Skip to content
2000
Volume 11, Issue 6
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Acute Pancreatitis (AP) is a ubiquitous inflammatory digestive system disease with a high prevalence worldwide. Once it progresses to Severe Acute Pancreatitis (SAP), its mortality can significantly increase. However, until now, there has been no clinical cure for AP, and the treatment of patients has mostly been based on surgery and supportive care. This has become a major medical problem. As for the pharmacological treatment of AP, various Chinese medicine tonics and formulations have shown a surprising appeal in both clinical and scientific research. Studies on AP pathogenesis have shown that physiological processes, such as oxidative stress and inflammatory responses, play important roles in AP. The Nuclear factor E2-related factor 2 (Nrf2) signalling pathway is closely related to the antioxidant and anti-inflammatory properties of the body and may be a promising therapeutic target for the treatment of AP. Therefore, this review focuses on Chinese patent medicine that uses the Nrf2 pathway as a therapeutic target. We list the current research and clinical treatment strategies for AP with the help of Chinese medicine as a cornerstone for future studies. Some of our reflections and conclusions are presented in this review, especially with a focus on the mechanism of action of therapeutic strategies.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838299447240621100613
2025-07-11
2026-01-04
Loading full text...

Full text loading...

References

  1. HuJ.X. ZhaoC.F. ChenW.B. Pancreatic cancer: A review of epidemiology, trend, and risk factors.World J. Gastroenterol.202127274298432110.3748/wjg.v27.i27.4298 34366606
    [Google Scholar]
  2. HabtezionA. GukovskayaA.S. PandolS.J. Acute pancreatitis: A multifaceted set of organelle and cellular interactions.Gastroenterology201915671941195010.1053/j.gastro.2018.11.082 30660726
    [Google Scholar]
  3. PetrovM.S. YadavD. Global epidemiology and holistic prevention of pancreatitis.Nat. Rev. Gastroenterol. Hepatol.201916317518410.1038/s41575‑018‑0087‑5 30482911
    [Google Scholar]
  4. LiuY. LiuH. RongY. Alterations of oral microbiota are associated with the development and severity of acute pancreatitis.J. Oral Microbiol.2023151226461910.1080/20002297.2023.2264619 37808891
    [Google Scholar]
  5. SzatmaryP. GrammatikopoulosT. CaiW. Acute pancreatitis: Diagnosis and treatment.Drugs202282121251127610.1007/s40265‑022‑01766‑4 36074322
    [Google Scholar]
  6. HinesO.J. PandolS.J. Management of severe acute pancreatitis.BMJ2019367l622710.1136/bmj.l6227 31791953
    [Google Scholar]
  7. GargP.K. SinghV.P. Organ failure due to systemic injury in acute pancreatitis.Gastroenterology201915672008202310.1053/j.gastro.2018.12.041 30768987
    [Google Scholar]
  8. TrikudanathanG. WolbrinkD.R.J. van SantvoortH.C. MalleryS. FreemanM. BesselinkM.G. Current concepts in severe acute and necrotizing pancreatitis: An evidence-based approach.Gastroenterology2019156719942007.e310.1053/j.gastro.2019.01.269 30776347
    [Google Scholar]
  9. ChadalavadaP. Simons-LinaresC.R. ChahalP. Drug-induced acute pancreatitis: Prevalence, causative agents, and outcomes.Pancreatology20202071281128610.1016/j.pan.2020.07.401 32878711
    [Google Scholar]
  10. Sánchez-AldehueloR. García García de ParedesA. Rojo LázaroD. Outcomes of drug-induced acute pancreatitis: A ten-year experience of an academic center.Rev. Esp. Enferm. Dig.20211134276279 33256421
    [Google Scholar]
  11. XiongG.F. LiD.W. ZhengM.B. LiuS.C. The effects of lycium barbarum polysaccharide (LBP) in a mouse model of cerulein-induced acute pancreatitis.Med. Sci. Monit.2019253880388610.12659/MSM.913820 31127077
    [Google Scholar]
  12. BarretoS.G. HabtezionA. GukovskayaA. Critical thresholds: Key to unlocking the door to the prevention and specific treatments for acute pancreatitis.Gut202170119420310.1136/gutjnl‑2020‑322163 32973069
    [Google Scholar]
  13. LeeP.J. PapachristouG.I. New insights into acute pancreatitis.Nat. Rev. Gastroenterol. Hepatol.201916847949610.1038/s41575‑019‑0158‑2 31138897
    [Google Scholar]
  14. ZhangQ. LiS. YuY. ZhuY. TongR. A mini-review of diagnostic and therapeutic nano-tools for pancreatitis.Int. J. Nanomedicine2022174367438110.2147/IJN.S385590 36160469
    [Google Scholar]
  15. SongY.D. LiuY.Y. LiD.J. Galangin ameliorates severe acute pancreatitis in mice by activating the nuclear factor E2-related factor 2/heme oxygenase 1 pathway.Biomed. Pharmacother.202114411229310.1016/j.biopha.2021.112293 34634559
    [Google Scholar]
  16. LuoY. LiZ. GeP. Comprehensive mechanism, novel markers and multidisciplinary treatment of severe acute pancreatitis-associated cardiac injury – A narrative review.J. Inflamm. Res.2021143145316910.2147/JIR.S310990 34285540
    [Google Scholar]
  17. SwentekL. ChungD. IchiiH. Antioxidant therapy in pancreatitis.Antioxidants202110565710.3390/antiox10050657 33922756
    [Google Scholar]
  18. ZhaoJ. GuoF. HouL. ZhaoY. SunP. Electron transfer-based antioxidant nanozymes: Emerging therapeutics for inflammatory diseases.J. Control. Release202335527329110.1016/j.jconrel.2023.01.068 36731800
    [Google Scholar]
  19. TusaN.V. AbueloA. LevyN.A. GandyJ.C. LangloisD.K. CridgeH. Peripheral biomarkers of oxidative stress in dogs with acute pancreatitis.J. Vet. Intern. Med.20223661958196510.1111/jvim.16535 36086902
    [Google Scholar]
  20. GaoL. ChongE. PendharkarS. The effects of NLRP3 inflammasome inhibition in experimental acute pancreatitis.Pancreas2022511132410.1097/MPA.0000000000001971 35195590
    [Google Scholar]
  21. ZhuTianHong ChenTianQi ZhaoWei BaoQinHai Effects of Yinchenhao Decoction on Severe Acute Pancreatitis-related Acute Liver injury and p62-keap1-Nrf2 signaling Pathway in RatsJ Emerg Tradit2019280711671170
    [Google Scholar]
  22. MachicadoJ.D. PapachristouG.I. Pharmacologic management and prevention of acute pancreatitis.Curr. Opin. Gastroenterol.201935546046710.1097/MOG.0000000000000563 31205053
    [Google Scholar]
  23. GubensekJ. The role of apheresis and insulin therapy in hypertriglyceridemic acute pancreatitis—a concise review.BMC Gastroenterol.202323134110.1186/s12876‑023‑02957‑3 37789261
    [Google Scholar]
