Skip to content
2000
Volume 11, Issue 5
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Background

Epilepsy is a prevalent and serious brain disorder. Although drug therapy is commonly used to treat epilepsy, a significant portion of patients experience drug-resistant seizures. Alternative treatments such as ketogenic diets, brain neurostimulators, and surgical resection are available but may not be suitable for all patients. Traditional Persian Medicine (TPM) manuscripts offer insights into various therapeutic approaches for epilepsy.

Aim

This study aims to compile and discuss the use of herbal therapies for epilepsy as outlined in ancient Persian manuscripts. Additionally, this study investigates the antiepileptic activities and mechanisms of actions of herbal remedies using contemporary medical literature.

Methods

Two main search strategies were employed. Firstly, ancient Persian pharmaceutical manuscripts were analyzed to extract information about herbal remedies for epilepsy. These manuscripts included five primary texts that are highly regarded in TPM. Secondly, contemporary electronic databases such as Google Scholar, Scopus, PubMed, and ScienceDirect were searched to obtain information on the antiepileptic activities and mechanisms of action of the identified herbal remedies. Furthermore, the models/methods and extract types utilized in the studies were retrieved.

Results

The ancient Persian manuscripts revealed the identification of 102 medicinal plants used for the treatment of epilepsy, with the Apiaceae family being the most recommended. The most common route of administration was oral, but topical and nasal application methods were also mentioned. However, limited information regarding adverse effects was provided. Out of the 102 plants, 67 with scientifically approved names were included in the study. According to the recent literature review, many of these plants exhibited antiepileptic activities in animal studies, with their mechanisms of action primarily involving the GABAergic, opioid, and NMDA systems. Moreover, the MAO-A inhibitory properties of these plants, as a previously confirmed antiepileptic mechanism, were assessed.

Conclusion

The findings of this study highlight a wide range of medicinal plants used in TPM for epilepsy treatment. Several of these plants have demonstrated antiepileptic properties in animal studies, suggesting their potential effectiveness. Further research is needed to evaluate the efficacy and safety of these herbal remedies in human participants. The outcomes of such research may potentially lead to the development of new antiepileptic treatments with reduced side effects.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838282344240408104800
2024-05-03
2026-01-03
Loading full text...

Full text loading...

