Skip to content
2000
Volume 11, Issue 4
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of the neurons and function of the nervous system. These diseases typically result in a decline in cognitive, motor, or sensory functions and often lead to disability in many cases. Rotenone is a naturally occurring compound isolated from the roots and stems of several plants that induced neurotoxicity by inhibiting the mitochondrial complex I resulting in the generation of reactive oxygen species (ROS) and induced the ROS generation. Natural plant products can play an important role in the treatment of neurodegenerative diseases. This review focusses on the therapeutic potential of natural products and their bioavailability to exert neuroprotective effects against the neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838283345240223112437
2024-03-08
2025-11-07
Loading full text...

Full text loading...

References

  1. ZeligerH.I. Exposure to lipophilic chemicals as a cause of neurological impairments, neurodevelopmental disorders and neurodegenerative diseases.Interdiscip. Toxicol.20136310311010.2478/intox‑2013‑0018 24678247
    [Google Scholar]
  2. GitlerA.D. DhillonP. ShorterJ. Neurodegenerative disease: Models, mechanisms, and a new hope.Dis. Model. Mech.201710549950210.1242/dmm.030205 28468935
    [Google Scholar]
  3. TannerC.M. KamelF. RossG.W. Rotenone, paraquat, and Parkinson’s disease.Environ. Health Perspect.2011119686687210.1289/ehp.1002839 21269927
    [Google Scholar]
  4. AlamM. SchmidtW.J. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats.Behav. Brain Res.2002136131732410.1016/S0166‑4328(02)00180‑8 12385818
    [Google Scholar]
  5. SaravananJ. Kri̇shnamurthyP.T. Neuroprotective effect of farnesol against rotenone induced parkinson’s disease in Drosophila melanogaster.Hacett Uni J Facul Pharma2022431152110.52794/hujpharm.1080352
    [Google Scholar]
  6. RadadK. Al-ShraimM. Al-EmamA. Rotenone: From modelling to implication in Parkinson’s disease.Folia Neuropathol.201957431732610.5114/fn.2019.89857 32337944
    [Google Scholar]
  7. GaoH.M. LiuB. HongJ.S. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons.J. Neurosci.200323156181618710.1523/JNEUROSCI.23‑15‑06181.2003 12867501
    [Google Scholar]
  8. HirschE.C. HunotS. Neuroinflammation in Parkinson’s disease: A target for neuroprotection?Lancet Neurol.20098438239710.1016/S1474‑4422(09)70062‑6 19296921
    [Google Scholar]
  9. HongoH. KiharaT. KumeT. Glycogen synthase kinase-3β activation mediates rotenone-induced cytotoxicity with the involvement of microtubule destabilization.Biochem. Biophys. Res. Commun.20124261949910.1016/j.bbrc.2012.08.042 22922102
    [Google Scholar]
  10. Di PaoloM. PapiL. GoriF. TurillazziE. Natural products in neurodegenerative diseases: A great promise but an ethical challenge.Int. J. Mol. Sci.20192020517010.3390/ijms20205170 31635296
    [Google Scholar]
  11. OjhaS. JavedH. AzimullahS. HaqueM.E. β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease.Mol. Cell. Biochem.20164181-2597010.1007/s11010‑016‑2733‑y 27316720
    [Google Scholar]
  12. MythriR.B. HarishG. BharathM.M. Therapeutic potential of natural products in Parkinson’s disease.Recent Pat. Endocr. Metab. Immune Drug Discov.20126318120010.2174/187221412802481793 22827714
    [Google Scholar]
  13. PohlF. Kong Thoo LinP. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: In vitro ,in vivo and clinical trials.Molecules20182312328310.3390/molecules23123283 30544977
    [Google Scholar]
  14. Mohd SairaziN.S. SirajudeenK.N.S. Natural products and their bioactive compounds: Neuroprotective potentials against neurodegenerative diseases.Evid. Based Complement. Alternat. Med.201030202010.1155/2020/6565396 32148547
    [Google Scholar]
  15. SiddiqueYH Rahul, Ara G, et al Beneficial effects of apigenin on the transgenic drosophila model of Alzheimer’s disease.Chem. Biol. Interact.202236611012010.1016/j.cbi.2022.110120 36027948
    [Google Scholar]
  16. BegT. JyotiS. NazF. Protective effect of kaempferol on the transgenic Drosophila model of Alzheimer’s disease.CNS Neurol. Disord. Drug Targets201817642142910.2174/1871527317666180508123050 29745345
    [Google Scholar]
  17. ElmazogluZ. Yar SaglamA.S. SonmezC. KarasuC. Luteolin protects microglia against rotenone-induced toxicity in a hormetic manner through targeting oxidative stress response, genes associated with Parkinson’s disease and inflammatory pathways.Drug Chem. Toxicol.20204319610310.1080/01480545.2018.1504961 30207190
    [Google Scholar]
  18. SiddiqueY.H. KhanamS. RahulR. Protective effect of tangeritin in transgenic Drosophila model of Parkinson rsquo s disease.Front. Biosci.201791445310.2741/e784 27814588
