilin blocks a warmth-sensing ion channel TRPV3.ScientificWorldJournal201220121810.1100/2012/98272522548000
    [Google Scholar]
  223. BroadL. MoggA. EberleE. TolleyM. LiD. KnoppK. TRPV3 in Drug Development.Pharmaceuticals (Basel)2016935510.3390/ph903005527618069
    [Google Scholar]
  224. GomtsyanA. SchmidtR.G. BayburtE.K. GfesserG.A. VoightE.A. DaanenJ.F. SchmidtD.L. CowartM.D. LiuH. AltenbachR.J. KortM.E. ClaphamB. CoxP.B. ShresthaA. HenryR. WhitternD.N. ReillyR.M. PuttfarckenP.S. BredersonJ.D. SongP. LiB. HuangS.M. McDonaldH.A. NeelandsT.R. McGaraughtyS.P. GauvinD.M. JoshiS.K. BanforP.N. SegretiJ.A. ShebleyM. FaltynekC.R. DartM.J. KymP.R. Synthesis and Pharmacology of (Pyridin-2-yl)methanol Derivatives as Novel and Selective Transient Receptor Potential Vanilloid 3 Antagonists.J. Med. Chem.201659104926494710.1021/acs.jmedchem.6b0028727077528
    [Google Scholar]
  225. BischofM. OlthoffS. GlasC. Thorn-SesholdO. SchaeferM. HillK. TRPV3 endogenously expressed in murine colonic epithelial cells is inhibited by the novel TRPV3 blocker 26E01.Cell Calcium20209210231010.1016/j.ceca.2020.10231033161279
    [Google Scholar]
  226. NeubergerA. NadezhdinK.D. SobolevskyA.I. Structural mechanism of TRPV3 channel inhibition by the anesthetic dyclonine.Nat. Commun.2022131279510.1038/s41467‑022‑30537‑835589741
    [Google Scholar]
  227. HorishitaR. OgataY. FukuiR. YamazakiR. MoriwakiK. UenoS. YanagiharaN. UezonoY. YokoyamaY. MinamiK. HorishitaT. Local Anesthetics Inhibit Transient Receptor Potential Vanilloid Subtype 3 Channel Function in Xenopus Oocytes.Anesth. Analg.202113261756176710.1213/ANE.000000000000554633857022
    [Google Scholar]
  228. LvM. WuH. QuY. WuS. WangJ. WangC. LuanY. ZhangZ. The design and synthesis of transient receptor potential vanilloid 3 inhibitors with novel skeleton.Bioorg. Chem.202111410511510.1016/j.bioorg.2021.10511534175725
    [Google Scholar]
  229. ZhangF. LinY. MinW. HouY. YuanK. WangJ. YangP. Computational discovery, structural optimization and biological evaluation of novel inhibitors targeting transient receptor potential vanilloid type 3 (TRPV3).Bioorg. Chem.202111410509310.1016/j.bioorg.2021.10509334182309
    [Google Scholar]
  230. FanJ. HuL. YueZ. LiaoD. GuoF. KeH. JiangD. YangY. LeiX. Structural basis of TRPV3 inhibition by an antagonist.Nat. Chem. Biol.2023191819010.1038/s41589‑022‑01166‑536302896
    [Google Scholar]
  231. CaleyM. IdrissiM. BraimanL. BrenerE. O’TooleE. LB1754 Treatment of human palmoplantar keratoderma skin equivalents with a TRPV3 antagonist, KM-001.J. Invest. Dermatol.20231439B26[J].10.1016/j.jid.2023.06.133
    [Google Scholar]
  232. DengZ. PaknejadN. MaksaevG. Sala-RabanalM. NicholsC.G. HiteR.K. YuanP. Cryo-EM and X-ray structures of TRPV4 reveal insight into ion permeation and gating mechanisms.Nat. Struct. Mol. Biol.201825325226010.1038/s41594‑018‑0037‑529483651
    [Google Scholar]
  233. LawhornB.G. BrnardicE.J. BehmD.J. TRPV4 antagonists: a patent review (2015–2020).Expert Opin. Ther. Pat.202131977378410.1080/13543776.2021.190343233724130
    [Google Scholar]