References

  1. BeghiE. GiussaniG. SanderJ.W. The natural history and prognosis of epilepsy.Epileptic Disord.201517324325310.1684/epd.2015.075126234761
    [Google Scholar]
  2. SinghA. TrevickS. The epidemiology of global epilepsy.Neurol. Clin.201634483784710.1016/j.ncl.2016.06.01527719996
    [Google Scholar]
  3. Asadi-PooyaA.A. BrigoF. LattanziS. BlumckeI. Adult epilepsy.Lancet20234021039941242410.1016/S0140‑6736(23)01048‑637459868
    [Google Scholar]
  4. ChristensenJ. DreierJ.W. SunY. Estimates of epilepsy prevalence, psychiatric co-morbidity and cost.Seizure202310716217110.1016/j.seizure.2022.06.01035811222
    [Google Scholar]
  5. Asadi-PooyaA.A. SperlingM.R. Antiepileptic drugs: A Clinician’s manual.United KingdomOxford University Press2016
    [Google Scholar]
  6. ThijsR.D. SurgesR. O’BrienT.J. SanderJ.W. Epilepsy in adults.Lancet20193931017268970110.1016/S0140‑6736(18)32596‑030686584
    [Google Scholar]
  7. KwanP. BrodieM.J. Early identification of refractory epilepsy.N. Engl. J. Med.2000342531431910.1056/NEJM20000203342050310660394
    [Google Scholar]
  8. LiuG. SlaterN. PerkinsA. Epilepsy: Treatment options.Am. Fam. Physician2017962879628762701
    [Google Scholar]
  9. Asadi-PooyaAA RostamiC History of surgery for temporal lobe epilepsy.Epilepsy Behav201770Pt A576010.1016/j.yebeh.2017.02.02028410466
    [Google Scholar]
  10. SahranavardS. GhafariS. MosaddeghM. Medicinal plants used in Iranian traditional medicine to treat epilepsy.Seizure201423532833210.1016/j.seizure.2014.01.01324525263
    [Google Scholar]
  11. TahmasebiE. Monsef-EsfahaniH. VazirianM. Sharafi-BadrP. SharifzadehM. Sadati LamardiS.N. Anticonvulsant effects of Paeonia daurica subsp. macrophylla root extracts in pentylenetetrazol-induced seizure models in mice.Neurología20212121334511273
    [Google Scholar]
  12. 2021; Zangooei PM, Mirmoosavi SJ, Beiraghi TM, Rakhshandeh H, Zadeh MM, Rashidi R. Efficacy and tolerability of hydroalcoholic extract of Paeonia officinalis in children with intractable epilepsy: An open-label pilot study.Epilepsy Res.2021176106735
    [Google Scholar]
  13. RashidianA. KazemiF. MehrzadiS. DehpourA.R. MehrS.E. RezayatS.M. Anticonvulsant effects of aerial parts of Verbena officinalis extract in mice: Involvement of benzodiazepine and opioid receptors.J. Evid. Based Complem Altern. Med.201722463263610.1177/215658721770993028585447
    [Google Scholar]
  14. PetramfarP. ZarshenasM.M. MoeinM. MohagheghzadehA. Management of insomnia in traditional Persian medicine.Forsch. Komplement. Med.201421211912524851849
    [Google Scholar]
  15. Muhammad Ibn ZakariyaR.A.B. Kitab al-hawi fial-Tibb (The Comprehensive Book on Medicine or Liber Continens).TehranAcademy of Medical Sciences2005
    [Google Scholar]
  16. AvicennaI.S. Kitab al-Qanun fial-Tibb (Canon of medicine).New DelhiSenior Press Superintendent, Jamia Hamdard Printing Press1998
    [Google Scholar]
  17. ShiraziA. Ikhtiyarat-i Badii (Selections for Badii).TehranPakhsh Razi Press1992
    [Google Scholar]
  18. Muʼmin M. Tuhfat al-mu’minin (The Present for the Faithful).TehranResearch Center of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Nashre Shahr Press2007
    [Google Scholar]
  19. ShiraziA. Makhzan al-adviyah (The Storehouse of Medicaments).Tehran, IranUniversity of Medical Sciences2009
    [Google Scholar]
  20. PanayiotopoulosC.P. The epilepsies: Seizures, syndromes and management.Oxfordshire, UKBladon Medical Publishing2005
    [Google Scholar]
