Skip to content
2000
Volume 11, Issue 4
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Background

Helminth infections caused by parasitic worms due to poor sanitation are a major public health problem. As the infections are often asymptomatic but can lead to malnutrition and growth problems, and also because of resistance to anthelmintics, effective treatments are crucial. Traditional herbal remedies, which are particularly important in resource-poor regions, such as northeast India, play an important role in addressing this challenge.

Objective

The study focuses on anthelmintic herbal remedies and aims to explore and analyze the indigenous herbal treatments in Northeast India. The review combines a comprehensive review of literature, field studies, and traditional knowledge and provides insights into plant species, preparation techniques and research studies that have been reported.

Methods

The information presented was assessed using a variety of electronic resources, including ScienceDirect, Wiley, Elsevier, Springer, Google Scholar, and PubMed (National Library of Medicines).

Results

The focus of this review is on the phytochemicals present in these herbal remedies from Northeastern India, which play a pivotal role in their efficacy against parasitic worms. The analysis explores the mechanisms of action behind these remedies and sheds light on the scientific basis of traditional therapies. It emphasizes the merging of ancient and modern research and emphasizes interdisciplinary collaboration and knowledge sharing.

Conclusion

This review highlights the scope for effective anthelmintic therapies and explores the synergy between synthetic compounds and natural phytometabolites that offer the potential for effective interventions. This ethnopharmacological review not only scientifically validates traditional wisdom but also demonstrates the value of indigenous approaches in the treatment of modern health issues.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838281547240219114943
2024-03-08
2025-11-06
Loading full text...

Full text loading...

References

  1. MahapatraS. AliM.H. SamalK. MoulickS. Diagnostic and treatment technologies for detection and removal of helminth in wastewater and sludge.Energy Nexus2022810014710.1016/j.nexus.2022.100147
    [Google Scholar]
  2. NathT.C. EomK.S. ChoeS. An update of intestinal helminth infections among urban slum communities in Bangladesh.IJID Reg.202251710.1016/j.ijregi.2022.08.004 36105668
    [Google Scholar]
  3. KokkaliariS. AvalonN.E. HerreraK. Marine natural products with bioactivity against neglected tropical diseases.Marine Natural Products.Springer202120925110.1007/7081_2021_56
    [Google Scholar]
  4. LenziJ. CostaT.M. AlbertonM.D. GoulartJ.A.G. TavaresL.B.B. Medicinal fungi: A source of antiparasitic secondary metabolites.Appl. Microbiol. Biotechnol.2018102145791581010.1007/s00253‑018‑9048‑8 29749562
    [Google Scholar]
  5. OrganizationW.H. Investing to overcome the global impact of neglected tropical diseases: Third WHO report on neglected tropical diseases 2015.World Health Organization20153
    [Google Scholar]
  6. SeidM. YohanesT. GoshuY. JemalK. SirajM. The effect of compliance to Hand hygiene during COVID-19 on intestinal parasitic infection and intensity of soil transmitted helminthes, among patients attending general hospital, Southern Ethiopia: Observational study.PLoS One2022176e027037810.1371/journal.pone.0270378 35767582
    [Google Scholar]
  7. BeneshD.P. ParkerG. ChubbJ.C. Life‐cycle complexity in helminths: What are the benefits?Evolution20217581936195210.1111/evo.14299 34184269