    [Google Scholar]
  19. RahmanM.H. BajgaiJ. FadriquelaA. Therapeutic potential of natural products in treating neurodegenerative disorders and their future prospects and challenges.Molecules20212617532710.3390/molecules26175327 34500759
    [Google Scholar]
  20. YarmohammadiF. Wallace HayesA. NajafiN. KarimiG. The protective effect of natural compounds against rotenone‐induced neurotoxicity.J. Biochem. Mol. Toxicol.20203412e2260510.1002/jbt.22605 32830361
    [Google Scholar]
  21. InnosJ. HickeyM.A. Using rotenone to model Parkinson’s disease in mice: A review of the role of pharmacokinetics.Chem. Res. Toxicol.20213451223123910.1021/acs.chemrestox.0c00522 33961406
    [Google Scholar]
  22. MenonV.P. SudheerA.R. Antioxidant and anti-inflammatory properties of curcumin.Adv. Exp. Med. Biol.200759510512510.1007/978‑0‑387‑46401‑5_3
    [Google Scholar]
  23. MadihaS. HaiderS. Curcumin restores rotenone induced depressive-like symptoms in animal model of neurotoxicity: assessment by social interaction test and sucrose preference test.Metab. Brain Dis.201934129730810.1007/s11011‑018‑0352‑x 30506334
    [Google Scholar]
  24. MonroyA. LithgowG.J. AlavezS. Curcumin and neurodegenerative diseases.Biofactors201339112213210.1002/biof.1063 23303664
    [Google Scholar]
  25. RamkumarM. RajasankarS. GobiV.V. Neuroprotective effect of Demethoxycurcumin, a natural derivative of Curcumin on rotenone induced neurotoxicity in SH-SY 5Y Neuroblastoma cells.BMC Complement. Altern. Med.201717121710.1186/s12906‑017‑1720‑5 28420370
    [Google Scholar]
  26. SiddiqueY.H. JyotiS. NazF. Protective effect of luteolin on the transgenic Drosophila model of Parkinson’s disease.J. Pharm. Sci.2018543
    [Google Scholar]
  27. AliF Rahul , Jyoti S, et al Therapeutic potential of luteolin in transgenic Drosophila model of Alzheimer’s disease.Neurosci. Lett.2019692909910.1016/j.neulet.2018.10.053 30420334
    [Google Scholar]
  28. NabaviSF BraidyN GortziO Luteolin as an anti-inflammatory and neuroprotective agent: A brief review.Brain Res Bull2015119Pt A11110.1016/j.brainresbull.2015.09.002 26361743
    [Google Scholar]
  29. Hasan SiddiqueY. Rahul, Varshney H, Mantasha I, Shahid M. Effect of luteolin on the transgenic Drosophila model of Huntington’s disease.Comput. Toxicol.20211710014810.1016/j.comtox.2020.100148
    [Google Scholar]
  30. BrownJ.E. Rice-EvansC.A. Luteolin-rich artichoke extract protects low density lipoprotein from oxidation In vitro .Free Radic. Res.199829324725510.1080/10715769800300281 9802556
    [Google Scholar]
  31. LinT.Y. LuC.W. WangS.J. Luteolin protects the hippocampus against neuron impairments induced by kainic acid in rats.Neurotoxicology201655485710.1016/j.neuro.2016.05.008 27185356
    [Google Scholar]
  32. AliF. SiddiqueY.H. Bioavailability and pharmaco-therapeutic potential of luteolin in overcoming Alzheimer’s disease.CNS Neurol. Disord. Drug Targets201918535236510.2174/1871527318666190319141835 30892166
    [Google Scholar]
  33. KingR.E. BomserJ.A. MinD.B. Bioactivity of resveratrol.Compr. Rev. Food Sci. Food Saf.200653657010.1111/j.1541‑4337.2006.00001.x
    [Google Scholar]
  34. BurnsJ. YokotaT. AshiharaH. LeanM.E.J. CrozierA. Plant foods and herbal sources of resveratrol.J. Agric. Food Chem.200250113337334010.1021/jf0112973 12010007
    [Google Scholar]
  35. de Sá CoutinhoD. PachecoM. FrozzaR. BernardiA. Anti-inflammatory effects of resveratrol: Mechanistic insights.Int. J. Mol. Sci.2018196181210.3390/ijms19061812 29925765
    [Google Scholar]
  36. UdenigweC.C. RamprasathV.R. AlukoR.E. JonesP.J.H. Potential of resveratrol in anticancer and anti-inflammatory therapy.Nutr. Rev.200866844545410.1111/j.1753‑4887.2008.00076.x 18667005
    [Google Scholar]
  37. PallàsM. PorquetD. VicenteA. SanfeliuC. Resveratrol: New avenues for a natural compound in neuroprotection.Curr. Pharm. Des.201319386726673110.2174/1381612811319380005 23530512
    [Google Scholar]
  38. LançonA. FrazziR. LatruffeN. Anti-oxidant, anti-inflammatory and anti-angiogenic properties of resveratrol in ocular diseases.Molecules201621330410.3390/molecules21030304 26950104
    [Google Scholar]
  39. WangH. DongX. LiuZ. Resveratrol suppresses rotenone‐induced neurotoxicity through activation of SIRT1/Akt1 signaling pathway.Anat. Rec.201830161115112510.1002/ar.23781 29350822
    [Google Scholar]
  40. SunW. LiH. ShenY. XiaoH. Resveratrol attenuates rotenone-induced inflammation and oxidative stress via STAT1 and Nrf2/Keap1/SLC7A11 pathway in a microglia cell line.Pathol. Res. Pract.202122515357610.1016/j.prp.2021.153576 34391968
    [Google Scholar]