  21. FisherR.S. BoasW.E. BlumeW. Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE).Epilepsia200546447047210.1111/j.0013‑9580.2005.66104.x15816939
    [Google Scholar]
  22. KatyalJ. SarangalV. GuptaY.K. Interaction of hydroalcoholic extract of Acorus calamus Linn. with sodium valproate and carbamazepine.Indian J. Exp. Biol.2012501515522279941
    [Google Scholar]
  23. JayaramanR. AnithaT. Analgesic and anticonvulsant effects of Acorus calamus roots in mice.Int. J. Pharm. Tech. Res.201021552555
    [Google Scholar]
  24. SiddalingappaC.M. Anticonvulsant action of extract of Acorus Calamus.Int J Med Res201023
    [Google Scholar]
  25. HazraR. RayK. GuhaD. Inhibitory role of Acorus calamus in ferric chloride–induced epileptogenesis in rat.Hum. Exp. Toxicol.2007261294795310.1177/096032710708779118375638
    [Google Scholar]
  26. Baradaran RahimiV. AskariV.R. HosseiniM. YousefsaniB.S. SadeghniaH.R. Anticonvulsant activity of viola tricolor against seizures induced by pentylenetetrazol and maximal electroshock in mice.Iran. J. Med. Sci.201944322022631182888
    [Google Scholar]
  27. RezvaniM.E. VahidiA.R. EsmailiM. BagheriS.M. Anticonvulsant effect of ferula assa-foetida oleo gum resin on chemical and amygdala-kindled rats.N. Am. J. Med. Sci.20146840841210.4103/1947‑2714.13929625210675
    [Google Scholar]
  28. KiasalariZ. KhaliliM. RoghaniM. HeidariH. AziziY.J.B. Antiepileptic and antioxidant effect of hydroalcoholic extract of Ferula Assa Foetida gum on pentylentetrazole- induced kindling in male mice.Autonomic. Neurosci.201444299
    [Google Scholar]
  29. BertoncelloK.T. AguiarG.P.S. OliveiraJ.V. SiebelA.M. Micronization potentiates curcumin’s anti-seizure effect and brings an important advance in epilepsy treatment.Sci. Rep.201881264510.1038/s41598‑018‑20897‑x29422541
    [Google Scholar]
  30. NascimentoC.P. FerreiraL.O. SilvaA.L.M. A combination of Curcuma longa and diazepam attenuates seizures and subsequent hippocampal neurodegeneration.Front. Cell. Neurosci.20221688481310.3389/fncel.2022.88481335774084
    [Google Scholar]
  31. NejadS.R. MotevalianM. FatemiI. ShojaiiA. Anticonvulsant effects of the hydroalcoholic extract of Alpinia officinarum Rhizomesin Mice: Involvement of benzodiazepine and opioid receptors.J. Epilepsy Res.201771333810.14581/jer.1700628775953
    [Google Scholar]
  32. Masoumi-ArdakaniY. MandegaryA. EsmaeilpourK. Chemical composition, anticonvulsant activity, and toxicity of essential oil and methanolic extract of elettaria cardamomum.Planta Med.201682171482148610.1055/s‑0042‑10697127433883
    [Google Scholar]
  33. MandegaryA. Arab-NozariM. RamiarH. SharififarF. Anticonvulsant activity of the essential oil and methanolic extract of Bunium persicum (Boiss). B. Fedtsch.J. Ethnopharmacol.2012140244745110.1016/j.jep.2012.01.02422301447
    [Google Scholar]
  34. MotevalianM. MehrzadiS. AhadiS. Anticonvulsant activity of Dorema ammoniacum gum: Evidence for the involvement of benzodiazepines and opioid receptors.Res. Pharm. Sci.20171215359
    [Google Scholar]
  35. AbizadehM. HeysieattalabS. SaeediN. Ameliorating effects of Dorema ammoniacum on PTZ-Induced seizures and epileptiform brain activity in rats.Planta Med.202086181353136210.1055/a‑1229‑443632851611
    [Google Scholar]
  36. JahaniR. KhoramjouyM. NasiriA. Sojoodi MoghaddamM. Asgharzadeh SaltehY. FaiziM. Neuro-behavioral profile and toxicity of the essential oil of Dorema ammoniacum gum as an anti-seizure, anti-nociceptive, and hypnotic agent with memory-enhancing properties in D-galactose induced aging mice.Iran. J. Pharm. Res.202019311012133680015
    [Google Scholar]
