Skip to content
2000
Volume 11, Issue 6
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Reactive oxygen and nitrogen species are produced a variety of endogenous and exogenous mechanisms that lead to severe impairment in human diseases. Nevertheless, thanks to the presence of enzymatic and non-enzymatic antioxidants, which in favors of neutralizing these species. Along with several non-enzymatic antioxidants with modest molecular masses, the human body additionally possesses a highly potent intrinsic enzymatic antioxidant system. An imbalance between oxidants and antioxidants in favor of the oxidants, leading to a disruption of redox signaling and control and/or oxidative damage. These oxidative injuries are frequently linked to cancer, aging, and neurological diseases. Direct measurements of the concentrations of reactive species are nearly impossible due to their incredibly short half-lives and fairly expensive systems. Therefore, rather than directly measuring reactive species, products created by oxidative damage to proteins, lipids, and DNA are frequently utilized to estimate the degree of oxidative damage. These oxidative damage products are typically referred to as biomarkers. The assessment of these biomarker concentrations, as well as fluctuations in the concentration of protective antioxidants, might provide significant information for preventing certain diseases and maintaining optimal health. This study aims to summarize the data of the potential biomarkers related to the putative ROS pathway that have been implicated. Additionally, the intervention using therapeutic exogenous antioxidant as defense strategies in balancing the redox reactions and their ramifications has also been discussed.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838296420240904104030
2024-11-29
2026-01-04
Loading full text...

Full text loading...

/deliver/fulltext/ctm/11/6/CTM-11-6-11.html?itemId=/content/journals/ctm/10.2174/0122150838296420240904104030&mimeType=html&fmt=ahah

References

  1. SchieberM. ChandelN.S. ROS function in redox signaling and oxidative stress.Curr. Biol.20142410R453R46210.1016/j.cub.2014.03.03424845678
    [Google Scholar]
  2. SiesH. BelousovV.V. ChandelN.S. DaviesM.J. JonesD.P. MannG.E. MurphyM.P. YamamotoM. WinterbournC. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology.Nat. Rev. Mol. Cell Biol.202223749951510.1038/s41580‑022‑00456‑z35190722
    [Google Scholar]
  3. SiesH. BerndtC. JonesD.P. Oxidative Stress.Annu. Rev. Biochem.201786171574810.1146/annurev‑biochem‑061516‑04503728441057
    [Google Scholar]
  4. AlmeidaA.J.P.O. RibeiroT.P. MedeirosI.A. Aging: molecular pathways and implications on the cardiovascular system.Oxid. Med. Cell. Longev.201720171794156310.1155/2017/794156328874954
    [Google Scholar]
  5. AfzalS. Abdul ManapA.S. AttiqA. AlbokhadaimI. KandeelM. AlhojailyS.M. From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration.Front. Pharmacol.202314126958110.3389/fphar.2023.126958137927596
    [Google Scholar]
  6. SiesH. What is oxidative stress?Oxidative stress and vascular disease.Springer198518
    [Google Scholar]
  7. SiesH. Oxidative stress: Concept and some practical aspects.Antioxidants20209985210.3390/antiox909085232927924
    [Google Scholar]
  8. EngwaG.A. EnNwekegwaF.N. Nkeh-ChungagB.N. Free radicals, oxidative stress-related diseases and antioxidant supplementation.Altern. Ther. Health Med.202228111412832827401
    [Google Scholar]
  9. PenaE. El AlamS. SiquesP. BritoJ. Oxidative stress and diseases associated with high-altitude exposure.Antioxidants202211226710.3390/antiox1102026735204150
    [Google Scholar]
  10. RotariuD. BabesE.E. TitD.M. MoisiM. BusteaC. StoicescuM. RaduA.F. VesaC.M. BehlT. BungauA.F. BungauS.G. Oxidative stress – Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders.Biomed. Pharmacother.202215211323810.1016/j.biopha.2022.11323835687909
    [Google Scholar]
  11. AkkiR. SiracusaR. CordaroM. RemiganteA. MorabitoR. ErramiM. MarinoA. Adaptation to oxidative stress at cellular and tissue level.Arch. Physiol. Biochem.2022128252153110.1080/13813455.2019.170205931835914
    [Google Scholar]