  41. ZhaoX. WangJ. HuS. WangR. MaoY. XieJ. Neuroprotective effect of resveratrol on rotenone-treated C57BL/6 mice.Neuroreport201728949850510.1097/WNR.0000000000000789 28471847
    [Google Scholar]
  42. LinT.K. ChenS.D. ChuangY.C. Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy.Int. J. Mol. Sci.20141511625164610.3390/ijms15011625 24451142
    [Google Scholar]
  43. EsatbeyogluT. WagnerA.E. Schini-KerthV.B. RimbachG. Betanin-a food colorant with biological activity.Mol. Nutr. Food Res.2015591364710.1002/mnfr.201400484 25178819
    [Google Scholar]
  44. AhmadiH. NayeriZ. MinuchehrZ. SabouniF. MohammadiM. Betanin purification from red beetroots and evaluation of its anti-oxidant and anti-inflammatory activity on LPS-activated microglial cells.PLoS One2020155e023308810.1371/journal.pone.0233088 32401824
    [Google Scholar]
  45. Thong-asaW. JedsadavitayakolS. JutarattananonS. Benefits of betanin in rotenone-induced Parkinson mice.Metab. Brain Dis.20213682567257710.1007/s11011‑021‑00826‑0 34436745
    [Google Scholar]
  46. IntararuchikulT. TeerapattarakanN. RodsiriR. Effects of Centella Asiatica extract on antioxidant status and liver metabolome of rotenone‐treated rats using GC–MS.Biomed. Chromatogr.2019332e439510.1002/bmc.4395 30242859
    [Google Scholar]
  47. SiddiqueY.H. NazF. JyotiS. Effect of Centella asiatica leaf extract on the dietary supplementation in transgenic Drosophila model of Parkinson’s disease.Parkinsons Dis.2014201411110.1155/2014/262058 25538856
    [Google Scholar]
  48. BrinkhausB. LindnerM. SchuppanD. HahnE.G. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella aslatica.Phytomedicine20007542744810.1016/S0944‑7113(00)80065‑3 11081995
    [Google Scholar]
  49. NatarajJ. ManivasagamT. Justin ThenmozhiA. EssaM.M. Neuroprotective effect of asiatic acid on rotenone-induced mitochondrial dysfunction and oxidative stress-mediated apoptosis in differentiated SH-SYS5Y cells.Nutr. Neurosci.201720635135910.1080/1028415X.2015.1135559 26856988
    [Google Scholar]
  50. XiongY. DingH. XuM. GaoJ. Protective effects of asiatic acid on rotenone- or H2O2-induced injury in SH-SY5Y cells.Neurochem. Res.200934474675410.1007/s11064‑008‑9844‑0 18802751
    [Google Scholar]
  51. FarombiE.O. NwaokeaforI.A. Anti-oxidant mechanisms of kolaviron: Studies on serum lipoprotein oxidation, metal chelation and oxidative membrane damage in rats.Clin. Exp. Pharmacol. Physiol.200532866767410.1111/j.0305‑1870.2005.04248.x 16120195
    [Google Scholar]
  52. FarombiE.O. AkanniO.O. EmeroleG.O. Antioxidant and scavenging activities of flavonoid extract (kolaviron) of Garcinia Kola seeds.Pharm. Biol.200240210711610.1076/phbi.40.2.107.5838
    [Google Scholar]
  53. FarombiE.O. AbolajiA.O. FarombiT.H. OropoA.S. OwojeO.A. AwunahM.T. Garcinia kola seed biflavonoid fraction (Kolaviron), increases longevity and attenuates rotenone-induced toxicity in Drosophila melanogaster.Pestic. Biochem. Physiol.2018145394510.1016/j.pestbp.2018.01.002 29482730
    [Google Scholar]
  54. RochaN.F.M. RiosE.R.V. CarvalhoA.M.R. Anti-nociceptive and anti-inflammatory activities of (−)-α-bisabolol in rodents.Naunyn Schmiedebergs Arch. Pharmacol.2011384652553310.1007/s00210‑011‑0679‑x 21870032
    [Google Scholar]
  55. RamazaniE. AkaberiM. EmamiS.A. Tayarani-NajaranZ. Pharmacological and biological effects of alpha-bisabolol: An updated review of the molecular mechanisms.Life Sci.202230412072810.1016/j.lfs.2022.120728 35753438
    [Google Scholar]
  56. EddinL.B. JhaN.K. GoyalS.N. Health benefits, pharmacological effects, molecular mechanisms, and therapeutic potential of α-bisabolol.Nutrients2022147137010.3390/nu14071370 35405982
    [Google Scholar]
  57. JavedH. MeeranM.F.N. AzimullahS. α-Bisabolol, a dietary bioactive phytochemical attenuates dopaminergic neurodegeneration through modulation of oxidative stress, neuroinflammation and apoptosis in rotenone-induced rat model of Parkinson’s disease.Biomolecules20201010142110.3390/biom10101421 33049992
    [Google Scholar]
  58. LeiteG.O. EckerA. SeegerR.L. Protective effect of (−)-α-bisabolol on rotenone-induced toxicity in Drosophila melanogaster.Can. J. Physiol. Pharmacol.201896435936510.1139/cjpp‑2017‑0207 28881148
    [Google Scholar]
  59. IannuzziC. LiccardoM. SirangeloI. Overview of the role of vanillin in neurodegenerative diseases and neuropathophysiological conditions.Int. J. Mol. Sci.2023243181710.3390/ijms24031817 36768141
    [Google Scholar]
  60. BezerraD.P. SoaresA.K.N. de SousaD.P. Overview of the role of vanillin on redox status and cancer development.Oxid. Med. Cell. Longev.201620161910.1155/2016/9734816 28077989
    [Google Scholar]