  24. ChenW. YuanC. LuY. ZhuQ. MaX. XiaoW. Tanshinone IIA protects against acute pancreatitis in mice by inhibiting oxidative stress via the Nrf2/ROS pathway.Oxid. Med. Cell. Longev.202020205390482
    [Google Scholar]
  25. ChenJ. SuY. LinF. Effect of paraquat on cytotoxicity involved in oxidative stress and inflammatory reaction: A review of mechanisms and ecological implications.Ecotoxicol. Environ. Saf.202122411271110.1016/j.ecoenv.2021.112711 34455184
    [Google Scholar]
  26. WangY. LiA. MehmoodK. Long-term exposure to the fluoride blocks the development of chondrocytes in the ducks: The molecular mechanism of fluoride regulating autophagy and apoptosis.Ecotoxicol. Environ. Saf.202121711222510.1016/j.ecoenv.2021.112225 33864983
    [Google Scholar]
  27. ToyokuniS. KongY. ChengZ. Carcinogenesis as side effects of iron and oxygen utilization: From the unveiled truth toward ultimate bioengineering.Cancers20201211332010.3390/cancers12113320 33182727
    [Google Scholar]
  28. den ToomW.T.F. van SoestD.M.K. PoldermanP.E. Oxygen-consumption based quantification of chemogenetic H2O2 production in live human cells.Free Radic. Biol. Med.202320613414210.1016/j.freeradbiomed.2023.06.030 37392950
    [Google Scholar]
  29. ChangJ. WangY. WeiH. KongX. DongB. YueT. Development of a “double reaction” type-based fluorescent probe for the imaging of superoxide anion in living cells.Spectrochim. Acta A Mol. Biomol. Spectrosc.2023302123080
    [Google Scholar]
  30. BorgonoviS.M. IamettiS. Di NunzioM. Docosahexaenoic acid as master regulator of cellular antioxidant defenses: A systematic review.Antioxidants2023126128310.3390/antiox12061283 37372014
    [Google Scholar]
  31. AhnY.J. LimJ.W. KimH. Docosahexaenoic acid induces expression of nad(p)h: quinone oxidoreductase and heme oxygenase-1 through activation of Nrf2 in cerulein-stimulated pancreatic acinar cells.Antioxidants2020911108410.3390/antiox9111084 33158207
    [Google Scholar]
  32. TsaiT.H. SuY.F. TsaiC.Y. WuC.H. LeeK.T. HsuY.C. RTA dh404 induces cell cycle arrest, apoptosis, and autophagy in glioblastoma cells.Int. J. Mol. Sci.2023244400610.3390/ijms24044006 36835414
    [Google Scholar]
  33. XuL.L. ZhaoB. SunS.L. High-dose vitamin C alleviates pancreatic injury via the NRF2/NQO1/HO-1 pathway in a rat model of severe acute pancreatitis.Ann. Transl. Med.202081485210.21037/atm‑19‑4552 32793696
    [Google Scholar]
  34. KongL. DengJ. ZhouX. Sitagliptin activates the p62–Keap1–Nrf2 signalling pathway to alleviate oxidative stress and excessive autophagy in severe acute pancreatitis-related acute lung injury.Cell Death Dis.2021121092810.1038/s41419‑021‑04227‑0 34635643
    [Google Scholar]
  35. EbrahimnezhadN. NayebifarS. SoltaniZ. KhoramipourK. High-intensity interval training reduced oxidative stress and apoptosis in the hippocampus of male rats with type 2 diabetes: The role of the PGC1α-Keap1-Nrf2 signaling pathway.Iran. J. Basic Med. Sci.2023261113131319 37885999
    [Google Scholar]
  36. UshimotoC. SugikiS. KuniiK. Dynamic change and preventive role of stress response via Keap1-Nrf2 during renal crystal formation.Free Radic. Biol. Med.202320712013210.1016/j.freeradbiomed.2023.07.013 37451369
    [Google Scholar]
  37. BairdL. TaguchiK. ZhangA. A NRF2-induced secretory phenotype activates immune surveillance to remove irreparably damaged cells.Redox Biol.20236610284510.1016/j.redox.2023.102845 37597423
    [Google Scholar]
  38. Fuertes-AgudoM. Luque-TévarM. CucarellaC. Martín-SanzP. CasadoM. Advances in understanding the role of NRF2 in liver pathophysiology and its relationship with hepatic-specific cyclooxygenase-2 expression.Antioxidants2023128149110.3390/antiox12081491 37627486
    [Google Scholar]
  39. Palomino-AntolínA. Decouty-PérezC. Farré-AlinsV. Redox regulation of microglial inflammatory response: Fine control of NLRP3 inflammasome through Nrf2 and NOX4.Antioxidants2023129172910.3390/antiox12091729 37760032
    [Google Scholar]
  40. CaiC. MaH. PengJ. USP25 regulates KEAP1-NRF2 anti-oxidation axis and its inactivation protects acetaminophen-induced liver injury in male mice.Nat. Commun.2023141364810.1038/s41467‑023‑39412‑6 37339955
    [Google Scholar]
  41. FadoulG. IkonomovicM. ZhangF. YangT. The cell-specific roles of Nrf2 in acute and chronic phases of ischemic stroke.CNS Neurosci. Ther.2024303e14462 37715557
    [Google Scholar]
  42. WangZ. LiuJ. LiF. Mechanisms of qingyi decoction in severe acute pancreatitis-associated acute lung injury via gut microbiota: Targeting the short-chain fatty acids-mediated AMPK/] NF-κB/NLRP3 pathway.Microbiol. Spectr.2023114e03664e2210.1128/spectrum.03664‑22
    [Google Scholar]
  43. NevesR.P.P. CunhaA.V. FernandesP.A. RamosM.J. Towards the accurate thermodynamic characterization of enzyme reaction mechanisms.ChemPhysChem20222313e20220015910.1002/cphc.202200159 35499146
    [Google Scholar]
  44. DamascenoR.O.S. SoaresP.M.G. BarbosaA.L.R. NicolauL.A.D. MedeirosJ.V.R. SouzaM.H.L.P. Modulatory role of carbon monoxide on the inflammatory response and oxidative stress linked to gastrointestinal disorders.Antioxid. Redox Signal.2022371-39811410.1089/ars.2020.8223 34806398
    [Google Scholar]
  45. LiX-J. LiuT. WangY. Allicin ameliorates sepsis-induced acute kidney injury through Nrf2/HO-1 signaling pathway.J. Nat. Med.20247815367 37668824
    [Google Scholar]
  46. LiuY. WangX. XuX. QinW. SunB. Carbon monoxide releasing molecule 2 (CORM 2) liberated CO ameliorates acute pancreatitis.Mol. Med. Rep.20191965142515210.3892/mmr.2019.10173 31059081
    [Google Scholar]
  47. Puentes-PardoJ.D. Moreno-SanJuanS. CarazoÁ. LeónJ. Heme oxygenase-1 in gastrointestinal tract health and disease.Antioxidants2020912121410.3390/antiox9121214 33276470
    [Google Scholar]
  48. MaoX. MaoS. WangL. Single-cell transcriptomic analysis of the mouse pancreas: Characteristic features of pancreatic ductal cells in chronic pancreatitis.Genes2022136101510.3390/genes13061015 35741777
    [Google Scholar]
  49. YaoQ. JiangX. ZhaiY.Y. Protective effects and mechanisms of bilirubin nanomedicine against acute pancreatitis.J. Control. Release202032231232510.1016/j.jconrel.2020.03.034 32243974
    [Google Scholar]
  50. JiangX. ZhengY.W. BaoS. Drug discovery and formulation development for acute pancreatitis.Drug Deliv.20202711562158010.1080/10717544.2020.1840665 33118404
    [Google Scholar]