  12. RemiganteA. MorabitoR. Cellular and molecular mechanisms in oxidative stress-related diseases.Int. J. Mol. Sci.20222314801710.3390/ijms2314801735887362
    [Google Scholar]
  13. Pham-HuyL.A. HeH. Pham-HuycC. Free radicals, antioxidants in disease and health.Int. J. Biomed. Sci.200842899610.59566/IJBS.2008.408923675073
    [Google Scholar]
  14. ĎuračkováZ. Some current insights into oxidative stress.Physiol. Res.201059445946910.33549/physiolres.93184419929132
    [Google Scholar]
  15. Villalpando-RodriguezGE. GibsonSB. Reactive oxygen species (ROS) regulates different types of cell death by acting as a rheostat.Oxid Med Cell Longev.202120219912436
    [Google Scholar]
  16. NaqviS.T.R. AhmadJ. HaqM.N. HinaM. FatimaB. MajeedS. NaqviS.M.A. Quantitative evaluation of oxidative stress in terms of H2O2 in smokers and nonsmokers serum samples.Microchem. J.202319010869910.1016/j.microc.2023.108699
    [Google Scholar]
  17. JamshidiM. WalcariusA. ThangamuthuM. MehrgardiM. RanjbarA. Electrochemical approaches based on micro- and nanomaterials for diagnosing oxidative stress.Mikrochim. Acta2023190411710.1007/s00604‑023‑05681‑736879086
    [Google Scholar]
  18. Shan-lanY. LeiW. Jia-xinT. Li-fangD. Research progress of free radical induced aging.Chinese J. Dis. Cont. Prevent.2022265589594
    [Google Scholar]
  19. MartemucciG. CostagliolaC. MarianoM. D’andreaL. NapolitanoP. D’AlessandroA.G. Free radical properties, source and targets, antioxidant consumption and health.Oxygen202222487810.3390/oxygen2020006
    [Google Scholar]
  20. Peña-BautistaC. BaqueroM. VentoM. Cháfer-PericásC. Free radicals in Alzheimer’s disease: Lipid peroxidation biomarkers.Clin. Chim. Acta2019491859010.1016/j.cca.2019.01.02130685358
    [Google Scholar]
  21. Demirci-ÇekiçS. ÖzkanG. AvanA.N. UzunboyS. ÇapanoğluE. ApakR. Biomarkers of oxidative stress and antioxidant defense.J. Pharm. Biomed. Anal.202220911447710.1016/j.jpba.2021.11447734920302
    [Google Scholar]
  22. KaterjiM. FilippovaM. Duerksen-HughesP. Approaches and methods to measure oxidative stress in clinical samples: Research applications in the cancer field.Oxid. Med. Cell. Longev.20192019112910.1155/2019/127925030992736
    [Google Scholar]
  23. ArauzJ. Ramos-TovarE. MurielP. Redox state and methods to evaluate oxidative stress in liver damage: From bench to bedside.Ann. Hepatol.201615216017326845593
    [Google Scholar]
  24. OginoK. WangD.H. Biomarkers of oxidative/nitrosative stress: an approach to disease prevention.Acta Med. Okayama200761418118917726507
    [Google Scholar]
  25. DikalovS. GriendlingK.K. HarrisonD.G. Measurement of reactive oxygen species in cardiovascular studies.Hypertension200749471772710.1161/01.HYP.0000258594.87211.6b17296874
    [Google Scholar]
  26. ForkinkM. SmeitinkJ.A.M. BrockR. WillemsP.H.G.M. KoopmanW.J.H. Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells.Biochim. Biophys. Acta Bioenerg.201017976-71034104410.1016/j.bbabio.2010.01.02220100455
    [Google Scholar]
  27. WinterbournC.C. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells.Biochim. Biophys. Acta, Gen. Subj.20141840273073810.1016/j.bbagen.2013.05.00423665586
    [Google Scholar]
  28. SrinivasU.S. TanB.W.Q. VellayappanB.A. JeyasekharanA.D. ROS and the DNA damage response in cancer.Redox Biol.20192510108410.1016/j.redox.2018.10108430612957
    [Google Scholar]
  29. HuX. DongD. XiaM. YangY. WangJ. SuJ. SunL. YuH. Oxidative stress and antioxidant capacity: development and prospects.New J. Chem.20204427114051141910.1039/D0NJ02041A
    [Google Scholar]
  30. MarroccoI. AltieriF. PelusoI. Measurement and clinical significance of biomarkers of oxidative stress in humans.Oxid Med Cell Longev.20172017650104610.1155/2017/6501046
    [Google Scholar]
  31. MarkkanenE. Not breathing is not an option: How to deal with oxidative DNA damage.DNA Repair2017598210510.1016/j.dnarep.2017.09.00728963982
    [Google Scholar]
  32. ChaoM.R. EvansM.D. HuC.W. JiY. MøllerP. RossnerP. CookeM.S. Biomarkers of nucleic acid oxidation – A summary state-of-the-art.Redox Biol.20214210187210.1016/j.redox.2021.10187233579665
    [Google Scholar]
  33. CutlerR.G. RodriguezH. Critical reviews of oxidative stress and aging: advances in basic science, diagnostics and intervention.World ScientificOctober 2002 Pages: 162410.1142/4714