  37. KarimzadehF. HosseiniM. MangengD. Anticonvulsant and neuroprotective effects of Pimpinella anisum in rat brain.BMC Complement. Altern. Med.20121217610.1186/1472‑6882‑12‑7622709243
    [Google Scholar]
  38. Ranjbar EkbatanM. KhoramjouyM. GholamineB. FaiziM. SahranavardS. Evaluation of anticonvulsant effect of aqueous and methanolic extracts of seven Inula species.Iran. J. Pharm. Res.201918Suppl. 120822032802101
    [Google Scholar]
  39. AsgharzadehF. HosseiniM. BargiR. BeheshtiF. RakhshandehH. MansouriS. Effects of hydro-ethanolic extract of Tanacetum parthenium and its N-butanol and aqueous fractions on brain oxidative damage in pentylenetetrazole-induced seizures in mice.Pharmaceut. Sci.201926325226010.34172/PS.2020.32
    [Google Scholar]
  40. ZaidiS.A. PathanS. AhmadF. SurenderS. JamilS. KharR. Anticonvulsant and neurotoxicity profile of commiphora gileadensis (L.) C. Chr.Planta Med.2010760584
    [Google Scholar]
  41. MehrabaniM. ModirianE. EbrahimabadiA. VafazadehJ. Study of the effects of hydro-methanol extracts of Lavandula vera DC. and Cuscuta epithymum Murr. on the seizure induced by pentylentetranzol in mice.J. Kerman Univ. Med. Sci.20141412532
    [Google Scholar]
  42. MehrzadiS. ShojaiiA. PurS.A. MotevalianM. Anticonvulsant activity of hydroalcoholic extract of Citrullus colocynthis fruit: Involvement of benzodiazepine and opioid receptors.J. Evid. Based Complementary Altern. Med.2016214NP31NP3510.1177/215658721561545526634927
    [Google Scholar]
  43. ReddyJ GnanasekaranD VijayD RanganathanT In vitro studies on anti asthmatic, analgesic and anti convulsant activities of the medicinal plant Bryonia laciniosa.Linn.Int J Drug Discovery2010220110
    [Google Scholar]
  44. TripathiA.C. GuptaR. SarafS.K. Phytochemical investigation characterisation and anticonvulsant activity of Ricinus communis seeds in mice.Nat. Prod. Res.201125191881188410.1080/14786419.2010.55175321870936
    [Google Scholar]
  45. Nkamguie NkantchouaG.C. Kameni NjapdounkeJ.S. Jules FifenJ. Anticonvulsant effects of Senna spectabilis on seizures induced by chemicals and maximal electroshock.J. Ethnopharmacol.2018212182810.1016/j.jep.2017.09.04228986332
    [Google Scholar]
  46. Asadi-ShekaariM. EslamiA. KalantaripourT. JoukarS. Potential mechanisms involved in the anticonvulsant effect of walnut extract on pentylenetetrazole-induced seizure.Med. Princ. Pract.201423653854210.1159/00036575925196480
    [Google Scholar]
  47. Skalicka-WoźniakK. WalasekM. AljarbaT.M. The anticonvulsant and anti-plasmid conjugation potential of Thymus vulgaris chemistry: An in vivo murine and in vitro study.Food Chem. Toxicol.201812047247810.1016/j.fct.2018.07.04530055314
    [Google Scholar]
  48. DeshmaneD.N. GadgoliC.H. HaladeG.V. Anticonvulsant effect of Origanum majorana L.Pharmacologyonline200716478
    [Google Scholar]
  49. GalatiE.M. MiceliN. GalluzzoM. TavianoM.F. TzakouO. Neuropharmacological effects of epinepetalactone from Nepeta sibthorpii behavioral and anticonvulsant activity.Pharm. Biol.200442639139510.1080/13880200490885059
    [Google Scholar]
  50. KoutroumanidouE. KimbarisA. KortsarisA. BezirtzoglouE. PolissiouM. CharalabopoulosK. Increased seizure latency and decreased severity of pentylenetetrazol-induced seizures in mice after essential oil administration.Epilepsy Res. Treat.2013201353265710.1155/2013/532657
    [Google Scholar]
  51. RaafatK. WurglicsM. Phytochemical analysis of Ficus carica L. active compounds possessing anticonvulsant activity.J. Tradit. Complement. Med.20199426327010.1016/j.jtcme.2018.01.00731453121