  61. MakniM. ChtourouY. FetouiH. GarouiE.M. BoudawaraT. ZeghalN. Evaluation of the antioxidant, anti-inflammatory and hepatoprotective properties of vanillin in carbon tetrachloride-treated rats.Eur. J. Pharmacol.20116681-213313910.1016/j.ejphar.2011.07.001 21777577
    [Google Scholar]
  62. HouY. DanX. BabbarM. Ageing as a risk factor for neurodegenerative disease.Nat. Rev. Neurol.2019151056558110.1038/s41582‑019‑0244‑7 31501588
    [Google Scholar]
  63. TaiA. SawanoT. YazamaF. ItoH. Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays.Biochim. Biophys. Acta, Gen. Subj.20111810217017710.1016/j.bbagen.2010.11.004 21095222
    [Google Scholar]
  64. HoK. YazanL.S. IsmailN. IsmailM. Toxicology study of vanillin on rats via oral and intra-peritoneal administration.Food Chem. Toxicol.2011491253010.1016/j.fct.2010.08.023 20807560
    [Google Scholar]
  65. DhanalakshmiC. JanakiramanU. ManivasagamT. Vanillin attenuated behavioural impairments, neurochemical deficts, oxidative stress and apoptosis against rotenone induced rat model of Parkinson’s disease.Neurochem. Res.20164181899191010.1007/s11064‑016‑1901‑5 27038927
    [Google Scholar]
  66. Nagoor MeeranM.F. JavedH. Al TaeeH. AzimullahS. OjhaS.K. Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development.Front. Pharmacol.2017838010.3389/fphar.2017.00380 28694777
    [Google Scholar]
  67. FouadA.A. MoussaN.A. KareemM.M.A. AklU.I. AbdelghanyM.I. Abdel-AzizA.M. Thymol exerts antioxidant, anti-inflammatory, and anti-apoptotic protective effects against gentamicin nephrotoxicity in rats.Pharmacia202269118118610.3897/pharmacia.69.e77338
    [Google Scholar]
  68. YanishlievaN.V. MarinovaE.M. GordonM.H. RanevaV.G. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems.Food Chem.1999641596610.1016/S0308‑8146(98)00086‑7
    [Google Scholar]
  69. MarcheseA. OrhanI.E. DagliaM. Antibacterial and antifungal activities of thymol: A brief review of the literature.Food Chem.201621040241410.1016/j.foodchem.2016.04.111 27211664
    [Google Scholar]
  70. BragaP.C. Dal SassoM. CuliciM. BianchiT. BordoniL. MarabiniL. Anti-inflammatory activity of thymol: Inhibitory effect on the release of human neutrophil elastase.Pharmacology200677313013610.1159/000093790 16763380
    [Google Scholar]
  71. JavedH. AzimullahS. MeeranM.F. AnsariS. OjhaS. Neuroprotective effects of thymol, a dietary monoterpene against dopaminergic neurodegeneration in rotenone-induced rat model of Parkinson’s disease.Int. J. Mol. Sci.2019207153810.3390/ijms20071538 30934738
    [Google Scholar]
  72. WojdyloA. OszmianskiJ. CzemerysR. Antioxidant activity and phenolic compounds in 32 selected herbs.Food Chem.2007105394094910.1016/j.foodchem.2007.04.038
    [Google Scholar]
  73. MancusoC. SantangeloR. Ferulic acid: Pharmacological and toxicological aspects.Food Chem. Toxicol.20146518519510.1016/j.fct.2013.12.024 24373826
    [Google Scholar]
  74. KumarN. PruthiV. Potential applications of ferulic acid from natural sources.Biotechnol. Rep.20144869310.1016/j.btre.2014.09.002 28626667
    [Google Scholar]
  75. SrinivasanM. SudheerA.R. MenonV.P. Ferulic Acid: Therapeutic potential through its antioxidant property.J. Clin. Biochem. Nutr.20074029210010.3164/jcbn.40.92 18188410
    [Google Scholar]
  76. PandiA. RaghuM.H. ChandrashekarN. KalappanV.M. Cardioprotective effects of Ferulic acid against various drugs and toxic agents.J. Basic Appl. Sci.202211119
    [Google Scholar]
  77. RenZ. ZhangR. LiY. LiY. YangZ. YangH. Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo.Int. J. Mol. Med.20174051444145610.3892/ijmm.2017.3127 28901374
    [Google Scholar]
  78. NileS.H. KoE.Y. KimD.H. KeumY.S. Screening of ferulic acid related compounds as inhibitors of xanthine oxidase and cyclooxygenase-2 with anti-inflammatory activity.Rev. Bras. Farmacogn.2016261505510.1016/j.bjp.2015.08.013
    [Google Scholar]
  79. GaoJ. YuH. GuoW. The anticancer effects of ferulic acid is associated with induction of cell cycle arrest and autophagy in cervical cancer cells.Cancer Cell Int.201818110210.1186/s12935‑018‑0595‑y 30013454
    [Google Scholar]
  80. SinghS. ArthurR. UpadhayayS. KumarP. Ferulic acid ameliorates neurodegeneration via the Nrf2/ARE signalling pathway: A Review.Pharmacol. Res. Mod. Chin. Med.2022510019010.1016/j.prmcm.2022.100190
    [Google Scholar]
  81. HaqueE. JavedH. AzimullahS. Abul KhairS.B. OjhaS. Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease.Drug Des. Devel. Ther.201595499551010.2147/DDDT.S90616 26504373
    [Google Scholar]
  82. RaufA. ImranM. Abu-IzneidT. Proanthocyanidins: A comprehensive review.Biomed. Pharmacother.201911610899910.1016/j.biopha.2019.108999 31146109
    [Google Scholar]