    [Google Scholar]
  34. LinH.S. JennerA.M. OngC.N. HuangS.H. WhitemanM. HalliwellB. A high-throughput and sensitive methodology for the quantification of urinary 8-hydroxy-2′-deoxyguanosine: measurement with gas chromatography-mass spectrometry after single solid-phase extraction.Biochem. J.2004380254154810.1042/bj2004000414992687
    [Google Scholar]
  35. DrakeD.M. ShapiroA.M. WellsP.G. Measurement of the Oxidative DNA Lesion 8-Oxoguanine (8-oxoG) by ELISA or by High-Performance Liquid Chromatography (HPLC) with Electrochemical Detection.Methods Mol Biol.2019196531332810.1007/978‑1‑4939‑9182‑2_21
    [Google Scholar]
  36. Chiorcea-PaquimA.M. Oliveira-BrettA.M. Nanostructured material–based electrochemical sensing of oxidative DNA damage biomarkers 8-oxoguanine and 8-oxodeoxyguanosine: a comprehensive review.Mikrochim. Acta202118825810.1007/s00604‑020‑04689‑733507409
    [Google Scholar]
  37. SaitoY. Lipid peroxidation products as a mediator of toxicity and adaptive response – The regulatory role of selenoprotein and vitamin E.Arch. Biochem. Biophys.202170310884010.1016/j.abb.2021.10884033744199
    [Google Scholar]
  38. MaguireE.M. PearceS.W.A. XiaoQ. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease.Vascul. Pharmacol.2019112547110.1016/j.vph.2018.08.00230115528
    [Google Scholar]
  39. PandaP. VermaHK. LakkakulaS. MerchantN. KadirF. RahmanS. Biomarkers of oxidative stress tethered to cardiovascular diseases.Oxid Med Cell Longev.20222022915429510.1155/2022/9154295
    [Google Scholar]
  40. XuL. YanX. TangZ. FengB. Association between circulating oxidized OxLDL/LDL-C ratio and the severity of coronary atherosclerosis, along with other emerging biomarkers of cardiovascular disease in patients with type 2 diabetes.Diabetes Res. Clin. Pract.202219111004010.1016/j.diabres.2022.11004035985428
    [Google Scholar]
  41. HartleyA. HaskardD. KhamisR. Oxidized LDL and anti-oxidized LDL antibodies in atherosclerosis – Novel insights and future directions in diagnosis and therapy.Trends Cardiovasc. Med.2019291222610.1016/j.tcm.2018.05.01029934015
    [Google Scholar]
  42. PandeyS.S. HartleyA. Caga-AnanM. AmmariT. KhanA.H.A. NguyenB.A.V. KojimaC. AndersonJ. LynhamS. JohnsM. HaskardD.O. KhamisR.Y. A Novel immunoassay for malondialdehyde-conjugated low-density lipoprotein measures dynamic changes in the blood of patients undergoing coronary artery bypass graft surgery.Antioxidants2021108129810.3390/antiox1008129834439546
    [Google Scholar]
  43. DhamaK. LatheefS.K. DadarM. SamadH.A. MunjalA. KhandiaR. KarthikK. TiwariR. YatooM.I. BhattP. ChakrabortyS. SinghK.P. IqbalH.M.N. ChaicumpaW. JoshiS.K. Biomarkers in stress related diseases/disorders: diagnostic, prognostic, and therapeutic values.Front. Mol. Biosci.201969110.3389/fmolb.2019.0009131750312
    [Google Scholar]
  44. Del RioD. StewartA.J. PellegriniN. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress.Nutr. Metab. Cardiovasc. Dis.200515431632810.1016/j.numecd.2005.05.00316054557
    [Google Scholar]
  45. GianazzaE. BrioschiM. Martinez FernandezA. CasalnuovoF. AltomareA. AldiniG. BanfiC. Lipid peroxidation in atherosclerotic cardiovascular diseases.Antioxid. Redox Signal.2021341499810.1089/ars.2019.795532640910
    [Google Scholar]
  46. PatlollaA.K. BarnesC. YedjouC. VelmaV.R. TchounwouP.B. Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in Sprague-Dawley rats.Environ. Toxicol.2009241667310.1002/tox.2039518508361
    [Google Scholar]
  47. Durán MerásI. Periañez LlorenteC. Pilo RamajoJ. Martín TorneroE. Espinosa-MansillaA. Optimization of the thiobarbituric acid-malonaldehyde reaction in non-aqueous medium. Direct analysis of malonaldehyde in oil samples by HPLC with fluorimetric detection.Microchem. J.202015910531810.1016/j.microc.2020.105318
    [Google Scholar]
  48. Aguilar Diaz De LeonJ. BorgesC.R. Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay.J. Vis. Exp.2020159e6112232478759
    [Google Scholar]
  49. Pérez-PalaciosT. EstévezM. Analysis of lipids and lipid oxidation products.Meat Quality AnalysisAcademic Press202021723910.1016/B978‑0‑12‑819233‑7.00013‑6
    [Google Scholar]