  51. GuoW. HuangD. LiS. Lycopene alleviates oxidative stress-induced cell injury in human vascular endothelial cells by encouraging the SIRT1/Nrf2/HO-1 pathway.Clin. Exp. Hypertens.2023451220505110.1080/10641963.2023.2205051 37120838
    [Google Scholar]
  52. HsiehCY JayakumarT LinKC Morin hydrate suppresses lipoteichoic acid-induced oxidative stress-mediated inflammatory events in macrophages via augmenting Nrf2/HO-1 and antioxidant defense molecules.Eur J Inflamm2023211721727X23119941410.1177/1721727X231199414
    [Google Scholar]
  53. ZhangF. LiuY. DongX. Shenmai injection upregulates heme oxygenase-1 to confer protection against severe acute pancreatitis.J. Surg. Res.202025629530210.1016/j.jss.2020.06.035 32712444
    [Google Scholar]
  54. BatranR.Z. AhmedE.Y. AwadH.M. AliK.A. Abdel LatifN.A. EGFR and PI3K/m-TOR inhibitors: Design, microwave assisted synthesis and anticancer activity of thiazole–coumarin hybrids.RSC Advances20231342290702908510.1039/D3RA03483F 37800132
    [Google Scholar]
  55. DeBlasiJ.M. FalzoneA. CaldwellS. Distinct Nrf2 signaling thresholds mediate lung tumor initiation and progression.Cancer Res.202383121953196710.1158/0008‑5472.CAN‑22‑3848 37062029
    [Google Scholar]
  56. ArabH.H. Al-ShorbagyM.Y. SaadM.A. Activation of autophagy and suppression of apoptosis by dapagliflozin attenuates experimental inflammatory bowel disease in rats: Targeting AMPK/] mTOR, HMGB1/RAGE and Nrf2/HO-1 pathways.Chem. Biol. Interact.202133510936810.1016/j.cbi.2021.109368 33412153
    [Google Scholar]
  57. DodsonM. de la VegaM.R. CholaniansA.B. SchmidlinC.J. ChapmanE. ZhangD.D. Modulating NRF2 in disease: Timing is everything.Annu. Rev. Pharmacol. Toxicol.201959555575
    [Google Scholar]
  58. HuY. YangW. Paeoniflorin can improve acute lung injury caused by severe acute pancreatitis through Nrf2/ARE pathway.Comput. Math. Methods Med.202220225712219
    [Google Scholar]
  59. LiY. WangK. ZhuX. Ginkgo biloba extracts protect human retinal Müller glial cells from t -BHP induced oxidative damage by activating the AMPK-Nrf2-NQO-1 axis.J. Pharm. Pharmacol.202375338539610.1093/jpp/rgac095 36583518
    [Google Scholar]
  60. Guzel TanogluE. TanogluA. GuvenB.B. mir‐221, mir‐190b, mir‐363‐3p, mir‐200c are involved in rat liver ischaemia‐reperfusion injury through oxidative stress, apoptosis and endoplasmic reticulum stress.Int. J. Clin. Pract.20217511e1484810.1111/ijcp.14848 34519137
    [Google Scholar]
  61. XiaQ. LiY. XuW. Enhanced liquidity of p62 droplets mediated by Smurf1 links Nrf2 activation and autophagy.Cell Biosci.20231313710.1186/s13578‑023‑00978‑9 36810259
    [Google Scholar]
  62. ZhuD. XiaY. LiS. Iso-seco-tanapartholide activates Nrf2 signaling pathway through Keap1 modification and oligomerization to exert anti-inflammatory effects.Free Radic. Biol. Med.202217839841210.1016/j.freeradbiomed.2021.12.259 34923099
    [Google Scholar]
  63. ZhangH. ZengJ. LiJ. Sivelestat sodium attenuates acute lung injury by inhibiting JNK/NF-κB and activating Nrf2/HO-1 signaling pathways.Biomolecules and Biomedicine202323345747010.17305/bb.2022.8549 36724020
    [Google Scholar]
  64. OeckinghausA. HaydenM.S. GhoshS. Crosstalk in NF-κB signaling pathways.Nat. Immunol.201112869570810.1038/ni.2065 21772278
    [Google Scholar]
  65. WuX-l. Paeoniflorin inhibits pancreatitis-induced oxidative stress and endoplasmic reticulum stress through NF-κB/MAPK pathway.J. Biol. Regul. Homeost. Agents202337420432054
    [Google Scholar]
  66. YinH. ZhangZ. ZhangD. A new method for treating chronic pancreatitis and preventing fibrosis using bioactive calcium silicate ion solution.J. Mater. Chem. B Mater. Biol. Med.202311389163917810.1039/D3TB01287E 37642526
    [Google Scholar]
  67. CaiJ. YaoS. WangH. RongW. Kaempferol protects rats with severe acute pancreatitis through regulating NF-κB and Keap1–Nrf2 signaling pathway.Ital. J. Food Sci.2021333253210.15586/ijfs.v33i3.2100
    [Google Scholar]
  68. ZhouX. WangW. WangC. ZhengC. XuX. NiX. DPP4 inhibitor attenuates severe acute pancreatitis-associated intestinal inflammation via Nrf2 signaling.Oxid. Med. Cell. Longev.20192019618175410.1155/2019/6181754
    [Google Scholar]
  69. YiW. LanH. WenY. Retracted: HO‐1 overexpression alleviates senescence by inducing autophagy via the mitochondrial route in human nucleus pulposus cells.J. Cell. Physiol.2020235118402841510.1002/jcp.29684 32239675
    [Google Scholar]
  70. ReuterS. GuptaS.C. ChaturvediM.M. AggarwalB.B. Oxidative stress, inflammation, and cancer: How are they linked?Free Radic. Biol. Med.201049111603161610.1016/j.freeradbiomed.2010.09.006 20840865
    [Google Scholar]
  71. ZhouZ. ChenY. DongW. AnR. LiangK. WangX. Da cheng qi decoction alleviates cerulein-stimulated AR42J pancreatic acinar cell injury via the JAK2/STAT3 signaling pathway.Evid. Based Complement. Alternat. Med.202120216657036
    [Google Scholar]
  72. LiC. CuiL. ZhangL. Saikosaponin D attenuates pancreatic injury through suppressing the apoptosis of acinar cell via modulation of the MAPK signaling pathway.Front. Pharmacol.20211273507910.3389/fphar.2021.735079 34744719
    [Google Scholar]
  73. ZhuX. GuoS. ZhangM. BaiX. Emodin protects against apoptosis and inflammation by regulating reactive oxygen species-mediated NF-κB signaling in interleukin-1 β-stimulated human nucleus pulposus cells.Hum. Exp. Toxicol.20234210.1177/09603271221138552
    [Google Scholar]
  74. GhanyL.M.A.A. BeshayB.Y. Youssef MoustafaA.M. Design, synthesis, anti-inflammatory evaluation, and molecular modelling of new coumarin-based analogs combined curcumin and other heterocycles as potential TNF-α production inhibitors via upregulating Nrf2/HO-1, downregulating AKT/mTOR signalling pathways and downregulating NF-κB in LPS induced macrophages.J. Enzyme Inhib. Med. Chem.2023381224355110.1080/14756366.2023.2243551 37558232
    [Google Scholar]
  75. HuangL. LuS. BianM. Punicalagin attenuates TNF-α-induced oxidative damage and promotes osteogenic differentiation of bone mesenchymal stem cells by activating the Nrf2/HO-1 pathway.Exp. Cell Res.2023430111371710.1016/j.yexcr.2023.113717 37429372
    [Google Scholar]
  76. LiX. QinH. AnwarA. Molecular mechanism analysis of m6A modification-related lncRNA-miRNA-mRNA network in regulating autophagy in acute pancreatitis.Islets202214118419910.1080/19382014.2022.2132099 36218109
    [Google Scholar]