  83. de la IglesiaR. MilagroF.I. CampiónJ. BoquéN. MartínezJ.A. Healthy properties of proanthocyanidins.Biofactors201036315916810.1002/biof.79 20232344
    [Google Scholar]
  84. MouradovA. SpangenbergG. Flavonoids: A metabolic network mediating plants adaptation to their real estate.Front Plant Sci2014562010.3389/fpls.2014.00620 25426130
    [Google Scholar]
  85. BladéC. AragonèsG. Arola-ArnalA. Proanthocyanidins in health and disease.Biofactors201642151210.1002/biof.1249 26762288
    [Google Scholar]
  86. ZhenJ. QuZ. FangH. Effects of grape seed proanthocyanidin extract on pentylenetetrazole-induced kindling and associated cognitive impairment in rats.Int. J. Mol. Med.201434239139810.3892/ijmm.2014.1796 24912930
    [Google Scholar]
  87. StrathearnK.E. YousefG.G. GraceM.H. Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson׳s disease.Brain Res.20141555607710.1016/j.brainres.2014.01.047 24502982
    [Google Scholar]
  88. MaJ. GaoS.S. YangH.J. Neuroprotective effects of proanthocyanidins, natural flavonoids derived from plants, on rotenone-induced oxidative stress and apoptotic cell death in human neuroblastoma SH-SY5Y cells.Front. Neurosci.20181236910.3389/fnins.2018.00369 29904339
    [Google Scholar]
  89. ChenW. ViljoenA.M. Geraniol — A review of a commercially important fragrance material.S. Afr. J. Bot.201076464365110.1016/j.sajb.2010.05.008
    [Google Scholar]
  90. MączkaW. WińskaK. GrabarczykM. One hundred faces of geraniol.Molecules20202514330310.3390/molecules25143303 32708169
    [Google Scholar]
  91. LapczynskiA. BhatiaS.P. FoxenbergR.J. LetiziaC.S. ApiA.M. Fragrance material review on geraniol.Food Chem. Toxicol.20084611S160S17010.1016/j.fct.2008.06.048 18640215
    [Google Scholar]
  92. ChenW. ViljoenA.M. Geraniol. A review update.S. Afr. J. Bot.20221501205121910.1016/j.sajb.2022.09.012
    [Google Scholar]
  93. ChenL. LinL. DongZ. ZhangL. DuH. Comparison of neuroprotective effect of Forsythia suspensa leaf extract and forsythiaside, one of its metabolites.Nat. Prod. Res.201832222705270810.1080/14786419.2017.1374266 28882055
    [Google Scholar]
  94. BagheriS. SalehiI. Ramezani-AliakbariF. Kourosh-AramiM. KomakiA. Neuroprotective effect of geraniol on neurological disorders: A review article.Mol. Biol. Rep.20224911108651087410.1007/s11033‑022‑07755‑w 35900613
    [Google Scholar]
  95. ChoM. SoI. ChunJ.N. JeonJ.H. The antitumor effects of geraniol: Modulation of cancer hallmark pathways (Review).Int. J. Oncol.20164851772178210.3892/ijo.2016.3427 26983575
    [Google Scholar]
  96. LiraM.H.P. Andrade JúniorF.P. MoraesG.F.Q. MacenaG.S. PereiraF.O. LimaI.O. Antimicrobial activity of geraniol: An integrative review.J. Essent. Oil Res.202032318719710.1080/10412905.2020.1745697
    [Google Scholar]
  97. F El Azab E, Elguindy NM, Yacout GA, Elgamal DA. Hepatoprotective impact of geraniol against CCl4-induced liver fibrosis in rats.Pak. J. Biol. Sci.202023121650165810.3923/pjbs.2020.1650.1658 33274899
    [Google Scholar]
  98. LeiY. FuP. JunX. ChengP. Pharmacological properties of geraniol.Planta Med.2019851485510.1055/a‑0750‑6907 30308694
    [Google Scholar]
  99. RekhaK.R. Inmozhi SivakamasundariR. Geraniol protects against the protein and oxidative stress induced by rotenone in an in vitro model of Parkinson’s disease.Neurochem. Res.201843101947196210.1007/s11064‑018‑2617‑5 30141137
    [Google Scholar]
  100. Fernández-PunteroB. BarrosoI. IglesiasI. BenedíJ. VillarA. Antioxidant activity of Fraxetin: In vivo and ex vivo parameters in normal situation versus induced stress.Biol. Pharm. Bull.200124777778410.1248/bpb.24.777 11456117
    [Google Scholar]
  101. ThuongP.T. PokharelY.R. LeeM.Y. Dual anti-oxidative effects of fraxetin isolated from Fraxinus rhinchophylla.Biol. Pharm. Bull.20093291527153210.1248/bpb.32.1527 19721227
    [Google Scholar]
  102. BalahaM. AhmedN. GeddawyA. KandeelS. Fraxetin prevented sodium fluoride-induced chronic pancreatitis in rats: Role of anti-inflammatory, antioxidant, antifibrotic and anti-apoptotic activities.Int. Immunopharmacol.20219310737210.1016/j.intimp.2021.107372 33524802
    [Google Scholar]
  103. MolinajiménezM. SánchezreusM. CascalesM. AndrésD. BenedíJ. Effect of fraxetin on antioxidant defense and stress proteins in human neuroblastoma cell model of rotenone neurotoxicity. Comparative study with myricetin and N-acetylcysteine.Toxicol. Appl. Pharmacol.2005209321422510.1016/j.taap.2005.04.009 15904944
    [Google Scholar]
  104. SongJ. HamJ. HongT. SongG. LimW. Fraxetin suppresses cell proliferation and induces apoptosis through mitochondria dysfunction in human hepatocellular carcinoma cell lines Huh7 and Hep3B.Pharmaceutics202113111210.3390/pharmaceutics13010112 33477262