  50. WuH. KongY. ZhaoW. WangF. Measurement of cellular MDA content through MTBE-extraction based TBA assay by eliminating cellular interferences.J. Pharm. Biomed. Anal.202424811633210.1016/j.jpba.2024.11633238964165
    [Google Scholar]
  51. EdaeC.K. TofikE. Biomarkers of oxidative stress and its role in athero sclerosis development.Biomed. J. Sci. Tech. Res.2020321202010.26717/BJSTR.2020.32.005189
    [Google Scholar]
  52. QaddoumiM.G. AlanbaeiM. HammadM.M. Al KhairiI. CherianP. ChannanathA. ThanarajT.A. Al-MullaF. Abu-FarhaM. AbubakerJ. Investigating the role of myeloperoxidase and angiopoietin-like protein 6 in obesity and diabetes.Sci. Rep.2020101617010.1038/s41598‑020‑63149‑732277104
    [Google Scholar]
  53. VlasovaI.I. Peroxidase activity of human hemoproteins: keeping the fire under control.Molecules20182310256110.3390/molecules2310256130297621
    [Google Scholar]
  54. SultanaS. FotiA. DahlJ.U. Bacterial defense systems against the neutrophilic oxidant hypochlorous acid.Infect. Immun.2020887e00964-1910.1128/IAI.00964‑1932152198
    [Google Scholar]
  55. SignoriniC. MorettiE. CollodelG. Role of isoprostanes in human male infertility.Syst Biol Reprod Med202066529129910.1080/19396368.2020.179303232842780
    [Google Scholar]
  56. GęgotekA. SkrzydlewskaE. Biological effect of protein modifications by lipid peroxidation products.Chem. Phys. Lipids2019221465210.1016/j.chemphyslip.2019.03.01130922835
    [Google Scholar]
  57. SircarD. SubbaiahP.V. Isoprostane measurement in plasma and urine by liquid chromatography-mass spectrometry with one-step sample preparation.Clin. Chem.200753225125810.1373/clinchem.2006.07498917200134
    [Google Scholar]
  58. KlawitterJ. HaschkeM. ShokatiT. KlawitterJ. ChristiansU. Quantification of 15-F 2t -isoprostane in human plasma and urine: results from enzyme-linked immunoassay and liquid chromatography/tandem mass spectrometry cannot be compared.Rapid Commun. Mass Spectrom.201125446346810.1002/rcm.487121259353
    [Google Scholar]
  59. DobiA. RosanalyS. DevinA. BaretP. MeilhacO. HarryG.J. d’HellencourtC.L. RondeauP. Advanced glycation end-products disrupt brain microvascular endothelial cell barrier: The role of mitochondria and oxidative stress.Microvasc. Res.202113310409810.1016/j.mvr.2020.10409833075405
    [Google Scholar]
  60. PatelS.B. TiesengaF. StancoT.M. MohammedD. AlexidaL. Arch. Case Rep. Clin. Med.2018, 4(1): 115
    [Google Scholar]
  61. BansalS. KareP.K. TripathiA.K. MadhuS.V. Advanced glycation end products: A potential contributor of oxidative stress for cardio-vascular problems in diabetes.Oxidative stress in heart diseases.Springer201943745910.1007/978‑981‑13‑8273‑4_20
    [Google Scholar]
  62. ZawadaA. MachowiakA. RychterA.M. RatajczakA.E. Szymczak-TomczakA. DobrowolskaA. Krela-KaźmierczakI. Accumulation of Advanced Glycation End-Products in the Body and Dietary Habits.Nutrients20221419398210.3390/nu1419398236235635
    [Google Scholar]
  63. ChenJ.H. LinX. BuC. ZhangX. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies.Nutr. Metab. (Lond.)20181517210.1186/s12986‑018‑0306‑730337945
    [Google Scholar]
  64. Briceno NoriegaD. ZenkerH.E. CroesC.A. EwazA. Ruinemans-KoertsJ. SavelkoulH.F.J. van NeervenR.J.J. TeodorowiczM. Receptor Mediated Effects of Advanced Glycation End Products (AGEs) on Innate and Adaptative Immunity: Relevance for Food Allergy.Nutrients202214237110.3390/nu1402037135057553
    [Google Scholar]
  65. MeisterM.L. NajjarR.S. DanhJ.P. KnappD. WandersD. FeresinR.G. Berry consumption mitigates the hypertensive effects of a high-fat, high-sucrose diet via attenuation of renal and aortic AT1R expression resulting in improved endothelium-derived NO bioavailability.J. Nutr. Biochem.202311210922510.1016/j.jnutbio.2022.10922536435288
    [Google Scholar]
  66. CharlesW.Z. FariesC.R. StreetY.T. FlowersL.S. McNaughtonB.R. Antibody-Recruitment as a Therapeutic Strategy: A Brief History and Recent Advances.ChemBioChem20222316e20220009210.1002/cbic.20220009235466482
    [Google Scholar]
  67. CATAK J Yaman M, Ugur H, Servi EY, FARUK MIZRAK Ö. Investigation of the advanced glycation end products precursors in dried fruits and nuts by HPLC using pre-column derivatization.J. Food Nutr. Res.20226111-8
    [Google Scholar]