  234. LiuL. GuoM. LvX. WangZ. YangJ. LiY. YuF. WenX. FengL. ZhouT. Role of Transient Receptor Potential Vanilloid 4 in Vascular Function.Front. Mol. Biosci.2021867766110.3389/fmolb.2021.67766133981725
    [Google Scholar]
  235. ChenY.L. SonkusareS.K. Endothelial TRPV4 channels and vasodilator reactivity.Curr. Top. Membr.2020858911710.1016/bs.ctm.2020.01.00732402646
    [Google Scholar]
  236. KumarM. ZamanM.K. DasS. GoyaryD. PathakM.P. ChattopadhyayP. Transient Receptor Potential Vanilloid (TRPV4) channel inhibition: A novel promising approach for the treatment of lung diseases.Biomed. Pharmacother.202316311486110.1016/j.biopha.2023.11486137178575
    [Google Scholar]
  237. LiedtkeW. SimonS.A. A possible role for TRPV4 receptors in asthma.Am. J. Physiol. Lung Cell. Mol. Physiol.20042872L269L27110.1152/ajplung.00153.200415246981
    [Google Scholar]
  238. ArnigesM. VázquezE. Fernández-FernándezJ.M. ValverdeM.A. Swelling-activated Ca2+ entry via TRPV4 channel is defective in cystic fibrosis airway epithelia.J. Biol. Chem.200427952540625406810.1074/jbc.M40970820015489228
    [Google Scholar]
  239. ZhuG. GulsvikA. BakkeP. GhattaS. AndersonW. LomasD.A. SilvermanE.K. PillaiS.G. ICGN Investigators Association of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease.Hum. Mol. Genet.200918112053206210.1093/hmg/ddp11119279160
    [Google Scholar]
  240. SureshK. ServinskyL. JiangH. BighamZ. YunX. KlimentC. HuetschJ. DamarlaM. ShimodaL.A. Reactive oxygen species induced Ca 2+ influx via TRPV4 and microvascular endothelial dysfunction in the SU5416/hypoxia model of pulmonary arterial hypertension.Am. J. Physiol. Lung Cell. Mol. Physiol.20183145L893L90710.1152/ajplung.00430.201729388466
    [Google Scholar]
  241. ZhangQ. HenryG. ChenY. Emerging Role of Transient Receptor Potential Vanilloid 4 (TRPV4) Ion Channel in Acute and Chronic Itch.Int. J. Mol. Sci.20212214759110.3390/ijms2214759134299208
    [Google Scholar]
  242. ChenY. WangZ.L. YeoM. ZhangQ.J. López-RomeroA.E. DingH.P. ZhangX. ZengQ. Morales-LázaroS.L. MooreC. JinY.A. YangH.H. MorsteinJ. BortsovA. KrawczykM. LammertF. AbdelmalekM. DiehlA.M. MilkiewiczP. KremerA.E. ZhangJ.Y. NackleyA. ReevesT.E. KoM.C. JiR.R. RosenbaumT. LiedtkeW. Epithelia-Sensory Neuron Cross Talk Underlies Cholestatic Itch Induced by Lysophosphatidylcholine.Gastroenterology20211611301317.e1610.1053/j.gastro.2021.03.04933819485
    [Google Scholar]
  243. LuoJ. FengJ. YuG. YangP. MackM.R. DuJ. YuW. QianA. ZhangY. LiuS. YinS. XuA. ChengJ. LiuQ. O’NeilR.G. XiaY. MaL. CarltonS.M. KimB.S. RennerK. LiuQ. HuH. Transient receptor potential vanilloid 4–expressing macrophages and keratinocytes contribute differentially to allergic and nonallergic chronic itch.J. Allergy Clin. Immunol.20181412608619.e710.1016/j.jaci.2017.05.05128807414
    [Google Scholar]
  244. Ürel-DemirG. Şimşek-KiperP.Ö. Öncelİ. UtineG.E. HaliloğluG. BoduroğluK. Natural history of TRPV4-Related disorders: From skeletal dysplasia to neuromuscular phenotype.Eur. J. Paediatr. Neurol.202132465510.1016/j.ejpn.2021.03.01133774370
    [Google Scholar]
  245. WatanabeH. VriensJ. PrenenJ. DroogmansG. VoetsT. NiliusB. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels.Nature2003424694743443810.1038/nature0180712879072