    [Google Scholar]
  8. EjiguK. HailuT. AlemuM. Efficacy of mebendazole and praziquantel against soil-transmitted helminths and schistosoma mansoni infections among schoolchildren in Northwest Ethiopia.BioMed Res. Int.202120211710.1155/2021/6682418 34327236
    [Google Scholar]
  9. ShoorajM. MahdaviS.A. A review on the clinical symptoms and treatment methods of human hookworm infections.Tabari Biomed Stu Res J202243404810.18502/tbsrj.v4i3.10515
    [Google Scholar]
  10. JayawardeneK.L.T.D. PalomboE.A. BoagP.R. Natural products are a promising source for anthelmintic drug discovery.Biomolecules20211110145710.3390/biom11101457 34680090
    [Google Scholar]
  11. NketiaA. NakuaE. WilliamA. Herbal medicine practice in Ghana: A cross-sectional study to understand the factors influencing patient utilization of herbal medicine services.Int. Res. J. Public Environ. Health202291162310.15739/irjpeh.22.003
    [Google Scholar]
  12. SalamN. AzamS. Prevalence and distribution of soil-transmitted helminth infections in India.BMC Public Health201717120110.1186/s12889‑017‑4113‑2 28209148
    [Google Scholar]
  13. ChopraP ShekharS DagarVK PandeyS Prevalence and risk factors of soil-transmitted helminthic infections in the pediatric population in India: A systematic review and meta-analysis. J Lab Physicians20231510041910.1055/s‑0042‑1751319 37064993
    [Google Scholar]
  14. BhuyanS. Traditional uses of plant resources by khasi tribes in nongkhyllem wildlife sanctuary, meghalaya, India.J Fundam Appl Sci2021716472
    [Google Scholar]
  15. DekaS. BaruaD. BahurupiY. KalitaD. Assessment of the prevalence of soil-transmitted helminth infections and associated risk factors among school-aged children in a flood-affected area of Northeast India.Am. J. Trop. Med. Hyg.2021105248048910.4269/ajtmh.20‑1238 34228636
    [Google Scholar]
  16. Al MusaediA.I. AlsaadyH.A.M. Parasitic intensity, multiplication, movement and size play role in pathogenesis.J Glob Sci Res20227102696270010.5281/jgsr.2022.7142909
    [Google Scholar]
  17. Cepon-RobinsT.J. GildnerT.E. SchrockJ. Soil‐transmitted helminth infection and intestinal inflammation among the Shuar of Amazonian Ecuador.Am. J. Phys. Anthropol.20191701657410.1002/ajpa.23897 31260090
    [Google Scholar]
  18. AdamY.A. LimS-T.J.M. AttaalmananE.M. AhmedE.F.E. Granulomatous cholecystitis in a patient with schistosoma mansoni infection: A case report.SJMCR20219111115111810.36347/sjmcr.2021.v09i11.020
    [Google Scholar]
  19. MossallamS.F. Abou-El-NagaI.F. Abdel BaryA. ElmorsyE.A. DiabR.G. Schistosoma mansoni egg-derived extracellular vesicles: A promising vaccine candidate against murine schistosomiasis.PLoS Negl. Trop. Dis.20211510e000986610.1371/journal.pntd.0009866 34644290
    [Google Scholar]
  20. GonzalesI. RiveraJ.T. GarciaH.H. Pathogenesis of Taenia solium taeniasis and cysticercosis.Parasite Immunol.201638313614610.1111/pim.12307 26824681
    [Google Scholar]
  21. ZachariaA. AhmadaW. OutwaterA.H. NgasalaB. Van DeunR. Using constructed wetlands to remove pathogenic parasites and fecal coliforms from wastewater in dar es salaam and Iringa, Tanzania.Tanzan. J. Sci.202248118519510.4314/tjs.v48i1.17
    [Google Scholar]
  22. DixonM.A. WinskillP. HarrisonW.E. Global variation in force-of-infection trends for human Taenia solium taeniasis/cysticercosis.eLife202211e7698810.7554/eLife.76988 35984416
    [Google Scholar]
  23. GobertG.N. AtkinsonL.E. LokkoA. Clinical helminth infections alter host gut and saliva microbiota.PLoS Negl. Trop. Dis.2022166e001049110.1371/journal.pntd.0010491 35675339