  68. AhsanH. 3-Nitrotyrosine: A biomarker of nitrogen free radical species modified proteins in systemic autoimmunogenic conditions.Hum. Immunol.201374101392139910.1016/j.humimm.2013.06.00923777924
    [Google Scholar]
  69. BandookwalaM. ThakkarD. SenguptaP. Advancements in the analytical quantification of nitroxidative stress biomarker 3-nitrotyrosine in biological matrices.Crit. Rev. Anal. Chem.202050326528910.1080/10408347.2019.162301031177807
    [Google Scholar]
  70. BandookwalaM. SenguptaP. 3-Nitrotyrosine: a versatile oxidative stress biomarker for major neurodegenerative diseases.Int. J. Neurosci.2020130101047106210.1080/00207454.2020.171377631914343
    [Google Scholar]
  71. MaX. Recent Advances in Mass Spectrometry-Based Structural Elucidation Techniques.Molecules20222719646610.3390/molecules2719646636235003
    [Google Scholar]
  72. PengR. WangL. YuP. CarrierA.J. OakesK.D. ZhangX. Exacerbated Protein Oxidation and Tyrosine Nitration through Nitrite-Enhanced Fenton Chemistry.J. Agric. Food Chem.202270135335910.1021/acs.jafc.1c0459134963286
    [Google Scholar]
  73. LiZ. BiR. SunS. ChenS. ChenJ. HuB. The role of oxidative stress in acute ischemic stroke-related thrombosis.Oxid Med Cell Longev.20222022841882010.1155/2022/8418820
    [Google Scholar]
  74. AdwasA.A. ElsayedA. AzabA. QuwaydirF. Oxidative stress and antioxidant mechanisms in human body.J Appl Biotechnol Bioeng.2019614347
    [Google Scholar]
  75. BouayedJ. BohnT. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses.Oxid. Med. Cell. Longev.20103422823710.4161/oxim.3.4.1285820972369
    [Google Scholar]
  76. Mut-SaludN. ÁlvarezPJ. GarridoJM. CarrascoE. AránegaA. Rodríguez-SerranoF. Antioxidant intake and antitumor therapy: toward nutritional recommendations for optimal results.Oxid Med Cell Longev.20162016671953410.1155/2016/6719534
    [Google Scholar]
  77. da SilvaL.M. PezziniB.C. SomensiL.B. Bolda MarianoL.N. MariottM. BoeingT. dos SantosA.C. LongoB. Cechinel-FilhoV. de SouzaP. de AndradeS.F. Hesperidin, a citrus flavanone glycoside, accelerates the gastric healing process of acetic acid-induced ulcer in rats.Chem. Biol. Interact.2019308455010.1016/j.cbi.2019.05.01131095933
    [Google Scholar]
  78. BarrecaD. GattusoG. BelloccoE. CalderaroA. TrombettaD. SmeriglioA. LaganàG. DagliaM. MeneghiniS. NabaviS.M. Flavanones: Citrus phytochemical with health-promoting properties.Biofactors201743449550610.1002/biof.136328497905
    [Google Scholar]
  79. AggarwalV. TuliH.S. ThakralF. SinghalP. AggarwalD. SrivastavaS. PandeyA. SakK. VarolM. KhanM.A. SethiG. Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements.Exp. Biol. Med. (Maywood)2020245548649710.1177/153537022090367132050794
    [Google Scholar]
  80. WilmsenP.K. SpadaD.S. SalvadorM. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems.J. Agric. Food Chem.200553124757476110.1021/jf050200015941311
    [Google Scholar]
  81. AdefeghaS.A. Rosa LealD.B. OlabiyiA.A. ObohG. CastilhosL.G. Hesperidin attenuates inflammation and oxidative damage in pleural exudates and liver of rat model of pleurisy.Redox Rep.201722656357110.1080/13510002.2017.134401328657497
    [Google Scholar]
  82. GuéraudF. AtalayM. BresgenN. CipakA. EcklP.M. HucL. JouaninI. SiemsW. UchidaK. Chemistry and biochemistry of lipid peroxidation products.Free Radic. Res.201044101098112410.3109/10715762.2010.49847720836659
    [Google Scholar]
  83. PetronilhoF. Dal-PizzolF. CostaG.M. KappelV.D. de OliveiraS.Q. FortunatoJ. Cittadini-ZanetteV. MoreiraJ.C.F. SimõesC.M.O. Dal-PizzolF. ReginattoF.H. Hepatoprotective effects and HSV-1 activity of the hydroethanolic extract of Cecropia glaziovii (embaúba-vermelha) against acyclovir-resistant strain.Pharm. Biol.201250791191810.3109/13880209.2011.64390222480215
    [Google Scholar]
  84. TirkeyN. PilkhwalS. KuhadA. ChopraK. Hesperidin, a citrus bioflavonoid, decreases the oxidative stress produced by carbon tetrachloride in rat liver and kidney.BMC Pharmacol.200551210.1186/1471‑2210‑5‑215683547
    [Google Scholar]
  85. AfridiR. KhanA.U. KhalidS. ShalB. RasheedH. UllahM.Z. ShehzadO. KimY.S. KhanS. RETRACTED ARTICLE: Anti-hyperalgesic properties of a flavanone derivative Poncirin in acute and chronic inflammatory pain models in mice.BMC Pharmacol. Toxicol.20192015710.1186/s40360‑019‑0335‑531511086