    [Google Scholar]
  246. EarleyS. PauyoT. DrappR. TavaresM.J. LiedtkeW. BraydenJ.E. TRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure.Am. J. Physiol. Heart Circ. Physiol.20092973H1096H110210.1152/ajpheart.00241.200919617407
    [Google Scholar]
  247. BangS. YooS. YangT.J. ChoH. HwangS.W. Nociceptive and pro‐inflammatory effects of dimethylallyl pyrophosphate via TRPV4 activation.Br. J. Pharmacol.201216641433144310.1111/j.1476‑5381.2012.01884.x22300296
    [Google Scholar]
  248. SmithP.L. MaloneyK.N. PothenR.G. ClardyJ. ClaphamD.E. Bisandrographolide from Andrographis paniculata activates TRPV4 channels.J. Biol. Chem.200628140298972990410.1074/jbc.M60539420016899456
    [Google Scholar]
  249. WatanabeH. DavisJ.B. SmartD. JermanJ.C. SmithG.D. HayesP. VriensJ. CairnsW. WissenbachU. PrenenJ. FlockerziV. DroogmansG. BenhamC.D. NiliusB. Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives.J. Biol. Chem.200227716135691357710.1074/jbc.M20006220011827975
    [Google Scholar]
  250. VincentF. AcevedoA. NguyenM.T. DouradoM. DeFalcoJ. GustafsonA. SpiroP. EmerlingD.E. KellyM.G. DunctonM.A.J. Identification and characterization of novel TRPV4 modulators.Biochem. Biophys. Res. Commun.2009389349049410.1016/j.bbrc.2009.09.00719737537
    [Google Scholar]
  251. ThorneloeK.S. SulpizioA.C. LinZ. FigueroaD.J. ClouseA.K. McCaffertyG.P. ChendrimadaT.P. LashingerE.S. GordonE. EvansL. MisajetB.A. DemariniD.J. NationJ.H. CasillasL.N. MarquisR.W. VottaB.J. SheardownS.A. XuX. BrooksD.P. LapingN.J. WestfallT.D.N. -((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: Part I.J. Pharmacol. Exp. Ther.2008326243244210.1124/jpet.108.13929518499743
    [Google Scholar]
  252. WilletteR.N. BaoW. NerurkarS. YueT. DoeC.P. StankusG. TurnerG.H. JuH. ThomasH. FishmanC.E. SulpizioA. BehmD.J. HoffmanS. LinZ. LozinskayaI. CasillasL.N. LinM. TroutR.E.L. VottaB.J. ThorneloeK. LashingerE.S.R. FigueroaD.J. MarquisR. XuX. Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2.J. Pharmacol. Exp. Ther.2008326244345210.1124/jpet.107.13455118499744
    [Google Scholar]
  253. AtobeM. NagamiT. MuramatsuS. OhnoT. KitagawaM. SuzukiH. IshiguroM. WatanabeA. KawanishiM. Discovery of Novel Transient Receptor Potential Vanilloid 4 (TRPV4) Agonists as Regulators of Chondrogenic Differentiation: Identification of Quinazolin-4(3 H )-ones and in Vivo Studies on a Surgically Induced Rat Model of Osteoarthritis.J. Med. Chem.20196231468148310.1021/acs.jmedchem.8b0161530629441
    [Google Scholar]
  254. WeiZ.L. NguyenM.T. O’MahonyD.J.R. AcevedoA. ZipfelS. ZhangQ. LiuL. DouradoM. ChiC. YipV. DeFalcoJ. GustafsonA. EmerlingD.E. KellyM.G. KincaidJ. VincentF. DunctonM.A.J. Identification of orally-bioavailable antagonists of the TRPV4 ion-channel.Bioorg. Med. Chem. Lett.201525184011401510.1016/j.bmcl.2015.06.09826235950
    [Google Scholar]
  255. EveraertsW. ZhenX. GhoshD. VriensJ. GevaertT. GilbertJ.P. HaywardN.J. McNamaraC.R. XueF. MoranM.M. StrassmaierT. UykalE. OwsianikG. VennekensR. De RidderD. NiliusB. FangerC.M. VoetsT. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis.Proc. Natl. Acad. Sci. USA201010744190841908910.1073/pnas.100533310720956320