  77. KongL. ZhangH. LuC. AICAR, an AMP-activated protein kinase activator, ameliorates acute pancreatitis-associated liver injury partially through Nrf2-mediated antioxidant effects and inhibition of NLRP3 inflammasome activation.Front. Pharmacol.20211272451410.3389/fphar.2021.724514 34531748
    [Google Scholar]
  78. HurY. HuynhJ. LeongE. The differing effects of a dual acting regulator on SIRT1.Front. Mol. Biosci.202310126048910.3389/fmolb.2023.1260489 37711385
    [Google Scholar]
  79. ChenH.H. ZhangY.X. LvJ.L. Role of sirtuins in metabolic disease-related renal injury.Biomed. Pharmacother.202316111441710.1016/j.biopha.2023.114417 36812714
    [Google Scholar]
  80. AbdelmageedN. TwafikW.A.A. MoradO.A.R. Vinpocetine protects against chloroquine-induced cardiotoxicity by mitigating oxidative stress.Arch. Toxicol.202397102763277010.1007/s00204‑023‑03546‑9 37401952
    [Google Scholar]
  81. AnsariM.A. IqubalA. EkbbalR. HaqueS.E. Effects of nimodipine, vinpocetine and their combination on isoproterenol-induced myocardial infarction in rats.Biomed. Pharmacother.20191091372138010.1016/j.biopha.2018.10.199 30551388
    [Google Scholar]
  82. AbdelzaherW.Y. AhmedS.M. WelsonN.N. MarraikiN. BatihaG.E.S. KamelM.Y. Retracted: Vinpocetine ameliorates L-arginine induced acute pancreatitis via Sirt1/Nrf2/TNF pathway and inhibition of oxidative stress, inflammation, and apoptosis.Biomed. Pharmacother.202113311097610.1016/j.biopha.2020.110976 33202281
    [Google Scholar]
  83. SahaS. ButtariB. PanieriE. ProfumoE. SasoL. An overview of Nrf2 signaling pathway and its role in inflammation.Molecules20202522547410.3390/molecules25225474 33238435
    [Google Scholar]
  84. ChenZ. ZhongH. WeiJ. Inhibition of Nrf2/HO-1 signaling leads to increased activation of the NLRP3 inflammasome in osteoarthritis.Arthritis Res. Ther.201921130010.1186/s13075‑019‑2085‑6 31870428
    [Google Scholar]
  85. LiL.Y. LiuQ. LeC.Y. ZhangH.C. LiuW.F. GuY. Toll-like receptor 2 deficiency alleviates acute pancreatitis by inactivating the NF-xB/NLRP3 pathway.Int. Immunopharmacol.2023121
    [Google Scholar]
  86. ChenP. ZhaoL.J. HuangL. Nafamostat mesilate prevented caerulein-induced pancreatic injury by targeting HDAC6-mediated NLRP3 inflammasome activation.Inflamm. Res.20237291919193210.1007/s00011‑023‑01794‑0 37725105
    [Google Scholar]
  87. GaoZ. SuiJ. FanR. QuW. DongX. SunD. Emodin protects against acute pancreatitis-associated lung injury by inhibiting NLPR3 inflammasome activation via Nrf2/HO-1 signaling.Drug Des. Devel. Ther.2020141971198210.2147/DDDT.S247103 32546964
    [Google Scholar]
  88. QiangR. LiY. DaiX. LvW. NLRP3 inflammasome in digestive diseases: From mechanism to therapy.Front. Immunol.20221397819010.3389/fimmu.2022.978190 36389791
    [Google Scholar]
  89. SwansonK.V. DengM. TingJ.P.Y. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics.Nat. Rev. Immunol.201919847748910.1038/s41577‑019‑0165‑0 31036962
    [Google Scholar]
  90. LamichhaneP.P. SamirP. Cellular stress: Modulator of regulated cell death.Biology2023129117210.3390/biology12091172 37759572
    [Google Scholar]
  91. ShiW. LiuT. YangH. Isomaculosidine facilitates NLRP3 inflammasome activation by promoting mitochondrial reactive oxygen species production and causes idiosyncratic liver injury.J. Ethnopharmacol.2024319Pt 111706310.1016/j.jep.2023.117063 37598766
    [Google Scholar]
  92. XieD. GuoH. LiM. Splenic monocytes mediate inflammatory response and exacerbate myocardial ischemia/reperfusion injury in a mitochondrial cell-free DNA-TLR9-NLRP3-dependent fashion.Basic Res. Cardiol.202311814410.1007/s00395‑023‑01014‑0 37814087
    [Google Scholar]
  93. ChenM. YuS. GaoY. TRAF6-TAK1-IKKβ pathway mediates TLR2 agonists activating “one-step” NLRP3 inflammasome in human monocytes.Cytokine202316915630210.1016/j.cyto.2023.156302
    [Google Scholar]
  94. XuY. BibyS. KaurB. ZhangS. A patent review of NLRP3 inhibitors to treat autoimmune diseases.Expert Opin. Ther. Pat.202333645547010.1080/13543776.2023.2239502 37470439
    [Google Scholar]
  95. DixonS.J. LembergK.M. LamprechtM.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  96. JinS.K. LiuP.S. ZhengD.H. XieX. The interplay of miRNAs and ferroptosis in diseases related to iron overload.Apoptosis2023291-24565 37758940
    [Google Scholar]
  97. MalekzadehR. MortezazadehT. AbdulsahibW.K. Nanoarchitecture-based photothermal ablation of cancer: A systematic review.Environ. Res.2023236Pt 111652610.1016/j.envres.2023.116526 37487920
    [Google Scholar]
  98. LiangC. ZhangX. YangM. DongX. Recent progress in ferroptosis inducers for cancer therapy.Adv. Mater.20193151190419710.1002/adma.201904197 31595562
    [Google Scholar]
  99. BersukerK. HendricksJ.M. LiZ. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis.Nature2019575778468869210.1038/s41586‑019‑1705‑2 31634900
    [Google Scholar]
  100. EvansJ.A. MendoncaP. SolimanK.F.A. Involvement of Nrf2 activation and NF-kB pathway inhibition in the antioxidant and anti-inflammatory effects of hesperetin in activated BV-2 microglial cells.Brain Sci.2023138114410.3390/brainsci13081144 37626501
    [Google Scholar]
  101. LeeJ. RohJ.L. Targeting Nrf2 for ferroptosis-based therapy: Implications for overcoming ferroptosis evasion and therapy resistance in cancer.Biochim. Biophys. Acta Mol. Basis Dis.20231869716678810.1016/j.bbadis.2023.166788 37302427
    [Google Scholar]
  102. Cubas-GaonaL.L. de FranciscoP. Martín-GonzálezA. GutiérrezJ.C. Tetrahymena glutathione peroxidase family: A comparative analysis of these antioxidant enzymes and differential gene expression to metals and oxidizing agents.Microorganisms202087100810.3390/microorganisms8071008 32635666
    [Google Scholar]
  103. LiuY. WanY. JiangY. ZhangL. ChengW. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment.Biochim. Biophys. Acta Rev. Cancer20231878318889010.1016/j.bbcan.2023.188890 37001616
    [Google Scholar]
  104. ForcinaG.C. DixonS.J. GPX4 at the crossroads of lipid homeostasis and ferroptosis.Proteomics20191918180031110.1002/pmic.201800311 30888116
    [Google Scholar]
  105. LiY. LiM. FengS. Ferroptosis and endoplasmic reticulum stress in ischemic stroke.Neural Regen. Res.202419361161810.4103/1673‑5374.380870 37721292
    [Google Scholar]
  106. DarN.J. JohnU. BanoN. KhanS. BhatS.A. Oxytosis/ferroptosis in neurodegeneration: The underlying role of master regulator glutathione peroxidase 4 (GPX4).Mol. Neurobiol.202361315071526 37725216