    [Google Scholar]
  86. LeeJ.H. LeeS.H. KimY.S. JeongC.S. Protective effects of neohesperidin and poncirin isolated from the fruits of Poncirus trifoliata on potential gastric disease.Phytother. Res.200923121748175310.1002/ptr.284019367677
    [Google Scholar]
  87. WalleT. Absorption and metabolism of flavonoids.Free Radic. Biol. Med.200436782983710.1016/j.freeradbiomed.2004.01.00215019968
    [Google Scholar]
  88. UllahH. KhanA. BaigM.W. UllahN. AhmedN. TipuM.K. AliH. KhanS. Poncirin attenuates CCL4-induced liver injury through inhibition of oxidative stress and inflammatory cytokines in mice.BMC Complementary Medicine and Therapies202020111510.1186/s12906‑020‑02906‑732307011
    [Google Scholar]
  89. WatkinsL.R. MaierS.F. GoehlerL.E. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states.Pain199563328930210.1016/0304‑3959(95)00186‑78719529
    [Google Scholar]
  90. KaushikA.S. StrathL.J. SorgeR.E. Dietary interventions for treatment of chronic pain: Oxidative stress and inflammation.Pain Ther.20209248749810.1007/s40122‑020‑00200‑533085012
    [Google Scholar]
  91. VoscopoulosC. LemaM. When does acute pain become chronic?Br. J. Anaesth.2010105Suppl. 1i69i8510.1093/bja/aeq32321148657
    [Google Scholar]
  92. TenórioM.C.S. GracilianoN.G. MouraF.A. OliveiraA.C.M. GoulartM.O.F. Oliveira ACM de, Goulart MOF. N-acetylcysteine (NAC): impacts on human health.Antioxidants202110696710.3390/antiox1006096734208683
    [Google Scholar]
  93. MoreiraM.A. IrigoyenM.C. SaadK.R. SaadP.F. KoikeM.K. MonteroE.F.S. MartinsJ.L. N-acetylcysteine reduces the renal oxidative stress and apoptosis induced by hemorrhagic shock.J. Surg. Res.2016203111312010.1016/j.jss.2016.02.02027338542
    [Google Scholar]
  94. AlnahdiA. JohnA. RazaH. N-acetyl cysteine attenuates oxidative stress and glutathione-dependent redox imbalance caused by high glucose/high palmitic acid treatment in pancreatic Rin-5F cells.PLoS One20191412e022669610.1371/journal.pone.022669631860682
    [Google Scholar]
  95. WangJ. LiM. ZhangW. GuA. DongJ. LiJ. ShanA. Protective effect of n-acetylcysteine against oxidative stress induced by zearalenone via mitochondrial apoptosis pathway in SIEC02 cells.Toxins (Basel)2018101040710.3390/toxins1010040730304829
    [Google Scholar]
  96. SnezhkinaAV. KudryavtsevaAV. KardymonOL. SavvateevaMV. MelnikovaNV. KrasnovGS. ROS generation and antioxidant defense systems in normal and malignant cells.Oxid Med Cell Longev.20192019617580410.1155/2019/6175804
    [Google Scholar]
  97. BarreraG. Oxidative stress and lipid peroxidation products in cancer progression and therapy.ISRN Oncol.201220121372810.5402/2012/137289
    [Google Scholar]
  98. DixT.A. AikensJ. Mechanisms and biological relevance of lipid peroxidation initiation.Chem. Res. Toxicol.19936121810.1021/tx00031a0018448344
    [Google Scholar]
  99. PatelK. SinghG.K. PatelD.K. A review on pharmacological and analytical aspects of naringenin.Chin. J. Integr. Med.201824755156010.1007/s11655‑014‑1960‑x25501296
    [Google Scholar]
  100. UckunZ. GuzelS. CanacankatanN. YalazaC. KibarD. Coskun YilmazB. Potential protective effects of naringenin against vancomycin-induced nephrotoxicity via reduction on apoptotic and oxidative stress markers in rats.Drug Chem. Toxicol.202043110411110.1080/01480545.2018.151261230257567
    [Google Scholar]
  101. SalehiB. FokouP.V.T. Sharifi-RadM. ZuccaP. PezzaniR. MartinsN. Sharifi-RadJ. The therapeutic potential of naringenin: a review of clinical trials.Pharmaceuticals (Basel)20191211110.3390/ph1201001130634637
    [Google Scholar]
  102. ScalbertA. WilliamsonG. Dietary intake and bioavailability of polyphenols.J. Nutr.20001308Suppl.2073S2085S10.1093/jn/130.8.2073S10917926
    [Google Scholar]
  103. WangK. ChenZ. HuangL. MengB. ZhouX. WenX. RenD. Naringenin reduces oxidative stress and improves mitochondrial dysfunction via activation of the Nrf2/ARE signaling pathway in neurons.Int. J. Mol. Med.20174051582159010.3892/ijmm.2017.313428949376
    [Google Scholar]
  104. HuZ.L. HuangC. FuH. JinY. WuW.N. XiongQ.J. XieN. LongL.H. ChenJ.G. WangF. Disruption of PICK1 attenuates the function of ASICs and PKC regulation of ASICs.Am. J. Physiol. Cell Physiol.20102996C1355C136210.1152/ajpcell.00569.200920826761