    [Google Scholar]
  24. Shea-DonohueT. QinB. SmithA. Parasites, nutrition, immune responses and biology of metabolic tissues.Parasite Immunol.2017395e1242210.1111/pim.12422 28235148
    [Google Scholar]
  25. KimJ.B. SeoK.I. MoonW. Trichuris trichiura infection in North Korean defector resulted in chronic abdominal pain and growth retardation.Korean J. Gastroenterol.201769424324710.4166/kjg.2017.69.4.243 28449427
    [Google Scholar]
  26. WeatherheadJ.E. Pediatric pharmacotherapy: anthelminthic treatment Pediatric Pharmacotherapy.Springer201933936210.1007/164_2019_254
    [Google Scholar]
  27. ZelekeA.J. BayihA.G. AfeworkS. GilleardJ.S. Treatment efficacy and re-infection rates of soil-transmitted helminths following mebendazole treatment in schoolchildren, Northwest Ethiopia.Trop. Med. Health20204819010.1186/s41182‑020‑00282‑z 33292853
    [Google Scholar]
  28. PabalanN. SingianE. TabangayL. JarjanaziH. BoivinM.J. EzeamamaA.E. Soil-transmitted helminth infection, loss of education and cognitive impairment in school-aged children: A systematic review and meta-analysis.PLoS Negl. Trop. Dis.2018121e000552310.1371/journal.pntd.0005523 29329288
    [Google Scholar]
  29. ClarkeN.E. DoiS.A.R. WangdiK. ChenY. ClementsA.C.A. NeryS.V. Efficacy of anthelminthic drugs and drug combinations against soil-transmitted helminths: A systematic review and network meta-analysis.Clin. Infect. Dis.20186819610510.1093/cid/ciy423 29788074
    [Google Scholar]
  30. KabatendeJ. MugishaM. NtirenganyaL. Prevalence, intensity, and correlates of soil-transmitted helminth infections among school children after a decade of preventive chemotherapy in Western Rwanda.Pathogens2020912107610.3390/pathogens9121076 33371488
    [Google Scholar]
  31. PalmeirimM.S. HürlimannE. KnoppS. Efficacy and safety of co-administered ivermectin plus albendazole for treating soil-transmitted helminths: A systematic review, meta-analysis and individual patient data analysis.PLoS Negl. Trop. Dis.2018124e000645810.1371/journal.pntd.0006458 29702653
    [Google Scholar]
  32. EllwangerJ.H. ZiliottoM. Kulmann-LealB. ChiesJ.A.B. Iron deficiency and soil-transmitted helminth infection: Classic and neglected connections.Parasitol. Res.2022121123381339210.1007/s00436‑022‑07697‑z 36258094
    [Google Scholar]
  33. LiuM. PandaS.K. LuytenW. Plant-based natural products for the discovery and development of novel anthelmintics against nematodes.Biomolecules202010342610.3390/biom10030426 32182910
    [Google Scholar]
  34. FaixováD. HrčkováG. KubaškováM.T. MudroňováD. Antiparasitic effects of selected isoflavones on flatworms.Helminthologia202158111610.2478/helm‑2021‑0004 33664614
    [Google Scholar]
  35. Garcia-BustosJ.F. SleebsB.E. GasserR.B. An appraisal of natural products active against parasitic nematodes of animals.Parasit. Vectors201912130610.1186/s13071‑019‑3537‑1 31208455
    [Google Scholar]
  36. MaY. YuanR. SikandarA. ZhuX. DuanY. WangY. Genistein and daidzein effects on the physiological indices of soybean cyst nematodes.Sci. Agric.20217922022
    [Google Scholar]
  37. TandonV. DasB. Genistein: Is the multifarious botanical a natural anthelmintic too?J. Parasit. Dis.201842215116110.1007/s12639‑018‑0984‑0 29844617
    [Google Scholar]
  38. AhmadS. ZebA. Phytochemical profile and pharmacological properties of Trifolium repens.J. Basic Clin. Physiol. Pharmacol.20213212020001510.1515/jbcpp‑2020‑0015 32776902
    [Google Scholar]
  39. LaldinsangiC. The therapeutic potential of Houttuynia cordata: A current review.Heliyon202288e1038610.1016/j.heliyon.2022.e10386 36061012