    [Google Scholar]
  107. LiangB. WuY. Hsa-miR-26a-5p improves OSCC sensitivity to ferroptosis by inhibiting SLC7A11.Arch. Oral Biol.202315610580710.1016/j.archoralbio.2023.105807 37776596
    [Google Scholar]
  108. LiJ. ZhangS. ZhouR. ZhangJ. LiZ.F. Perspectives of traditional Chinese medicine in pancreas protection for acute pancreatitis.World J. Gastroenterol.201723203615362310.3748/wjg.v23.i20.3615 28611514
    [Google Scholar]
  109. TangY. SunM. LiuZ. Phytochemicals with protective effects against acute pancreatitis: A review of recent literature.Pharm. Biol.202260147949010.1080/13880209.2022.2039723 35180016
    [Google Scholar]
  110. JungK.H. HongS.W. ZhengH.M. Melatonin ameliorates cerulein‐induced pancreatitis by the modulation of nuclear erythroid 2‐related factor 2 and nuclear factor‐kappaB in rats.J. Pineal Res.201048323925010.1111/j.1600‑079X.2010.00748.x 20210857
    [Google Scholar]
  111. MaJ.A. LiuX.M. DengJ.F. LiuJ. Protective effect of geniposide against myocardial ischemia reperfusion injuries and itsrelationship with Pl3K/Akt signaling pathway in rats.Int. J. Clin. Exp. Med.2018172021522155
    [Google Scholar]
  112. WangD. LiuJ. ZhangX.Y. LiuP. PengH.M. Geniposide alleviates liver injuries in rats with severe pancreatitis through the Nrf2/Keap1/ARE pathway.J Changchun Univ Chin Med20223806631635
    [Google Scholar]
  113. ZhangY.G. ZhangS.J. BianT.T. SiX.L. NiuJ.T. XinE.D. New progress in pharmacological action of paeoniflorin.Chin. Tradit. Herbal Drugs2019501537353740
    [Google Scholar]
  114. LiuYuan LiuLongZhong XuYaSha XieX.ueli LiLiSheng XuShangFu Effects of OingYi II on Nrf2 sianaling pathway in cerulein-induced acute pancreatitis mice.J Zunyi Med Univ201740013337
    [Google Scholar]
  115. YangX. YaoL. YuanM. Transcriptomics and network pharmacology reveal the protective effect of chaiqin chengqi decoction on obesity-related alcohol-induced acute pancreatitis via oxidative stress and PI3K/Akt signaling pathway.Front. Pharmacol.20221389652310.3389/fphar.2022.896523 35754467
    [Google Scholar]
  116. DuD. YaoL. ZhangR. Protective effects of flavonoids from Coreopsis tinctoria Nutt. on experimental acute pancreatitis via Nrf-2/ARE-mediated antioxidant pathways.J. Ethnopharmacol.201822426127210.1016/j.jep.2018.06.003 29870787
    [Google Scholar]
  117. LiZ. JiangH. JiangX. ZhangL. QinY. Integrated physiological, transcriptomic, and metabolomic analyses reveal that low-nitrogen conditions improve the accumulation of flavonoids in snow chrysanthemum.Ind. Crops Prod.202319711657410.1016/j.indcrop.2023.116574
    [Google Scholar]
  118. YaoL.B. XiaQ. DuD. Protective effect of a dihydroflavonol glycoside from Coreopsis tinctoria Nutt. in mouse model of alcoholic acute pancreatitis.Sichuan Da Xue Xue Bao Yi Xue Ban2019504533539[Medical Edition] 31642231
    [Google Scholar]
  119. LiJ HanJ LvJ WangS QuL JiangY. Saikosaponin A-induced gut microbiota changes attenuate severe acute pancreatitis through the activation of Keap1/Nrf2-are antioxidant signalingOxid Med Cell Longev20202020921721910.1155/2020/9217219 33204401
    [Google Scholar]
  120. SongohoutouE.E. DanielL. NougaA.B. PaléW.Y. OwonoL.C. KenfackC.A. Monitoring the thermal oxidation of local edible oils by fluorescence spectroscopy technique coupled to chemometric methods.Food Anal. Methods20231681422143610.1007/s12161‑023‑02491‑8
    [Google Scholar]
  121. LeriM. ScutoM. OntarioM.L. Healthy effects of plant polyphenols: Molecular mechanisms.Int. J. Mol. Sci.2020214125010.3390/ijms21041250 32070025
    [Google Scholar]
  122. FuscoR. CordaroM. SiracusaR. Biochemical evaluation of the antioxidant effects of hydroxytyrosol on pancreatitis-associated gut injury.Antioxidants20209978110.3390/antiox9090781 32842687
    [Google Scholar]
  123. LiuX ZhuQ ZhangM YinT XuR XiaoW Isoliquiritigenin ameliorates acute pancreatitis in mice via inhibition of oxidative stress and modulation of the Nrf2/HO-1 pathway.OXID MED CELL LONGEV20182018
    [Google Scholar]
  124. Yuan HsiehD. IslamM.N. KuoW.W. A combination of isoliquiritigenin with Artemisia argyi and Ohwia caudata water extracts attenuates oxidative stress, inflammation, and apoptosis by modulating Nrf2/Ho-1 signaling pathways in SD rats with doxorubicin-induced acute cardiotoxicity.Environ. Toxicol.202338123026304210.1002/tox.23936 37661764
    [Google Scholar]
  125. ChenX. CaiX. LeR. Isoliquiritigenin protects against sepsis-induced lung and liver injury by reducing inflammatory responses.Biochem. Biophys. Res. Commun.2018496224525210.1016/j.bbrc.2017.11.159 29180018
    [Google Scholar]
  126. ZhaoT.T. XuY.Q. HuH.M. GongH.B. ZhuH.L. Isoliquiritigenin (ISL) and its formulations: Potential antitumor agents.Curr. Med. Chem.201926376786679610.2174/0929867325666181112091700 30417769
    [Google Scholar]
  127. ZhangM. WuY.Q. XieL. Isoliquiritigenin protects against pancreatic injury and intestinal dysfunction after severe acute pancreatitis via Nrf2 signaling.Front. Pharmacol.2018993610.3389/fphar.2018.00936 30174606
    [Google Scholar]
  128. YuanC.C. ZhuQ.T. ShenQ.H. Isoliquiritigenin ameliorates doxorubicin-induced acute pancreatitis by inhibiting ROS production via modulation of Nrf2/HO-1 oxidative stress pathway.World Chin. J. Digestology202129628229010.11569/wcjd.v29.i6.282
    [Google Scholar]
  129. ZhengM. HeX.L. YinY. LanY.H. WangJ.H. SunH.Y. Mechanism of isoliguiritigenin underlying severe acute pancreatitis-induced myocardial injury in mice. Chin J Geriatr Heart.Brain Vessel Dis20192102177180
    [Google Scholar]
  130. ZhouH-C. DuR. WangH. Advance in studies on pharmacokinetics of baicalin.Zhongguo Zhongyao Zazhi2018434684688 29600641
    [Google Scholar]
  131. WangXin ZhouWenYong SunYue Study on the effect of astragalus saponins on oxidative damage of L-arginine induced acute pancreatitis in mice by activating Nrf2/HO-1 signaling pathway.202236033842
    [Google Scholar]
  132. ZhangP. LiY.F. WuS.Z. JinS.Q. WangJ.Q. ПaвлoвнaK.И. Effects of paeonol on the oxidative damage of acute pancreatitis in mice induced by L.arginine.J VET ZOOTECH SIN2021520719831990
    [Google Scholar]
  133. LiY PanY GaoL ZhangJ XieX TongZ Naringenin protects against acute pancreatitis in two experimental models in mice by NLRP3 and Nrf2/HO-1 pathways.Mediators Inflamm20182018
    [Google Scholar]