    [Google Scholar]
  105. Sánchez-ReusM.I. PeinadoI.I. Molina-JiménezM.F. BenedíJ. Fraxetin prevents rotenone-induced apoptosis by induction of endogenous glutathione in human neuroblastoma cells.Neurosci. Res.2005531485610.1016/j.neures.2005.05.009 15996779
    [Google Scholar]
  106. TarozziA. AngeloniC. MalagutiM. MorroniF. HreliaS. HreliaP. Sulforaphane as a potential protective phytochemical against neurodegenerative diseases.Oxid. Med. Cell. Longev.2013201311010.1155/2013/415078 23983898
    [Google Scholar]
  107. Guerrero-BeltránC.E. Calderón-OliverM. Pedraza-ChaverriJ. ChirinoY.I. Protective effect of sulforaphane against oxidative stress: Recent advances.Exp. Toxicol. Pathol.201264550350810.1016/j.etp.2010.11.005 21129940
    [Google Scholar]
  108. ZhouQ. ChenB. WangX. Sulforaphane protects against rotenone-induced neurotoxicity in vivo: Involvement of the mTOR, Nrf2 and autophagy pathways.Sci. Rep.2016613220610.1038/srep32206 27553905
    [Google Scholar]
  109. SchepiciG. BramantiP. MazzonE. Efficacy of sulforaphane in neurodegenerative diseases.Int. J. Mol. Sci.20202122863710.3390/ijms21228637 33207780
    [Google Scholar]
  110. ZhangM. SwartsS.G. YinL. Antioxidant properties of quercetin.Oxygen transport to tissue XXXII.Springer US201128328910.1007/978‑1‑4419‑7756‑4_38
    [Google Scholar]
  111. GrewalA.K. SinghT.G. SharmaD. Mechanistic insights and perspectives involved in neuroprotective action of quercetin.Biomed. Pharmacother.202114011172910.1016/j.biopha.2021.111729 34044274
    [Google Scholar]
  112. LesjakM. BearaI. SiminN. Antioxidant and anti-inflammatory activities of quercetin and its derivatives.J. Funct. Foods201840687510.1016/j.jff.2017.10.047
    [Google Scholar]
  113. DajasF. Life or death: Neuroprotective and anticancer effects of quercetin.J. Ethnopharmacol.2012143238339610.1016/j.jep.2012.07.005 22820241
    [Google Scholar]
  114. KhanH. UllahH. AschnerM. CheangW.S. AkkolE.K. Neuroprotective effects of quercetin in Alzheimer’s disease.Biomolecules20191015910.3390/biom10010059 31905923
    [Google Scholar]
  115. JainJ. HasanW. Singh YadavR. JatD. Protective effects of quercetin against rotenone induced histopathological and biochemical alteration in testes of mice.Toxicol. Int.2021281576510.18311/ti/2021/v28i1/26296
    [Google Scholar]
  116. MadihaS. BatoolZ. TabassumS. Quercetin exhibits potent antioxidant activity, restores motor and non-motor deficits induced by rotenone toxicity.PLoS One20211611e025892810.1371/journal.pone.0258928 34767546
    [Google Scholar]
  117. HasanW. RajakR. KoriR.K. YadavR.S. JatD. Neuroprotective effects of mitochondria-targeted quercetin against rotenone-induced oxidative damage in cerebellum of Mice.Int. J. Nutr. Pharmacol. Neurol. Dis.20199413614510.4103/ijnpnd.ijnpnd_27_19
    [Google Scholar]
  118. MaoY.R. JiangL. DuanY.L. AnL.J. JiangB. Efficacy of catalpol as protectant against oxidative stress and mitochondrial dysfunction on rotenone-induced toxicity in mice brain.Environ. Toxicol. Pharmacol.200723331431810.1016/j.etap.2006.11.012 21783774
    [Google Scholar]
  119. KimH.J. SongJ.Y. ParkH.J. ParkH.K. YunD.H. ChungJ.H. Naringin protects against rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells.Korean J. Physiol. Pharmacol.200913428128510.4196/kjpp.2009.13.4.281 19885011
    [Google Scholar]
  120. TamilselvamK. BraidyN. ManivasagamT. Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease.Oxid. Med. Cell. Longev.2013201311110.1155/2013/102741 24205431
    [Google Scholar]
  121. KaruppagounderS.S. MadathilS.K. PandeyM. HaobamR. RajammaU. MohanakumarK.P. Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats.Neuroscience201323613614810.1016/j.neuroscience.2013.01.032 23357119
    [Google Scholar]
  122. RyuH.W. OhW.K. JangI.S. ParkJ. Amurensin G induces autophagy and attenuates cellular toxicities in a rotenone model of Parkinson’s disease.Biochem. Biophys. Res. Commun.2013433112112610.1016/j.bbrc.2013.02.053 23485458
    [Google Scholar]
  123. AngelineM.S. SarkarA. AnandK. AmbastaR.K. KumarP. Sesamol and naringenin reverse the effect of rotenone-induced PD rat model.Neuroscience201325437939410.1016/j.neuroscience.2013.09.029
    [Google Scholar]
  124. KavithaM. ManivasagamT. EssaM.M. Mangiferin antagonizes rotenone: Induced apoptosis through attenuating mitochondrial dysfunction and oxidative stress in SK-N-SH neuroblastoma cells.Neurochem. Res.201439466867610.1007/s11064‑014‑1249‑7 24493626
    [Google Scholar]
  125. DhanalakshmiC. ManivasagamT. NatarajJ. Justin ThenmozhiA. EssaM.M. Neurosupportive role of vanillin, a natural phenolic compound, on rotenone induced neurotoxicity in SH-SY5Y neuroblastoma cells.Evid. Based Complement. Alternat. Med.2015201511110.1155/2015/626028 26664453