    [Google Scholar]
  105. TanB.L. NorhaizanM.E. LiewW.P.P. Sulaiman RahmanH. Antioxidant and oxidative stress: a mutual interplay in age-related diseases.Front. Pharmacol.20189116210.3389/fphar.2018.0116230405405
    [Google Scholar]
  106. AmmarN. HassanH. AbdallahH. AfifiS. ElgamalA. FarragA. El-GendyA. FaragM. ElshamyA. Protective Effects of Naringenin from Citrus sinensis (var. Valencia) Peels against CCl4-Induced Hepatic and Renal Injuries in Rats Assessed by Metabolomics, Histological and Biochemical Analyses.Nutrients202214484110.3390/nu1404084135215494
    [Google Scholar]
  107. DhuleyJ.N. NaikS.R. Protective effect of Rhinax, a herbal formulation, against CCl4-induced liver injury and survival in rats.J. Ethnopharmacol.199756215916410.1016/S0378‑8741(97)01524‑99174979
    [Google Scholar]
  108. RashmiR. Bojan MageshS. Mohanram RamkumarK. SuryanarayananS. Venkata SubbaRaoM. SubbaRao MV. Antioxidant potential of naringenin helps to protect liver tissue from streptozotocin-induced damage.Rep. Biochem. Mol. Biol.201871768430324121
    [Google Scholar]
  109. EleazuC.O. EleazuK.C. ChukwumaS. EssienU.N. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans.J. Diabetes Metab. Disord.20131216010.1186/2251‑6581‑12‑6024364898
    [Google Scholar]
  110. KurutasE.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state.Nutr. J.20151517110.1186/s12937‑016‑0186‑527456681
    [Google Scholar]
  111. PanossianA. WikmanG. SarrisJ. Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy.Phytomedicine201017748149310.1016/j.phymed.2010.02.00220378318
    [Google Scholar]
  112. XuF. XuJ. XiongX. DengY. Salidroside inhibits MAPK, NF-κB, and STAT3 pathways in psoriasis-associated oxidative stress via SIRT1 activation.Redox Rep.2019241707410.1080/13510002.2019.165837731495284
    [Google Scholar]
  113. XuJ. LiY. Effects of salidroside on exhaustive exercise-induced oxidative stress in rats.Mol. Med. Rep.2012651195119810.3892/mmr.2012.106022948446
    [Google Scholar]
  114. WangW. XiaM.X. ChenJ. YuanR. DengF.N. ShenF.F. Gene expression characteristics and regulation mechanisms of superoxide dismutase and its physiological roles in plants under stress.Biochemistry (Mosc.)201681546548010.1134/S000629791605004727297897
    [Google Scholar]
  115. LeungSB. ZhangH. LauCW. HuangY. LinZ. Salidroside improves homocysteine-induced endothelial dysfunction by reducing oxidative stress.Evid Based Complement Alternat Med.2013201367963510.1155/2013/679635
    [Google Scholar]
  116. BeckmanJ.S. BeckmanT.W. ChenJ. MarshallP.A. FreemanB.A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide.Proc. Natl. Acad. Sci. USA19908741620162410.1073/pnas.87.4.16202154753
    [Google Scholar]
  117. BouillonR. ManousakiD. RosenC. TrajanoskaK. RivadeneiraF. RichardsJ.B. The health effects of vitamin D supplementation: evidence from human studies.Nat. Rev. Endocrinol.20221829611010.1038/s41574‑021‑00593‑z34815552
    [Google Scholar]
  118. GröberU. SpitzJ. ReichrathJ. KistersK. HolickM.F. Vitamin D.Dermatoendocrinol20135333134710.4161/derm.2673824516687
    [Google Scholar]
  119. CarlbergC. MuñozA. An update on vitamin D signaling and cancer.Seminars in Cancer Biology2022, 79, 2022, 217-23010.1016/j.semcancer.2020.05.018
    [Google Scholar]
  120. Saif-ElnasrM. IbrahimI.M. AlkadyM.M. Role of Vitamin D on glycemic control and oxidative stress in type 2 diabetes mellitus.J Res Med Sci.2017222210.4103/1735‑1995.200278
    [Google Scholar]
  121. KeC.Y. YangF.L. WuW.T. ChungC.H. LeeR.P. YangW.T. SubeqY.M. LiaoK.W. Vitamin D3 reduces tissue damage and oxidative stress caused by exhaustive exercise.Int. J. Med. Sci.201613214715310.7150/ijms.1374626941574
    [Google Scholar]
  122. PowersS.K. JacksonM.J. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production.Physiol. Rev.20088841243127610.1152/physrev.00031.200718923182
    [Google Scholar]
  123. Adam-BonciT.I. BonciE.A. PârvuA.E. HerdeanA.I. MoțA. TaulescuM. UngurA. PopR.M. BocșanC. IrimieA. Vitamin D supplementation: oxidative stress modulation in a mouse model of ovalbumin-induced acute asthmatic airway inflammation.Int. J. Mol. Sci.20212213708910.3390/ijms2213708934209324
    [Google Scholar]