    [Google Scholar]
  256. SkerrattS.E. MillsJ.E.J. MistryJ. Identification of false positives in “HTS hits to lead”: The application of Bayesian models in HTS triage to rapidly deliver a series of selective TRPV4 antagonists.MedChemComm20134124425110.1039/C2MD20259J
    [Google Scholar]
  257. TsunoN. YukimasaA. YoshidaO. SuzukiS. NakaiH. OgawaT. FujiuM. TakayaK. NozuA. YamaguchiH. MatsudaH. FunakiS. NishimuraY. ItoT. NagamatsuD. AsakiT. HoritaN. YamamotoM. HinataM. SogaM. ImaiM. MoriokaY. KanemasaT. SakaguchiG. IsoY. Discovery of novel 2′,4′-dimethyl-[4,5′-bithiazol]-2-yl amino derivatives as orally bioavailable TRPV4 antagonists for the treatment of pain: Part 2.Bioorg. Med. Chem. Lett.201626204936494110.1016/j.bmcl.2016.09.01427634196
    [Google Scholar]
  258. CheungM. BaoW. BehmD.J. BrooksC.A. BuryM.J. DowdellS.E. EidamH.S. FoxR.M. GoodmanK.B. HoltD.A. LeeD. RoethkeT.J. WilletteR.N. XuX. YeG. ThorneloeK.S. Discovery of GSK2193874: An Orally Active, Potent, and Selective Blocker of Transient Receptor Potential Vanilloid 4.ACS Med. Chem. Lett.20178554955410.1021/acsmedchemlett.7b0009428523109
    [Google Scholar]
  259. BrnardicE.J. YeG. BrooksC. DonatelliC. BartonL. McAteeJ. SanchezR.M. ShuA. ErhardK. TerrellL. Graczyk-MillbrandtG. HeY. CostellM.H. BehmD.J. RoethkeT. StoyP. HoltD.A. LawhornB.G. Discovery of Pyrrolidine Sulfonamides as Selective and Orally Bioavailable Antagonists of Transient Receptor Potential Vanilloid-4 (TRPV4).J. Med. Chem.201861219738975510.1021/acs.jmedchem.8b0131730335378
    [Google Scholar]
  260. PeroJ.E. MatthewsJ.M. BehmD.J. BrnardicE.J. BrooksC. BudzikB.W. CostellM.H. DonatelliC.A. EisennagelS.H. ErhardK. FischerM.C. HoltD.A. JolivetteL.J. LiH. LiP. McAteeJ.J. McClelandB.W. PendrakI. PosobiecL.M. RiveraK.L.K. RiveroR.A. RoethkeT.J. SenderM.R. ShuA. TerrellL.R. VaidyaK. XuX. LawhornB.G. Design and Optimization of Sulfone Pyrrolidine Sulfonamide Antagonists of Transient Receptor Potential Vanilloid-4 with in vivo Activity in a Pulmonary Edema Model.J. Med. Chem.20186124112091122010.1021/acs.jmedchem.8b0134430500190
    [Google Scholar]
  261. BrooksC.A. BartonL.S. BehmD.J. BrnardicE.J. CostellM.H. HoltD.A. JolivetteL.J. MatthewsJ.M. McAteeJ.J. McClelandB.W. PattersonJ.R. PeroJ.E. RiveroR.A. RoethkeT.J. SanchezR.M. ShenjeR. TerrellL.R. LawhornB.G. Discovery of GSK3527497: A Candidate for the Inhibition of Transient Receptor Potential Vanilloid-4 (TRPV4).J. Med. Chem.201962209270928010.1021/acs.jmedchem.9b0124731532662
    [Google Scholar]
  262. BrooksC.A. BartonL.S. BehmD.J. EidamH.S. FoxR.M. HammondM. HoangT.H. HoltD.A. HilfikerM.A. LawhornB.G. PattersonJ.R. StoyP. RoethkeT.J. YeG. ZhaoS. ThorneloeK.S. GoodmanK.B. CheungM. Discovery of GSK2798745: A Clinical Candidate for Inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4).ACS Med. Chem. Lett.20191081228123310.1021/acsmedchemlett.9b0027431413810
    [Google Scholar]
  263. den DekkerE. HoenderopJ.G.J. NiliusB. BindelsR.J.M. The epithelial calcium channels, TRPV5 & TRPV6: from identification towards regulation.Cell Calcium2003335-649750710.1016/S0143‑4160(03)00065‑412765695