    [Google Scholar]
  126. ChenY. ZhangD. LiaoZ. Anti-oxidant polydatin (piceid) protects against substantia nigral motor degeneration in multiple rodent models of Parkinson’s disease.Mol. Neurodegener.2015101410.1186/1750‑1326‑10‑4 26013581
    [Google Scholar]
  127. El-HoranyH.E. El-latifR.N.A. ElBatshM.M. EmamM.N. Ameliorative effect of quercetin on neurochemical and behavioral deficits in rotenone rat model of Parkinson’s disease: Modulating autophagy (quercetin on experimental Parkinson’s disease).J. Biochem. Mol. Toxicol.201630736036910.1002/jbt.21821 27252111
    [Google Scholar]
  128. JavedH. AzimullahS. Abul KhairS.B. OjhaS. HaqueM.E. Neuroprotective effect of nerolidol against neuroinflammation and oxidative stress induced by rotenone.BMC Neurosci.20161715810.1186/s12868‑016‑0293‑4 27549180
    [Google Scholar]
  129. HuangJ. YuanY. YanJ. 20C, a bibenzyl compound isolated from Gastrodia elata, protects PC12 cells against rotenone-induced apoptosis via activation of the Nrf2/ARE/HO-1 signaling pathway.Acta Pharmacol. Sin.201637673174010.1038/aps.2015.154 27180985
    [Google Scholar]
  130. BarrecaD. CurròM. BelloccoE. Neuroprotective effects of phloretin and its glycosylated derivative on rotenone‐induced toxicity in human SH‐SY5Y neuronal‐like cells.Biofactors201743454955710.1002/biof.1358 28401997
    [Google Scholar]
  131. DarbinyanL.V. HambardzumyanL.E. SimonyanK.V. Protective effects of curcumin against rotenone-induced rat model of Parkinson’s disease: In vivo electrophysiological and behavioral study.Metab. Brain Dis.20173261791180310.1007/s11011‑017‑0060‑y 28695411
    [Google Scholar]
  132. ZhangX. DuL. ZhangW. YangY. ZhouQ. DuG. Therapeutic effects of baicalein on rotenone-induced Parkinson’s disease through protecting mitochondrial function and biogenesis.Sci. Rep.201771996810.1038/s41598‑017‑07442‑y 28855526
    [Google Scholar]
  133. AnushaC. SumathiT. JosephL.D. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis.Chem. Biol. Interact.2017269677910.1016/j.cbi.2017.03.016 28389404
    [Google Scholar]
  134. AmeenA.M. ElkazazA.Y. MohammadH.M.F. BarakatB.M. Anti-inflammatory and neuroprotective activity of boswellic acids in rotenone parkinsonian rats.Can. J. Physiol. Pharmacol.201795781982910.1139/cjpp‑2016‑0158 28249117
    [Google Scholar]
  135. SunH. HeX. LiuC. Effect of Oleracein E, a neuroprotective tetrahydroisoquinoline, on rotenone-induced Parkinson’s disease cell and animal models.ACS Chem. Neurosci.20178115516410.1021/acschemneuro.6b00291 27731637
    [Google Scholar]
  136. ElangovanN. ElangovanN. MohankumarT. Isolongifolene attenuates rotenone-induced mitochondrial dysfunction oxidative stress and apoptosis.Front. Biosci.201810124826110.2741/s513 28930531
    [Google Scholar]
  137. ZhangN. DouD. RanX. KangT. Neuroprotective effect of arctigenin against neuroinflammation and oxidative stress induced by rotenone.RSC Advances2018852280229210.1039/C7RA10906G 35541453
    [Google Scholar]
  138. Medeiros-LinardC.F.B. Andrade-da-CostaB.L.S. AugustoR.L. Anacardic acids from cashew nuts prevent behavioral changes and oxidative stress induced by rotenone in a rat model of Parkinson’s disease.Neurotox. Res.201834225026210.1007/s12640‑018‑9882‑6 29520721
    [Google Scholar]
  139. HasanW. KoriR.K. JainJ. YadavR.S. JatD. Neuroprotective effects of mitochondria‐targeted curcumin against rotenone‐induced oxidative damage in cerebellum of mice.J. Biochem. Mol. Toxicol.2020341e2241610.1002/jbt.22416 31714633
    [Google Scholar]
  140. HasanW. KoriR.K. ThakreK. YadavR.S. JatD. Synthesis, characterization and efficacy of mitochondrial targeted delivery of TPP-curcumin in rotenone-induced toxicity.Daru201927255757010.1007/s40199‑019‑00283‑2 31264184
    [Google Scholar]
  141. RaoS.V. HemalathaP. YetishS. MuralidharaM. RajiniP.S. Prophylactic neuroprotective propensity of Crocin, a carotenoid against rotenone induced neurotoxicity in mice: Behavioural and biochemical evidence.Metab. Brain Dis.20193451341135310.1007/s11011‑019‑00451‑y 31214956
    [Google Scholar]
  142. RamachandranR. RamachandranR. Fisetin protects against rotenone-induced neurotoxicity through signaling pathway.Front. Biosci.2019111202810.2741/e843 30468635
    [Google Scholar]
  143. PakrashiS. ChakrabortyJ. BandyopadhyayJ. Neuroprotective role of quercetin on rotenone-induced toxicity in SH-SY5Y cell line through modulation of apoptotic and autophagic pathways.Neurochem. Res.20204581962197310.1007/s11064‑020‑03061‑8 32488468
    [Google Scholar]