  134. NisarA. JagtapS. VyavahareS. Phytochemicals in the treatment of inflammation-associated diseases: The journey from preclinical trials to clinical practice.Front. Pharmacol.202314117705010.3389/fphar.2023.1177050 37229273
    [Google Scholar]
  135. RongY. RenJ. SongW. XiangR. GeY. LuW. Resveratrol suppresses severe acute pancreatitis-induced microcirculation disturbance through targeting SIRT1-FOXO1 axis.Oxid. Med. Cell. Longev.20212021889154410.1155/2021/8891544
    [Google Scholar]
  136. HuS. ZhuY. XiaX. XuX. ChenF. MiaoX. Ginsenoside Rg3 prolongs survival of the orthotopic hepatocellular carcinoma model by inducing apoptosis and inhibiting angiogenesis.Anal. Cell. Pathol.20192019381578610.1155/2019/3815786
    [Google Scholar]
  137. ZouJ. SuH. ZouC. LiangX. FeiZ. Ginsenoside Rg3 suppresses the growth of gemcitabine‐resistant pancreatic cancer cells by upregulating lncRNA‐CASC2 and activating PTEN signaling.J. Biochem. Mol. Toxicol.2020346e2248010.1002/jbt.22480 32104955
    [Google Scholar]
  138. XuJ. FanX. ZhuM. Ginsenoside Rg3 protects mouse islet β-cells injured by high glucose.Indian J. Microbiol.202363217318010.1007/s12088‑023‑01065‑w 37325021
    [Google Scholar]
  139. ShanY. LiJ. ZhuA. KongW. YingR. ZhuW. Ginsenoside Rg3 ameliorates acute pancreatitis by activating the NRF2/HO-1-mediated ferroptosis pathway.Int. J. Mol. Med.20225018910.3892/ijmm.2022.5144 35582998
    [Google Scholar]
  140. ChangJ.S. LeeY.J. WilkieD.A. LinC.T. The Neuroprotective and antioxidative effects of submicron and blended Lycium barbarum in experimental retinal degeneration in rats.J. Vet. Med. Sci.20188071108111510.1292/jvms.17‑0623 29760314
    [Google Scholar]
  141. LiG. WangF. FangJ. ZhaH. ZhaoQ. Risk factors for post-endoscopic retrograde cholangiopancreatography pancreatitis: Evidence from 1786 cases.Med. Sci. Monit.2018248544855210.12659/MSM.913314 30475792
    [Google Scholar]
  142. WangJ. ShenY. ZhongZ. WuS. ZhengL. Risk factors for post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis and the effect of octreotide combined with nonsteroidal anti-inflammatory drugs on preventing its occurrence.Med. Sci. Monit.2018248964896910.12659/MSM.911914 30531679
    [Google Scholar]
  143. YaoJ.Q. ZhuL. MiaoY.F. Optimal dosing time of Dachengqi decoction for protection of extrapancreatic organs in rats with experimental acute pancreatitis.World J. Gastroenterol.202026223056307510.3748/wjg.v26.i22.3056 32587448
    [Google Scholar]
  144. YangC. WangT. ChenJ. Traditional Chinese Medicine formulas alleviate acute pancreatitis.Pancreas202150101348135610.1097/MPA.0000000000001931 35041332
    [Google Scholar]
  145. RenX.Y. GongH.L. TangW-F. WanM.H. ZhaoJ.L. HuangX. Dachengqi decoction induces pancreatic acinar cell apoptosis in experimental acute pancreatitis in rats.J. Chin. Integr. Med.20097765165610.3736/jcim20090709 19615319
    [Google Scholar]
  146. WangJ. ZouY. ChangD. HongD.Q. ZhangJ. Protective effect of Dachengqi decoction on the pancreatic microcirculatory system in severe acute pancreatitis by down-regulating HMGB-TLR-4-IL-23-IL-17A mediated neutrophil activation by targeting SIRT1.Gland Surg.202110103030304410.21037/gs‑21‑655 34804889
    [Google Scholar]
  147. YaoJ. MiaoY. ZhangY. Dao-chi powder ameliorates pancreatitis-induced intestinal and cardiac injuries via regulating the Nrf2-HO-1-HMGB1 signaling pathway in rats.Front. Pharmacol.20221392213010.3389/fphar.2022.922130 35899121
    [Google Scholar]
  148. ZhouZ. ChoiJ.W. ShinJ.Y. Betulinic acid ameliorates the severity of acute pancreatitis via inhibition of the NF-κB signaling pathway in mice.Int. J. Mol. Sci.20212213687110.3390/ijms22136871
    [Google Scholar]
  149. FuX. ZhongX. ChenX. YangD. ZhouZ. LiuY. GSK-3β activates NF-κB to aggravate caerulein-induced early acute pancreatitis in mice.Ann. Transl. Med.2021922169510.21037/atm‑21‑5701 34988204
    [Google Scholar]
  150. GaoW. GuoL. YangY. Dissecting the crosstalk between Nrf2 and NF-κB response pathways in drug-induced toxicity.Front. Cell Dev. Biol.2022980995210.3389/fcell.2021.809952
    [Google Scholar]
  151. ÖzkanE. AkyüzC. DulunduE. Protective effects of lycopene on cerulein-induced experimental acute pancreatitis in rats.J. Surg. Res.2012176123223810.1016/j.jss.2011.09.005 22079843
    [Google Scholar]
  152. SuC. MengW. LiuZ. ZhangW. ChenG. ZhaoX. Protective effects of panaxadiolsaponins on liver and kidney injury in rats with severe acute pancreatitis.Int. J. Clin. Exp. Med.2016971281112817
    [Google Scholar]
  153. RenJ. FuL. NileS.H. ZhangJ. KaiG. Salvia miltiorrhiza in treating cardiovascular diseases: A review on its pharmacological and clinical applications.Front. Pharmacol.20191075310.3389/fphar.2019.00753 31338034
    [Google Scholar]
  154. ShiM-J. DongB-S. YangW-N. SuS-B. ZhangH. Preventive and therapeutic role of Tanshinone IIA in hepatology.Biomed. Pharmacother.2019112
    [Google Scholar]
  155. XuZ. ChenL. XiaoZ. Potentiation of the anticancer effect of doxorubicinin drug-resistant gastric cancer cells by tanshinone IIA.Phytomedicine201851586710.1016/j.phymed.2018.05.012 30466628
    [Google Scholar]
  156. PengG. ZhangX.Y. Effects of Salvia miltiorrhiza on serum levels of inflammatory cytokines in patients with severe acute pancreatitis.J. Chin. Integr. Med.200751283110.3736/jcim20070106 17214932
    [Google Scholar]
  157. LiuM-d. ShenY-h. Effect of tanshinone II A on cytokines of rats with severe acute pancreatitis lung injury.Chin. J. Integr. Med.2015351113611366
    [Google Scholar]
  158. XiaoZ. LiuW. MuY. Pharmacological effects of salvianolic acid B against oxidative damage.Front. Pharmacol.20201157237310.3389/fphar.2020.572373 33343348
    [Google Scholar]
  159. LiuT. LiuS. YuX. SongN. XuX. HuJ. Salvianolic acid B prevents iodinated contrast media-induced acute renal injury in rats via the PI3K/Akt/Nrf2 pathway.Oxid. Med. Cell. Longev.201620167079487
    [Google Scholar]
  160. ZhangS. ShiY. TangL. Evaluation of brain targeting in rats of Salvianolic acid B nasal delivery by the microdialysis technique.Xenobiotica201848885185910.1080/00498254.2017.1373207 29027831
    [Google Scholar]
  161. ZhaoD.H. WuY.J. LiuS.T. LiuR.Y. Salvianolic acid B attenuates lipopolysaccharide-induced acute lung injury in rats through inhibition of apoptosis, oxidative stress and inflammation.Exp. Ther. Med.201714175976410.3892/etm.2017.4534 28672996
    [Google Scholar]