  124. El HawaryR. MeshaalS. DeswarteC. GalalN. AbdelkawyM. AlkadyR. ElazizD.A. FreibergerT. RavcukovaB. LitzmanJ. BustamanteJ. BoutrosJ. GaafarT. ElmarsafyA. Role of flow cytometry in the diagnosis of chronic granulomatous disease: the Egyptian experience.J. Clin. Immunol.201636661061810.1007/s10875‑016‑0297‑y27222152
    [Google Scholar]
  125. GomesA. FernandesE. LimaJ.L.F.C. Fluorescence probes used for detection of reactive oxygen species.J. Biochem. Biophys. Methods2005652-3458010.1016/j.jbbm.2005.10.00316297980
    [Google Scholar]
  126. DrummenG.P.C. van LiebergenL.C.M. Op den KampJ.A.F. PostJ.A. C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology.Free Radic. Biol. Med.200233447349010.1016/S0891‑5849(02)00848‑112160930
    [Google Scholar]
  127. WeberD. MilkovicL. BennettS.J. GriffithsH.R. ZarkovicN. GruneT. Measurement of HNE-protein adducts in human plasma and serum by ELISA—Comparison of two primary antibodies.Redox Biol.20131122623310.1016/j.redox.2013.01.01224024156
    [Google Scholar]
  128. MehtaK. PatelV.B. Measurement of 4-Hydroxynonenal (4-HNE) Protein Adducts by ELISA.Methods Mol Biol.20191990435210.1007/978‑1‑4939‑9463‑2_4
    [Google Scholar]
  129. KhoschsorurG.A. Winklhofer-RoobB.M. RablH. AuerT. PengZ. SchaurR.J. Evaluation of a sensitive HPLC method for the determination of Malondialdehyde, and application of the method to different biological materials.Chromatographia2000523-418118410.1007/BF02490453
    [Google Scholar]
  130. DreiβigackerU. SuchyM.T. MaassenN. TsikasD. Human plasma concentrations of malondialdehyde (MDA) and the F2-isoprostane 15(S)-8-iso-PGF2α may be markedly compromised by hemolysis: Evidence by GC-MS/MS and potential analytical and biological ramifications.Clin. Biochem.2010431-215916710.1016/j.clinbiochem.2009.10.00219850019
    [Google Scholar]
  131. SmithK.A. ShepherdJ. WakilA. KilpatrickE.S. A comparison of methods for the measurement of 8-isoPGF 2 α : a marker of oxidative stress.Ann. Clin. Biochem.201148214715410.1258/acb.2010.01015121292864
    [Google Scholar]
  132. BussH. ChanT.P. SluisK.B. DomiganN.M. WinterbournC.C. Protein carbonyl measurement by a sensitive ELISA method.Free Radic. Biol. Med.199723336136610.1016/S0891‑5849(97)00104‑49214571
    [Google Scholar]
  133. TaylorE.L. ArmstrongK.R. PerrettD. HattersleyA.T. WinyardP.G. Optimisation of an advanced oxidation protein products assay: its application to studies of oxidative stress in diabetes mellitus.Oxid. Med. Cell. Longev.20152015111010.1155/2015/49627126113954
    [Google Scholar]
  134. DizdarogluM. JarugaP. BirinciogluM. RodriguezH. Free radical-induced damage to DNA: mechanisms and measurement 1,2 1This article is part of a series of reviews on “Oxidative DNA Damage and Repair.” The full list of papers may be found on the homepage of the journal. 2Guest Editor: Miral Dizdaroglu.Free Radic. Biol. Med.200232111102111510.1016/S0891‑5849(02)00826‑212031895
    [Google Scholar]
  135. GaraycoecheaJ.I. CrossanG.P. LangevinF. MulderrigL. LouzadaS. YangF. GuilbaudG. ParkN. RoerinkS. Nik-ZainalS. StrattonM.R. PatelK.J. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells.Nature2018553768717117710.1038/nature2515429323295
    [Google Scholar]
  136. WeydertC.J. CullenJ.J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue.Nat. Protoc.201051516610.1038/nprot.2009.19720057381
    [Google Scholar]
  137. KaplanL.A. MillerJ.A. SteinE.A. StampferM.J. Simultaneous, high-performance liquid chromatographic analysis of retinol, tocopherols, lycopene, and α-and β-carotene in serum and plasma.Methods in enzymology.Elsevier1990155167
    [Google Scholar]
  138. Lettieri-BarbatoD. TomeiF. SanciniA. MorabitoG. SerafiniM. Effect of plant foods and beverages on plasma non-enzymatic antioxidant capacity in human subjects: a meta-analysis.Br. J. Nutr.201310991544155610.1017/S000711451300026323507127
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838296420240904104030
Loading
/content/journals/ctm/10.2174/0122150838296420240904104030
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antioxidant; biomarkers; neurological diseases; oxidative damages; Oxidative stress; ROS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test