    [Google Scholar]
  264. HoenderopJ.G.J. NiliusB. BindelsR.J.M. Calcium absorption across epithelia.Physiol. Rev.200585137342210.1152/physrev.00003.200415618484
    [Google Scholar]
  265. NijenhuisT. HoenderopJ.G.J. NiliusB. BindelsR.J.M. (Patho)physiological implications of the novel epithelial Ca2+ channels TRPV5 and TRPV6.Pflugers Arch.2003446440140910.1007/s00424‑003‑1038‑712748856
    [Google Scholar]
  266. Fecher-TrostC. WissenbachU. WeissgerberP. TRPV6: From identification to function.Cell Calcium20176711612210.1016/j.ceca.2017.04.00628501141
    [Google Scholar]
  267. HoenderopJ.G.J. van LeeuwenJ.P.T.M. van der EerdenB.C.J. KerstenF.F.J. van derKempA.W.C.M. MérillatA.M. WaarsingJ.H. RossierB.C. VallonV. HummlerE. BindelsR.J.M. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5.J. Clin. Invest.2003112121906191410.1172/JCI20031982614679186
    [Google Scholar]
  268. BiancoS.D.C. PengJ.B. TakanagaH. SuzukiY. CrescenziA. KosC.H. ZhuangL. FreemanM.R. GouveiaC.H.A. WuJ. LuoH. MauroT. BrownE.M. HedigerM.A. Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene.J. Bone Miner. Res.200722227428510.1359/jbmr.06111017129178
    [Google Scholar]
  269. OddssonA. SulemP. HelgasonH. EdvardssonV.O. ThorleifssonG. SveinbjörnssonG. HaraldsdottirE. EyjolfssonG.I. SigurdardottirO. OlafssonI. MassonG. HolmH. GudbjartssonD.F. ThorsteinsdottirU. IndridasonO.S. PalssonR. StefanssonK. Common and rare variants associated with kidney stones and biochemical traits.Nat. Commun.201561797510.1038/ncomms897526272126
    [Google Scholar]
  270. NaT. PengJ.B. TRPV5: a Ca(2+) channel for the fine-tuning of Ca(2+) reabsorption.Handb. Exp. Pharmacol.201422232135710.1007/978‑3‑642‑54215‑2_1324756712
    [Google Scholar]
  271. WuG. ZhangW. NaT. JingH. WuH. PengJ.B. Suppression of intestinal calcium entry channel TRPV6 by OCRL, a lipid phosphatase associated with Lowe syndrome and Dent disease.Am. J. Physiol. Cell Physiol.201230210C1479C149110.1152/ajpcell.00277.201122378746
    [Google Scholar]
  272. YangS.S. HsuY.J. ChigaM. RaiT. SasakiS. UchidaS. LinS.H. Mechanisms for hypercalciuria in pseudohypoaldosteronism type II-causing WNK4 knock-in mice.Endocrinology201015141829183610.1210/en.2009‑095120181799
    [Google Scholar]
  273. van der EerdenB.C.J. HoenderopJ.G.J. de VriesT.J. SchoenmakerT. BuurmanC.J. UitterlindenA.G. PolsH.A.P. BindelsR.J.M. van LeeuwenJ.P.T.M. The epithelial Ca 2+ channel TRPV5 is essential for proper osteoclastic bone resorption.Proc. Natl. Acad. Sci. USA200510248175071751210.1073/pnas.050578910216291808
    [Google Scholar]
  274. van der EerdenB.C.J. WeissgerberP. Fratzl-ZelmanN. OlaussonJ. HoenderopJ.G.J. Schreuders-KoedamM. EijkenM. RoschgerP. de VriesT.J. ChibaH. KlaushoferK. FlockerziV. BindelsR.J.M. FreichelM. van LeeuwenJ.P.T.M. The transient receptor potential channel TRPV6 is dynamically expressed in bone cells but is not crucial for bone mineralization in mice.J. Cell. Physiol.201222751951195910.1002/jcp.2292321732366
    [Google Scholar]