  162. LingW.C. LiuJ. LauC.W. MuruganD.D. MustafaM.R. HuangY. Treatment with salvianolic acid B restores endothelial function in angiotensin II-induced hypertensive mice.Biochem. Pharmacol.2017136768510.1016/j.bcp.2017.04.007 28396195
    [Google Scholar]
  163. WangR. YuX.Y. GuoZ.Y. WangY.J. WuY. YuanY.F. Inhibitory effects of salvianolic acid B on CCl4-induced hepatic fibrosis through regulating NF-κB/IκBα signaling.J. Ethnopharmacol.2012144359259810.1016/j.jep.2012.09.048 23041223
    [Google Scholar]
  164. WangY. ChenG. YuX. Salvianolic acid B ameliorates cerebral ischemia/reperfusion injury through inhibiting TLR4/] MyD88 signaling pathway.Inflammation20163941503151310.1007/s10753‑016‑0384‑5 27255374
    [Google Scholar]
  165. RenZ. LiH. ZhangM. A novel derivative of the natural product danshensu suppresses inflammatory responses to alleviate caerulein-induced acute pancreatitis.Front. Immunol.20189251310.3389/fimmu.2018.02513 30425719
    [Google Scholar]
  166. MalkawiA.K. AlzoubiK.H. JacobM. Metabolomics based profiling of dexamethasone side effects in rats.Front. Pharmacol.201894610.3389/fphar.2018.00046 29503615
    [Google Scholar]
  167. AlamW. KhanH. ShahM.A. CauliO. SasoL. Kaempferol as a dietary anti-inflammatory agent: Current therapeutic standing.Molecules20202518407310.3390/molecules25184073 32906577
    [Google Scholar]
  168. KimS.H. ParkJ.G. SungG.H. Kaempferol, a dietary flavonoid, ameliorates acute inflammatory and nociceptive symptoms in gastritis, pancreatitis, and abdominal pain.Mol. Nutr. Food Res.20155971400140510.1002/mnfr.201400820 25917334
    [Google Scholar]
  169. PasariL.P. KhuranaA. AnchiP. Aslam SaifiM. AnnaldasS. GoduguC. Visnagin attenuates acute pancreatitis via Nrf2/NFκB pathway and abrogates associated multiple organ dysfunction.Biomed. Pharmacother.201911210862910.1016/j.biopha.2019.108629 30798137
    [Google Scholar]
  170. YangJ. TangX. KeX. DaiY. ShiJ. Triptolide suppresses nf-κb-mediated inflammatory responses and activates expression of Nrf2-mediated antioxidant genes to alleviate caerulein-induced acute pancreatitis.Int. J. Mol. Sci.2022233125210.3390/ijms23031252
    [Google Scholar]
  171. YangY. DingZ. WangY. Systems pharmacology reveals the mechanism of activity of Physalis alkekengi L. var. franchetii against lipopolysaccharide‐induced acute lung injury.J. Cell. Mol. Med.20202495039505610.1111/jcmm.15126 32220053
    [Google Scholar]
  172. DongZ. ShangH. ChenY.Q. PanL-L. BhatiaM. SunJ. Sulforaphane protects pancreatic acinar cell injury by modulating nrf2-mediated oxidative stress and NLRP3 inflammatory pathway.Oxid. Med. Cell. Longev.20162016786415010.1155/2016/7864150
    [Google Scholar]
  173. CordaroM. FuscoR. D’AmicoR. Cashew (Anacardium occidentale L.) nuts modulate the Nrf2 and NLRP3 pathways in pancreas and lung after induction of acute pancreatitis by cerulein.Antioxidants202091099210.3390/antiox9100992 33066525
    [Google Scholar]
  174. WangY. BuC. WuK. WangR. WangJ. Curcumin protects the pancreas from acute pancreatitis via the mitogen activated protein kinase signaling pathway.Mol. Med. Rep.20192043027303410.3892/mmr.2019.10547 31432122
    [Google Scholar]
  175. NiuW. GuoL.Y. Therapeutic efficacy of rheum palmatum and salvia miltiorrhiza on patients with severe acute pancreatitis.China Pharmacy2013241918011803
    [Google Scholar]
  176. LiZ.L. ZhangD. LiuJ.W. WangH. Effects of emodin on the expression of hypoxia inducible factor-1a protein in rats with severeacute pancreatitis-associated renal lnjury.West Chin Med J20153004640644
    [Google Scholar]
  177. JinY. LiuL. ChenB. BaiY. ZhangF. LiQ. Involvement of the PI3K/Akt/NF-κB signaling pathway in the attenuation of severe acute pancreatitis-associated acute lung injury by Sedum sarmentosum bunge extract.BioMed Res. Int.201720179698410
    [Google Scholar]
  178. LiH.Y. ZhaoS.G. ZhaoB.M. WangX.X. TangH. FengG.H. Effects of baicalin on TNF-a,lL-6 and lL-10 in rats with severe acute pancreatitis.Xinan Goufang Yiyao200919012629
    [Google Scholar]
  179. LiD. ZhengG.M. Study on protective effect of baicalin on renal lnjury in rats with severe acute pancreatitis.Zhonghua Zhongyiyao Xuekan2015331024762478
    [Google Scholar]
  180. LiH.Y. ZhangC. ZhangS. XuH. LiuJ. LiF. Effects of emodin combined with baicalin on Akt/Nrf2 pathway in acute pancreatitis model rats.China Pharmacy2018291317541759
    [Google Scholar]
  181. YuanX. ZhengJ. JiaoS. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production.Carbohydr. Polym.2019220607010.1016/j.carbpol.2019.05.050 31196551
    [Google Scholar]
  182. JunyuanZ. HuiX. ChunlanH. Quercetin protects against intestinal barrier disruption and inflammation in acute necrotizing pancreatitis through TLR4/MyD88/p38 MAPK and ERS inhibition.Pancreatology201818774275210.1016/j.pan.2018.08.001 30115563
    [Google Scholar]
  183. TaoW. SunW. LiuL. Chitosan oligosaccharide attenuates nonalcoholic fatty liver disease induced by high fat diet through reducing lipid accumulation, inflammation and oxidative stress in C57BL/6 mice.Mar. Drugs2019171164510.3390/md17110645 31744059
    [Google Scholar]
  184. MeiQ. HuJ. HuangZ. Pretreatment with chitosan oligosaccharides attenuate experimental severe acute pancreatitis via inhibiting oxidative stress and modulating intestinal homeostasis.Acta Pharmacol. Sin.202142694295310.1038/s41401‑020‑00581‑5 33495520
    [Google Scholar]
  185. MeiQX DengGY HuangZH YinY LiCL HuJH Porous COS@SiO2 nanocomposites ameliorate severe acute pancreatitis and associated lung injury by regulating the Nrf2 signaling pathway in mice.Front Chem2020872010.3389/fchem.2020.00720.eCollection 2020
    [Google Scholar]
  186. ZhaoD. YuW. XieW. MaZ. HuZ. SongZ. Bone marrow-derived mesenchymal stem cells ameliorate severe acute pancreatitis by inhibiting oxidative stress in rats.Mol. Cell. Biochem.2022477122761277110.1007/s11010‑022‑04476‑3 35622186
    [Google Scholar]
  187. SeverinoA. VarcaS. AirolaC. Antibiotic utilization in acute pancreatitis: A narrative review.Antibiotics2023127112010.3390/antibiotics12071120 37508216
    [Google Scholar]
  188. SinghV.K. YadavD. GargP.K. Diagnosis and management of chronic pancreatitis.JAMA2019322242422243410.1001/jama.2019.19411 31860051
    [Google Scholar]