    [Google Scholar]
  40. HossainR. QuispeC. Herrera-BravoJ. Lasia spinosa chemical composition and therapeutic potential: A literature-based review.Oxid. Med. Cell. Longev.2021202111210.1155/2021/1602437 34992714
    [Google Scholar]
  41. RanilR. PushpakumaraD. BandaranayakeP. AriyaratneW. WijesundaraD. Ethnobotany of lasia spinosa (L.) thwaites: The spiny edible aroid in Asia.Genet. Resour. Crop Evol.2019701553156610.1007/s10722‑023‑01574‑z
    [Google Scholar]
  42. AfzalS. AyoubM. RajaW.Y. A review on its phytochemical and pharmacological profile.Edible Plants in Health and Diseases.SingaporeSpringer202250152210.1007/978‑981‑16‑4959‑2
    [Google Scholar]
  43. GogoiS. YadavA.K. Therapecutic efficacy of the leaf extract of Croton joufra Roxb. against experimental cestodiasis in rats.J. Parasit. Dis.201741241742210.1007/s12639‑016‑0819‑9 28615852
    [Google Scholar]
  44. Díaz-CarrilloJ.T. Díaz-CamachoS.P. Delgado-VargasF. Synthesis of leading chalcones with high antiparasitic, against Hymenolepis nana, and antioxidant activities.Braz. J. Pharm. Sci.2018543e17343
    [Google Scholar]
  45. SwargiaryA DaimariM RoyMK Survey and documentation of anthelmintic plants used in traditional medicine system of tribal communities of Udalguri district of Assam, India. J Appl Pharm Sci20201010465410.7324/JAPS.2020.101006
    [Google Scholar]
  46. BanerjeeT. SinghA. KumarS. Ovicidal and larvicidal effects of extracts from leaves of Andrographis paniculata (Burm. f.) Wall.ex Nees against field isolates of human hookworm (Ancylostoma duodenale).J. Ethnopharmacol.201923548950010.1016/j.jep.2019.02.021 30763693
    [Google Scholar]
  47. Castañeda-RamírezG.S. Torres-AcostaJ.F.J. Mendoza-de-GivesP. Effects of different extracts of three Annona species on egg-hatching processes of Haemonchus contortus.J. Helminthol.202094e7710.1017/S0022149X19000397 31455460
    [Google Scholar]
  48. RakkimuthuR. AarthiS. NeelamathiE. SathishkumarP. AnandakumarA.M. SowmiyaD. Green synthesis of reduced graphene oxide silver nanocomposite using anisomeles malabarica (L.) r. br. leaf extract and its antibacterial activity.Rasayan J. Chem.202215141742210.31788/RJC.2022.1516786
    [Google Scholar]
  49. SwargiaryA. DaimariM. RoyM.K. Putative anthelmintic plants used in traditional medicine system of Kokrajhar district, India.Ethnobot. Res. Appl.20212211810.32859/era.22.10.1‑18
    [Google Scholar]
  50. AhmedH. KilincS.G. CelikF. An inventory of anthelmintic plants across the globe.Pathogens202312113110.3390/pathogens12010131 36678480
    [Google Scholar]
  51. KļaviņaA. KeidāneD. ŠukeleR. BandereD. KovaļčukaL. Traditional Latvian herbal medicinal plants used to treat parasite infections of small ruminants: A review.Vet. World20211461548155810.14202/vetworld.2021.1548‑1558 34316202
    [Google Scholar]
  52. HeinrichM. MahJ. AmirkiaV. Alkaloids used as medicines: Structural phytochemistry meets biodiversity—an update and forward look.Molecules2021267183610.3390/molecules26071836 33805869
    [Google Scholar]
  53. RamdaniD. YuniartiE. JayanegaraA. ChaudhryA.S. Roles of essential oils, polyphenols, and saponins of medicinal plants as natural additives and anthelmintics in ruminant diets: A systematic review.Animals202313476710.3390/ani13040767 36830554
    [Google Scholar]
  54. HamidL. AlsayariA. TakH. An insight into the global problem of gastrointestinal helminth infections amongst livestock: Does nanotechnology provide an alternative?Agriculture2023137135910.3390/agriculture13071359
    [Google Scholar]