  275. ChenF. NiB. YangY.O. YeT. ChenA. Knockout of TRPV6 causes osteopenia in mice by increasing osteoclastic differentiation and activity.Cell. Physiol. Biochem.201433379680910.1159/00035865324686448
    [Google Scholar]
  276. StewartJ.M. TRPV6 as A Target for Cancer Therapy.J. Cancer202011237438710.7150/jca.3164031897233
    [Google Scholar]
  277. SuzukiY. ChitayatD. SawadaH. DeardorffM.A. McLaughlinH.M. BegtrupA. MillarK. HarringtonJ. ChongK. RoifmanM. GrandK. TominagaM. TakadaF. ShusterS. ObaraM. MutohH. KushimaR. NishimuraG. TRPV6 Variants Interfere with Maternal-Fetal Calcium Transport through the Placenta and Cause Transient Neonatal Hyperparathyroidism.Am. J. Hum. Genet.201810261104111410.1016/j.ajhg.2018.04.00629861107
    [Google Scholar]
  278. BurrenC.P. CaswellR. CastleB. WelchC.R. HilliardT.N. SmithsonS.F. EllardS. TRPV6 compound heterozygous variants result in impaired placental calcium transport and severe undermineralization and dysplasia of the fetal skeleton.Am. J. Med. Genet. A.201817691950195510.1002/ajmg.a.4048430144375
    [Google Scholar]
  279. SalujaA. DudejaV. DawraR. SahR.P. Early Intra-Acinar Events in Pathogenesis of Pancreatitis.Gastroenterology201915671979199310.1053/j.gastro.2019.01.26830776339
    [Google Scholar]
  280. MasamuneA. KotaniH. SörgelF.L. ChenJ.M. HamadaS. SakaguchiR. MassonE. NakanoE. KakutaY. NiihoriT. FunayamaR. ShirotaM. HiranoT. KawamotoT. HosokoshiA. KumeK. UngerL. EwersM. LaumenH. BugertP. MoriM.X. TsvilovskyyV. WeißgerberP. KriebsU. Fecher-TrostC. FreichelM. DiakopoulosK.N. BerningerA. LesinaM. IshiiK. ItoiT. IkeuraT. OkazakiK. KauneT. RosendahlJ. NagasakiM. UezonoY. AlgülH. NakayamaK. MatsubaraY. AokiY. FérecC. MoriY. WittH. ShimosegawaT. Variants That Affect Function of Calcium Channel TRPV6 Are Associated With Early-Onset Chronic Pancreatitis.Gastroenterology2020158616261641.e810.1053/j.gastro.2020.01.00531930989
    [Google Scholar]
  281. ZouW.B. WangY.C. RenX.L. WangL. DengS.J. MaoX.T. LiZ.S. LiaoZ. TRPV6 variants confer susceptibility to chronic pancreatitis in the Chinese population.Hum. Mutat.20204181351135710.1002/humu.2403232383311
    [Google Scholar]
  282. FluckE.C. YaziciA.T. RohacsT. Moiseenkova-BellV.Y. Structural basis of TRPV5 regulation by physiological and pathophysiological modulators.Cell Rep.202239411073710.1016/j.celrep.2022.11073735476976
    [Google Scholar]
  283. NiliusB. PrenenJ. VennekensR. HoenderopJ.G.J. BindelsR.J.M. DroogmansG. Pharmacological modulation of monovalent cation currents through the epithelial Ca 2+ channel ECaC1.Br. J. Pharmacol.2001134345346210.1038/sj.bjp.070427211588099
    [Google Scholar]
  284. LandowskiC.P. BolanzK.A. SuzukiY. HedigerM.A. Chemical inhibitors of the calcium entry channel TRPV6.Pharm. Res.201128232233010.1007/s11095‑010‑0249‑921057859
    [Google Scholar]
  285. JanssensA. SilvestriC. MartellaA. VanoevelenJ.M. Di MarzoV. VoetsT. Δ9-tetrahydrocannabivarin impairs epithelial calcium transport through inhibition of TRPV5 and TRPV6.Pharmacol. Res.2018136838910.1016/j.phrs.2018.08.02130170189
    [Google Scholar]