  189. LiuY. WanZ. LiaoD. Efficacy of enteral nutrition for patients with acute pancreatitis: A systematic review and meta analysis of 17 studies.Exp. Ther. Med.202325418410.3892/etm.2023.11883 37021072
    [Google Scholar]
  190. ChoiS. KimH. The remedial potential of lycopene in pancreatitis through regulation of autophagy.Int. J. Mol. Sci.20202116577510.3390/ijms21165775 32806545
    [Google Scholar]
  191. TazeoğluD. AkyüzC. GökçeimamM. Harman KamalıG. ÖzsoyA. KarahanS.R. Effect of alpha-tocopherol and dose sensitivity on pancreatitis formation in rats with experimental pancreatitis.National Trauma and Emergency Surgery Dergisi-Turkish Journal of Trauma & Emergency Surgery2021276605612 34710231
    [Google Scholar]
  192. BurzyńskiJ. FichnaJ. TarasiukA. Putative molecular targets for vitamin A in neutralizing oxidative stress in acute and chronic pancreatitis — A systematic review.Naunyn Schmiedebergs Arch. Pharmacol.202339671361137010.1007/s00210‑023‑02442‑4 36843131
    [Google Scholar]
  193. DengJ. SongZ. LiX. ShiH. HuangS. TangL. Role of lncRNAs in acute pancreatitis: Pathogenesis, diagnosis, and therapy.Front. Genet.202314125755210.3389/fgene.2023.1257552 37842644
    [Google Scholar]
  194. ZhangD. LiL. LiJ. Colchicine improves severe acute pancreatitis-induced acute lung injury by suppressing inflammation, apoptosis and oxidative stress in rats.Biomed. Pharmacother.202215311346110.1016/j.biopha.2022.113461 36076491
    [Google Scholar]
  195. Hey-HadaviJ. VelisettyP. MhatreS. Trends and recent developments in pharmacotherapy of acute pancreatitis.Postgrad. Med.2023135433434410.1080/00325481.2022.2136390 36305300
    [Google Scholar]
  196. BolouraniS. DiaoL. ThompsonD.A. Risk factors for early readmission after acute pancreatitis: Importance of timely interventions.J. Surg. Res.20202529610610.1016/j.jss.2020.03.003 32278975
    [Google Scholar]
  197. YangF.Y. QiX.Z. DuY.Q. ChenY. WangM.T. HuangH.T. Coloclyster of red peony root granules alleviates moderately severe acute pancreatitis: A double-blinded, placebo-controlled, randomized clinical trial.Evid. Based Complement. Alternat. Med.202020208401239
    [Google Scholar]
  198. ZhouY. LiuD. ChenS. Nrf2 activation ameliorates mechanical allodynia in paclitaxel-induced neuropathic pain.Acta Pharmacol. Sin.20204181041104810.1038/s41401‑020‑0394‑6 32203087
    [Google Scholar]
  199. JeonS. LeeY. OhS.R. Recent advances in endocrine organoids for therapeutic application.Adv. Drug Deliv. Rev.202319911495910.1016/j.addr.2023.114959 37301512
    [Google Scholar]
  200. ScholzO. HußE. OtterS. Protection of pancreatic islets from oxidative cell death by a peripherally-active morphinan with increased drug safety.Mol. Metab.20237510177510.1016/j.molmet.2023.101775 37451343
    [Google Scholar]
  201. RobertsonR.P. Nrf2 and antioxidant response in animal models of type 2 diabetes.Int. J. Mol. Sci.2023244308210.3390/ijms24043082 36834496
    [Google Scholar]
  202. SauerlandM.B. DaviesM.J. Electrophile versus oxidant modification of cysteine residues: Kinetics as a key driver of protein modification.Arch. Biochem. Biophys.202272710934410.1016/j.abb.2022.109344 35777524
    [Google Scholar]
  203. Baumel-AlterzonS. ScottD.K. Regulation of Pdx1 by oxidative stress and Nrf2 in pancreatic beta-cells.Front. Endocrinol.202213101118710.3389/fendo.2022.1011187 36187092
    [Google Scholar]
  204. KwakM.S. LimJ.W. KimH. Astaxanthin inhibits interleukin-6 expression in cerulein/resistin-stimulated pancreatic acinar cells.Mediators Inflamm.202120215587297
    [Google Scholar]
  205. ZhangF. CuiS. YuanY. LiC. LiR. Dissection of the potential anti‐diabetes mechanism of salvianolic acid B by metabolite profiling and network pharmacology.Rapid Commun. Mass Spectrom.2022361e920510.1002/rcm.9205 34636119
    [Google Scholar]
  206. SahaS. AliM.R. KhalequeM.A. BacchuM.S. Aly Saad AlyM. KhanM.Z.H. Metal oxide nanocarrier for targeted drug delivery towards the treatment of global infectious diseases: A review.J. Drug Deliv. Sci. Technol.20238610472810.1016/j.jddst.2023.104728
    [Google Scholar]
  207. TirumalaM.G. AnchiP. RajaS. RachamallaM. GoduguC. Novel methods and approaches for safety evaluation of nanoparticle formulations: A focus towards in vitro models and adverse outcome pathways.Front. Pharmacol.20211261265910.3389/fphar.2021.612659 34566630
    [Google Scholar]
  208. KhuranaA. TekulaS. SaifiM.A. VenkateshP. GoduguC. Therapeutic applications of selenium nanoparticles.Biomed. Pharmacother.201911180281210.1016/j.biopha.2018.12.146 30616079
    [Google Scholar]
  209. ZewailM.B. El-GizawyS.A. AsaadG.F. ShabanaM.E. El-DakrouryW.A. Chitosan coated clove oil-based nanoemulsion: An attractive option for oral delivery of leflunomide in rheumatoid arthritis.Int. J. Pharm.202364312322410.1016/j.ijpharm.2023.123224 37451327
    [Google Scholar]
  210. LiuY. ShangguanL. ZhaoB. ChenB. ShiB. WangY. Cross-linked supramolecular polymer networks constructed by pillar[5]arene-based host–guest recognition and coordination/oxidation of catechol.Polym. Chem.202213253763376710.1039/D2PY00476C
    [Google Scholar]
  211. MozafariM.R. TorkamanS. KaramouzianF.M. RastiB. BaralB. Antimicrobial applications of nanoliposome encapsulated silver nanoparticles: A potential strategy to overcome bacterial resistance.Curr. Nanosci.2021171264010.2174/18756786MTA4iMTAi3
    [Google Scholar]
  212. LinS. CuiL. ChenG. PLGA/β-TCP composite scaffold incorporating salvianolic acid B promotes bone fusion by angiogenesis and osteogenesis in a rat spinal fusion model.Biomaterials201919610912110.1016/j.biomaterials.2018.04.004 29655516
    [Google Scholar]
  213. MoX. ZhangD. LiuK. ZhaoX. LiX. WangW. Nano-hydroxyapatite composite scaffolds loaded with bioactive factors and drugs for bone tissue engineering.Int. J. Mol. Sci.2023242129110.3390/ijms24021291 36674810
    [Google Scholar]
  214. LiuM. LiuS. ZhuX. Tanshinone IIA-loaded micelles functionalized with rosmarinic acid: A novel synergistic anti-inflammatory strategy for treatment of atherosclerosis.J. Pharm. Sci.2022111102827283810.1016/j.xphs.2022.05.007 35580692
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838299447240621100613
Loading
/content/journals/ctm/10.2174/0122150838299447240621100613
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Chinese herbal medicine; DAP; Nrf2 signal pathway; oxidative stress; SAP; tissue oedema
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test