  55. LiK. GustafsonK.R. Sesterterpenoids: Chemistry, biology, and biosynthesis.Nat. Prod. Rep.20213871251128110.1039/D0NP00070A 33350420
    [Google Scholar]
  56. Medina-FrancoJ.L. Sánchez-CruzN. López-LópezE. Díaz-EufracioB.I. Progress on open chemoinformatic tools for expanding and exploring the chemical space.J. Comput. Aided Mol. Des.202236534135410.1007/s10822‑021‑00399‑1 34143323
    [Google Scholar]
  57. TshikhudoPP NtusheloK MudauFN. Sustainable applications of endophytic bacteria and their physiological/biochemical roles on medicinal and herbal plants: Review.Microorganisms202311245310.3390/microorganisms11020453 36838418
    [Google Scholar]
  58. KaroleS. ShrivastavaS. ThomasS. Polyherbal formulation concept for synergic action: A review.J. Drug Deliv. Ther.201991-s45346610.22270/jddt.v9i1‑s.2339
    [Google Scholar]
  59. HuynhD.L. NgauT.H. NguyenN.H. TranG.B. NguyenC.T. Potential therapeutic and pharmacological effects of Wogonin: An updated review.Mol. Biol. Rep.202047129779978910.1007/s11033‑020‑05972‑9 33165817
    [Google Scholar]
  60. DwivedyAK. SinghVK. KumarM. Bioprospection of traditionally used medicinal plants: An overview. In: Angiosperm Systematics: Recent Trends and Emerging Issues. Dehra Dun, India: M/s Bishen Singh Mahendra Pal Singh201824766
    [Google Scholar]
  61. VokřálI. PodlipnáR. MatouškováP. SkálováL. Anthelmintics in the environment: Their occurrence, fate, and toxicity to non-target organisms.Chemosphere202334514044610.1016/j.chemosphere.2023.140446 37852376
    [Google Scholar]
  62. HashemiN. OmmiD. KheyriP. KhamesipourF. SetzerW.N. BenchimolM. A review study on the anti-trichomonas activities of medicinal plants.Int. J. Parasitol. Drugs Drug Resist.2021159210410.1016/j.ijpddr.2021.01.002 33610966
    [Google Scholar]
  63. CaiE. WuR. WuY. GaoY. ZhuY. LiJ. A systematic review and meta-analysis on the current status of anthelmintic resistance in equine nematodes: A global perspective.Mol. Biochem. Parasitol.202311160010.1016/j.molbiopara.2023.111600 38030084
    [Google Scholar]
  64. HöglundJ. GustafssonK. Anthelmintic treatment of sheep and the role of parasites refugia in a local context.Animals20231312196010.3390/ani13121960 37370470
    [Google Scholar]
  65. KauerováT. Pérez-PérezM.J. KollarP. Salicylanilides and their anticancer properties.Int. J. Mol. Sci.2023242172810.3390/ijms24021728 36675241
    [Google Scholar]
  66. BagadeS.B. PatilK.D. SharmaS. HatwareK. Potential of herbal constituents as new natural leads against helminthiasis: A neglected tropical disease.Asian Pac. J. Trop. Med.201912729110.4103/1995‑7645.262072
    [Google Scholar]
  67. RanasingheS. ArmsonA. LymberyA.J. ZahediA. AshA. Medicinal plants as a source of antiparasitics: An overview of experimental studies.Pathog. Glob. Health2023117653555310.1080/20477724.2023.2179454 36805662
    [Google Scholar]
  68. PosgayM. GreffB. KapcsándiV. LakatosE. Effect of Thymus vulgaris L. essential oil and thymol on the microbiological properties of meat and meat products: A review.Heliyon2022810e1081210.1016/j.heliyon.2022.e10812 36247140
    [Google Scholar]
  69. SinghS. SinghA. HallanS.S. BranguleA. KumarB. BhatiaR. A compiled update on nutrition, phytochemicals, processing effects, analytical testing and health effects of chenopodium album: A non-conventional edible plant (NCEP).Molecules20232813490210.3390/molecules28134902 37446567
    [Google Scholar]
  70. BlankA.F. Chemical diversity and insecticidal and anti-tick properties of essential oils of plants from Northeast Brazil.Essential Oil Research.ChamSpringer201923525810.1007/978‑3‑030‑16546‑8_8