  144. TsengH.C. WangM.H. ChangK.C. Protective effect of (−) epigallocatechin-3-gallate on rotenone-induced parkinsonism-like symptoms in rats.Neurotox. Res.202037366968210.1007/s12640‑019‑00143‑6 31811588
    [Google Scholar]
  145. JayarajR.L. BeiramR. AzimullahS. Valeric acid protects dopaminergic neurons by suppressing oxidative stress, neuroinflammation and modulating autophagy pathways.Int. J. Mol. Sci.20202120767010.3390/ijms21207670 33081327
    [Google Scholar]
  146. FengJ. ZhangS. MaY. Neuroprotective mechanisms of ε-viniferin in a rotenone-induced cell model of Parkinson’s disease: Significance of SIRT3-mediated FOXO3 deacetylation.Neural Regen. Res.202015112143215310.4103/1673‑5374.282264 32394973
    [Google Scholar]
  147. PeshattiwarV. MukeS. KaikiniA. BagleS. DigheV. SathayeS. Mechanistic evaluation of Ursolic acid against rotenone induced Parkinson’s disease– emphasizing the role of mitochondrial biogenesis.Brain Res. Bull.202016015016110.1016/j.brainresbull.2020.03.003 32147532
    [Google Scholar]
  148. DengH. JiaY. PanD. MaZ. Berberine alleviates rotenone-induced cytotoxicity by antioxidation and activation of PI3K/Akt signaling pathway in SH-SY5Y cells.Neuroreport2020311414710.1097/WNR.0000000000001365 31688419
    [Google Scholar]
  149. Adeyemo-SalamiO.A. AfonjaO.J. AdelekeO.F. AdedaraA.O. AbolajiA.O. Ameliorative potential of chlorogenic acid on rotenone-induced neurotoxicity in drosophila melanogaster model.J. Public Health Int.202143556610.14302/issn.2641‑4538.jphi‑21‑3993
    [Google Scholar]
  150. JayarajR.L. BeiramR. AzimullahS. Noscapine prevents rotenone-induced neurotoxicity: Involvement of oxidative stress, neuroinflammation and autophagy pathways.Molecules20212615462710.3390/molecules26154627 34361780
    [Google Scholar]
  151. TripathiS.S. SinghA.K. AkhtarF. ChaudharyA. RizviS.I. Metformin protects red blood cells against rotenone induced oxidative stress and cytotoxicity.Arch. Physiol. Biochem.2021127210211110.1080/13813455.2019.1620288 31155970
    [Google Scholar]
  152. AlikatteK. PalleS. Rajendra KumarJ. PathakalaN. Fisetin improved rotenone-induced behavioral deficits, oxidative changes, and mitochondrial dysfunctions in rat model of Parkinson’s disease.J. Diet. Suppl.2021181577110.1080/19390211.2019.1710646 31992104
    [Google Scholar]
  153. DarbinyanL.V. SimonyanK.V. HambardzumyanL.E. ManukyanL.P. BadalyanS.H. SarkisianV.H. Protective effect of curcumin against rotenone-induced substantia nigra pars compacta neuronal dysfunction.Metab. Brain Dis.20223741111111810.1007/s11011‑022‑00941‑6 35239141
    [Google Scholar]
  154. AkinadeT.C. BabatundeO.O. AdedaraA.O. Protective capacity of carotenoid trans-astaxanthin in rotenone-induced toxicity in Drosophila melanogaster.Sci. Rep.2022121459410.1038/s41598‑022‑08409‑4 35301354
    [Google Scholar]
  155. AltharawiA. AlharthyK.M. AlthurwiH.N. Europinidin inhibits rotenone-activated parkinson’s disease in rodents by decreasing lipid peroxidation and inflammatory cytokines pathways.Molecules20222721715910.3390/molecules27217159 36363986
    [Google Scholar]
  156. HabibC.N. MohamedM.R. TadrosM.G. TolbaM.F. MenzeE.T. MasoudS.I. The potential neuroprotective effect of diosmin in rotenone-induced model of Parkinson’s disease in rats.Eur. J. Pharmacol.202291417457310.1016/j.ejphar.2021.174573 34656609
    [Google Scholar]
  157. ShirgadwarS.M. KumarR. PreetiK. KhatriD.K. SinghS.B. Neuroprotective effect of phloretin in rotenone-induced mice model of parkinson’s disease: Modulating mTOR-NRF2-p62 mediated autophagy-oxidative stress crosstalk.J. Alzheimers Dis.202211610.3233/JAD‑220793 36463449
    [Google Scholar]
  158. ChavesN.S.G. JannerD.E. PoetiniM.R. β-carotene-loaded nanoparticles protect against neuromotor damage, oxidative stress, and dopamine deficits in a model of Parkinson’s disease in Drosophila melanogaster.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202326810961510.1016/j.cbpc.2023.109615 36940893
    [Google Scholar]
  159. EddinL.B. AzimullahS. JhaN.K. Nagoor MeeranM.F. BeiramR. OjhaS. Limonene, a monoterpene, mitigates rotenone-induced dopaminergic neurodegeneration by modulating neuroinflammation, hippo signaling and apoptosis in rats.Int. J. Mol. Sci.2023246522210.3390/ijms24065222 36982297
    [Google Scholar]
  160. Shahid NadeemM. KhanJ.A. Al-AbbasiF.A. Protective effect of hirsutidin against rotenone-induced parkinsonism via inhibition of caspase-3/Interleukins-6 and 1β.ACS Omega2023814130161302510.1021/acsomega.3c00201 37065035
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838283345240223112437
Loading
/content/journals/ctm/10.2174/0122150838283345240223112437
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test