  286. HaverstickD.M. HeadyT.N. MacdonaldT.L. GrayL.S. Inhibition of human prostate cancer proliferation in vitro and in a mouse model by a compound synthesized to block Ca2+ entry.Cancer Res.200060410021008[J]. [PMID: 10706116].10706116
    [Google Scholar]
  287. McCalmontW.F. HeadyT.N. PattersonJ.R. LindenmuthM.A. HaverstickD.M. GrayL.S. MacdonaldT.L. Design, synthesis, and biological evaluation of novel T-Type calcium channel antagonists.Bioorg. Med. Chem. Lett.200414143691369510.1016/j.bmcl.2004.05.01115203145
    [Google Scholar]
  288. SimoninC. AwaleM. BrandM. van DeursenR. SchwartzJ. FineM. KovacsG. HäfligerP. GyimesiG. SithampariA. CharlesR.P. HedigerM.A. ReymondJ.L. Optimization of TRPV6 Calcium Channel Inhibitors Using a 3D Ligand‐Based Virtual Screening Method.Angew. Chem. Int. Ed.20155449147481475210.1002/anie.20150732026457814
    [Google Scholar]
  289. SinghA.K. SaotomeK. McGoldrickL.L. SobolevskyA.I. Structural bases of TRP channel TRPV6 allosteric modulation by 2-APB.Nat. Commun.201891246510.1038/s41467‑018‑04828‑y29941865
    [Google Scholar]
  290. KovacsG. MontalbettiN. SimoninA. DankoT. BalazsB. ZsemberyA. HedigerM.A. Inhibition of the human epithelial calcium channel TRPV6 by 2-aminoethoxydiphenyl borate (2-APB).Cell Calcium201252646848010.1016/j.ceca.2012.08.00523040501
    [Google Scholar]
  291. HughesT.E.T. Del RosarioJ.S. KapoorA. YaziciA.T. YudinY. FluckE.C.III FilizolaM. RohacsT. Moiseenkova-BellV.Y. Structure-based characterization of novel TRPV5 inhibitors.eLife20198e4957210.7554/eLife.4957231647410
    [Google Scholar]
  292. ZhongG. LongH. ChenF. YuY. Oxoglaucine mediates Ca 2+ influx and activates autophagy to alleviate osteoarthritis through the TRPV5/calmodulin/CAMK‐II pathway.Br. J. Pharmacol.2021178152931294710.1111/bph.1546633786819
    [Google Scholar]
  293. BredersonJ.D. KymP.R. SzallasiA. Targeting TRP channels for pain relief.Eur. J. Pharmacol.20137161-3617610.1016/j.ejphar.2013.03.00323500195
    [Google Scholar]
  294. BhattacharyyaS. RanaD. BhattacharyyaS.N. Determination of heat of formation of associated systems by calorimetry.J. Indian Chem. Soc.1997742103107
    [Google Scholar]
  295. BhattacharyyaS. RanaD. BhattacharyyaS.N. A thermodynamic study of molecular association by gas-liquid chromatography.J. Indian Chem. Soc.199774645646310.5281/zenodo.5880620
    [Google Scholar]
  296. BhattacharyyaS. RanaD. BhattacharyyaS.N. A thermodynamic study of molecular association by gas-liquid chromatography: Trilaurylaminealcohol systems.J. Indian Chem. Soc.199774754855110.5281/zenodo.5901630
    [Google Scholar]
  297. PotteratO. HamburgerM. Concepts and technologies for tracking bioactive compounds in natural product extracts: generation of libraries, and hyphenation of analytical processes with bioassays.Nat. Prod. Rep.201330454656410.1039/c3np20094a23459784
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266294569241115053420
Loading
/content/journals/ctmc/10.2174/0115680266294569241115053420
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): agonist; antagonist; channel-related diseases; modulators; TRP channels; TRPV channels
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test