    [Google Scholar]
  71. ChoudharyS. MarjianovićD.S. WongC.R. Menthol acts as a positive allosteric modulator on nematode levamisole sensitive nicotinic acetylcholine receptors.Int. J. Parasitol. Drugs Drug Resist.20199445310.1016/j.ijpddr.2018.12.005 30682641
    [Google Scholar]
  72. AndréW.P.P. CavalcanteG.S. RibeiroW.L.C. Anthelmintic effect of thymol and thymol acetate on sheep gastrointestinal nematodes and their toxicity in mice.Rev. Bras. Parasitol. Vet.201726332333010.1590/s1984‑29612017056 28977246
    [Google Scholar]
  73. KatikiL.M. AraujoR.C. ZiegelmeyerL. Evaluation of encapsulated anethole and carvone in lambs artificially- and naturally-infected with Haemonchus contortus.Exp. Parasitol.2019197364210.1016/j.exppara.2019.01.002 30633915
    [Google Scholar]
  74. KurtB.Z. GaziogluI. DagA. Synthesis, anticholinesterase activity and molecular modeling study of novel carbamate-substituted thymol/carvacrol derivatives.Bioorg. Med. Chem.20172541352136310.1016/j.bmc.2016.12.037 28089589
    [Google Scholar]
  75. GuzmánP.K. CortésP.D.X. CuellarP.J.L. Effect of pesticides on cognitive and motor performance in habitants of rural areas ofTolima.Psicol. Caribe20233931710.14482/psdc.39.3.152.519
    [Google Scholar]
  76. TrailovićS.M. MarjanovićD.S. TrailovićN.J. RobertsonA.P. MartinR.J. Interaction of carvacrol with the Ascaris suum nicotinic acetylcholine receptors and gamma-aminobutyric acid receptors, potential mechanism of antinematodal action.Parasitol. Res.201511483059306810.1007/s00436‑015‑4508‑x 25944741
    [Google Scholar]
  77. ChenJ. SongB. Natural nematicidal active compounds: Recent research progress and outlook.J. Integr. Agric.20212082015203110.1016/S2095‑3119(21)63617‑1
    [Google Scholar]
  78. KajiM.D. NoonanJ.D. GearyT.G. BeechR.N. Structural mechanism underlying the differential effects of ivermectin and moxidectin on the C. elegans glutamate-gated chloride channel GLC-2.Biomed. Pharmacother.202214511238010.1016/j.biopha.2021.112380 34749053
    [Google Scholar]
  79. MiróV. LifschitzA. VivianiP. In vitro inhibition of the hepatic S-oxygenation of the anthelmintic albendazole by the natural monoterpene thymol in sheep.Xenobiotica202050440841410.1080/00498254.2019.1644390 31305200
    [Google Scholar]
  80. MiróM.V. Costa-JúniorL.M. AlvarezL.I. LanusseC. VirkelG. LifschitzA. Pharmacological characterization of geraniol in sheep and its potential use in the control of gastrointestinal nematodes.Vet. Anim. Sci.20221810026910.1016/j.vas.2022.100269 36147514
    [Google Scholar]
  81. TrailovicS.M. RajkovicM. MarjanovicD.S. NeveuC. CharvetC.L. Action of carvacrol on Parascaris sp. and antagonistic effect on nicotinic acetylcholine receptors.Pharmaceuticals202114650510.3390/ph14060505 34073197
    [Google Scholar]
  82. BobrovskiV.G. PinheiroA.L. de-CastroJ.A.L. Schistosomiasis: A neglected cause of pulmonary arterial hypertension in Brazil.Curr. Probl. Cardiol.202449310234010.1016/j.cpcardiol.2023.102340 38103813
    [Google Scholar]
  83. MukherjeeN. MukherjeeS. SainiP. RoyP. BabuS.P. Phenolics and terpenoids; the promising new search for anthelmintics: A critical review.Mini Rev. Med. Chem.201616171415144110.2174/1389557516666151120121036 26586122
    [Google Scholar]
  84. PadalinoG. El-SakkaryN. LiuL.J. Anti-schistosomal activities of quinoxaline-containing compounds: From hit identification to lead optimisation.Eur. J. Med. Chem.202122611382310.1016/j.ejmech.2021.113823 34536671
    [Google Scholar]
  85. Luzuriaga-QuichimboC.X. Blanco-SalasJ. Cerón-MartínezC.E. Alías-GallegoJ.C. Ruiz-TéllezT. Promising potential of lonchocarpus utilis against South American Myasis.Plants2019913310.3390/plants9010033 31881648
    [Google Scholar]
  86. NarangR. KumarR. KalraS. Recent advancements in mechanistic studies and structure activity relationship of FoF1 ATP synthase inhibitor as antimicrobial agent.Eur. J. Med. Chem.201918211164410.1016/j.ejmech.2019.111644 31493745
    [Google Scholar]
  87. RamlalA. NautiyalA. KumarJ. MishraV. SoganN. SingabN.B.A. Botanicals against some important nematodal diseases: Ascariasis and hookworm infections.Saudi J. Biol. Sci.2023301110381410.1016/j.sjbs.2023.103814 37841664
    [Google Scholar]
  88. AtibaEM LabanRK ZeweiS QingzhangZ AschalewND Implications of tannin containing plants for productivity and health in small ruminant animals: A review. Agric Rev202142(Of): 156-6510.18805/ag.R‑173
    [Google Scholar]
  89. ZoralM.A. Medicinal plants: Are they safe enough for fish health?Aquacult. Int.20233121077109610.1007/s10499‑022‑01015‑1
    [Google Scholar]
  90. KotzeA.C. HuntP.W. The current status and outlook for insecticide, acaricide and anthelmintic resistances across the Australian ruminant livestock industries: Assessing the threat these resistances pose to the livestock sector.Aust. Vet. J.2023101932133310.1111/avj.13267 37401786
    [Google Scholar]
  91. KpabiI. MunschT. AgbanA. Cassia sieberiana root bark used in traditional medicine in Togo: Anthelmintic property against haemonchus contortus and tannins composition.S. Afr. J. Bot.202215154955810.1016/j.sajb.2022.05.055
    [Google Scholar]
  92. WangchukP. PearsonM.S. GiacominP.R. Compounds derived from the bhutanese daisy, ajania nubigena, demonstrate dual anthelmintic activity against schistosoma mansoni and trichuris muris.PLoS Negl. Trop. Dis.2016108e000490810.1371/journal.pntd.0004908 27490394
    [Google Scholar]
  93. PayneS.E. FlemattiG.R. ReederA. KotzeA.C. DurmicZ. VercoeP.E. Procyanidin A2 in the Australian plant Alectryon oleifolius has anthelmintic activity against equine cyathostomins in vitro .Vet. Parasitol.2018249636910.1016/j.vetpar.2017.11.008 29279088
    [Google Scholar]
  94. DíazJ.G. HernándezG.T. ZamilpaA. In vitro assessment of argemone mexicana, taraxacum officinale, ruta chalepensis and tagetes filifolia against haemonchus contortus nematode eggs and infective (L3) larvae.Microb. Pathog.201710916216810.1016/j.micpath.2017.05.048 28578091
    [Google Scholar]
  95. FerreiraL.E. BenincasaB.I. FachinA.L. Thymus vulgaris L. essential oil and its main component thymol: Anthelmintic effects against Haemonchus contortus from sheep.Vet. Parasitol.2016228707610.1016/j.vetpar.2016.08.011 27692335
    [Google Scholar]
  96. NguyenB. ChompooJ. TawataS. Insecticidal and nematicidal activities of novel mimosine derivatives.Molecules2015209167411675610.3390/molecules200916741 26389870
    [Google Scholar]
  97. von Son-deF.E. Alonso-DíazM.Á. Valles-de la MB, Mendoza-de GP, González-Cortazar M, Zamilpa A. Anthelmintic effect of 2H-chromen-2-one isolated from Gliricidia sepium against Cooperia punctata.Exp. Parasitol.20171781610.1016/j.exppara.2017.04.013 28483658
    [Google Scholar]
  98. Cortes-MoralesJ.A. Olmedo-JuárezA. Trejo-TapiaG. In vitro ovicidal activity of Baccharis conferta Kunth against Haemonchus contortus.Exp. Parasitol.2019197202810.1016/j.exppara.2019.01.003 30633914
    [Google Scholar]
  99. Quílez del MoralJ.F. PérezÁ. NavarroM.J.S. Selective extraction of bioactive phenylethanoids from digitalis obscura.Plants202110595910.3390/plants10050959 34065844
    [Google Scholar]
  100. RooneyJ. CantacessiC. SotilloJ. CortésA. Gastrointestinal worms and bacteria: From association to intervention.Parasite Immunol.2023454e1295510.1111/pim.12955 36300732
    [Google Scholar]
  101. ChamaM.A. DziwornuG.A. WaibelR. Isolation, characterization, and anthelminthic activities of a novel dichapetalin and other constituents of Dichapetalum filicaule.Pharm. Biol.201554711010.3109/13880209.2015.1059861 26118692
    [Google Scholar]
  102. KhanZ. NathN. RaufA. Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications.Chem. Biol. Interact.202236511011710.1016/j.cbi.2022.110117 35995256
    [Google Scholar]
  103. Soldera-SilvaA. SeyfriedM. CampestriniL.H. Assessment of anthelmintic activity and bio-guided chemical analysis of Persea americana seed extracts.Vet. Parasitol.2018251344310.1016/j.vetpar.2017.12.019 29426474
    [Google Scholar]
  104. SabatiniG.A. de Almeida BorgesF. ClaereboutE. Practical guide to the diagnostics of ruminant gastrointestinal nematodes, liver fluke and lungworm infection: Interpretation and usability of results.Parasit. Vectors20231615810.1186/s13071‑023‑05680‑w 36755300
    [Google Scholar]
  105. KumarS. SinghA.K. ManhasE. A systematic medico historical review of gokshura (Tribulus terrestris L.): A traditional indian medicine.J. Pharm. Res. Int.20223452102310.9734/jpri/2022/v34i52B7217
    [Google Scholar]
  106. FobofouS.A.T. FrankeK. SannaG. Isolation and anticancer, anthelminthic, and antiviral (HIV) activity of acylphloroglucinols, and regioselective synthesis of empetrifranzinans from Hypericum roeperianum.Bioorg. Med. Chem.201523196327633410.1016/j.bmc.2015.08.028 26358281
    [Google Scholar]
  107. ForbesW.M. GallimoreW.A. MansinghA. ReeseP.B. RobinsonR.D. Eryngial (trans -2-dodecenal), a bioactive compound from Eryngium foetidum: Its identification, chemical isolation, characterization and comparison with ivermectin in vitro .Parasitology2014141226927810.1017/S003118201300156X 24139239
    [Google Scholar]
  108. ChopraB. DhingraA.K. Natural products: A lead for drug discovery and development.Phytother. Res.20213594660470210.1002/ptr.7099 33847440
    [Google Scholar]
  109. HenkeK. NtovasS. XourgiaE. ExadaktylosA.K. Klukowska-RötzlerJ. ZiakaM. Who let the dogs out? unmasking the neglected: A semi-systematic review on the enduring impact of toxocariasis, a prevalent zoonotic infection.Int. J. Environ. Res. Public Health20232021697210.3390/ijerph20216972 37947530
    [Google Scholar]
  110. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  111. NielsenM.K. Anthelmintic resistance in equine nematodes: Current status and emerging trends.Int. J. Parasitol. Drugs Drug Resist.202220768810.1016/j.ijpddr.2022.10.005 36342004
    [Google Scholar]
  112. CharlierJ. WilliamsD.J. RavinetN. ClaereboutE. To treat or not to treat: Diagnostic thresholds in subclinical helminth infections of cattle.Trends Parasitol.202339213915110.1016/j.pt.2022.11.014 36526548
    [Google Scholar]
  113. StrydomT. LavanR.P. TorresS. HeaneyK. The economic impact of parasitism from nematodes, trematodes and ticks on beef cattle production.Animals20231310159910.3390/ani13101599 37238028
    [Google Scholar]
  114. ElghandourM.M.M.Y. MaggiolinoA. Vázquez-MendozaP. Moringa oleifera as a natural alternative for the control of gastrointestinal parasites in equines: A review.Plants2023129192110.3390/plants12091921 37176979
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838281547240219114943
Loading
/content/journals/ctm/10.2174/0122150838281547240219114943
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test