    [Google Scholar]
  52. González-TrujanoM.E. Martínez-GonzálezC.L. Flores-CarrilloM. Luna-NophalS.I. Contreras-MurilloG. Magdaleno-MadrigalV.M. Behavioral and electroencephalographic evaluation of the anticonvulsive activity of Moringa oleifera leaf non-polar extracts and one metabolite in PTZ-induced seizures.Phytomedicine2018391910.1016/j.phymed.2017.12.00929433669
    [Google Scholar]
  53. BakreA.G. AderibigbeA.O. AdemowoO.G. Studies on neuropharmacological profile of ethanol extract of Moringa oleifera leaves in mice.J. Ethnopharmacol.2013149378378910.1016/j.jep.2013.08.00623933316
    [Google Scholar]
  54. PushpaV.H. SnehalathaN. SureshaR.N. SatishA.M. KalabharthiH.L. Antiepileptic activity of methanolic extract of Syzygium cumini seeds in albino mice.Int J Pharm Technol2013556975704
    [Google Scholar]
  55. KandedaA.K. NodeinaS. MabouS.T. An aqueous extract of Syzygium cumini protects against kainate-induced status epilepticus and amnesia: Evidence for antioxidant and anti-inflammatory intervention.Metab. Brain Dis.20223772581260210.1007/s11011‑022‑01052‑y35916986
    [Google Scholar]
  56. AlenajafA. MohebiE. MoghimiA. FereidoniM. Mohammad-ZadehM. The effect of harmaline on seizures induced by amygdala kindling in rats.Neurol. Res.201941652853510.1080/01616412.2019.158046030890034
    [Google Scholar]
  57. AcarH. SamaeekiaR. SchnorenbergM.R. Cathepsin-mediated cleavage of peptides from peptide amphiphiles leads to enhanced intracellular peptide accumulation.Bioconjug. Chem.20172892316232610.1021/acs.bioconjchem.7b0036428771332
    [Google Scholar]
  58. AdvaniU. AnwarA. MenghaniE. Anticonvulsant potentials of Sesamum indicum and Allium sativum oil alone and in combination in animal models.Int. J. Pharm. Pharm. Sci.201134154158
    [Google Scholar]
  59. DhayabaranD. FloranceE.J. NandakumarK. ShanmugarathinamA. PuratchikodyA. Anticonvulsant activity of fraction isolated from ethanolic extract of heartwood of Cedrus deodara.J. Nat. Med.201468231031510.1007/s11418‑013‑0798‑423959538
    [Google Scholar]
  60. ViswanathaG NandakumarK Anxiolytic and anticonvulsant activity of alcoholic extract of heart wood of Cedrus deodara Roxb in rodents.Asian J Pharmaceut Res Health Care200912
    [Google Scholar]
  61. KilariE.K. RaoL.S.N. SreemanthulaS. KolaP.K. Anti-stress and nootropic activity of aqueous extract of Piper longum fruit, estimated by noninvasive biomarkers and Y-maze test in rodents.Environ. Exp. Biol.2015132531
    [Google Scholar]
  62. AsifM. VohoraD. JafriM. Preliminary screening of a classical Unani formulation majoon najah for anticonvulsant activity.Int J Pharmaceut Res2019114142153
    [Google Scholar]
  63. BrillatzT. JacminM. VougogiannopoulouK. Antiseizure potential of the ancient Greek medicinal plant Helleborus odorus subsp. cyclophyllus and identification of its main active principles.J. Ethnopharmacol.202025911295410.1016/j.jep.2020.11295432445663
    [Google Scholar]
  64. WannangN.N. AnukaJ.A. KwanashieH.O. GyangS.S. AutaA. Anti-seizure activity of the aqueous leaf extract of Solanum nigrum linn (solanaceae) in experimental animals.Afr. Health Sci.200882747919357754
    [Google Scholar]
  65. AzanchiT. ShafaroodiH. AsgarpanahJ. Anticonvulsant activity of Citrus aurantium blossom essential oil (neroli): Involvment of the GABAergic system.Nat. Prod. Commun.20149111615161825532295
    [Google Scholar]
  66. ShabanE.A. Effect of Ruta graveolens on pentylenetetrazol and electrically induced convulsions in albino mice.Int J Res Pharmacol Pharmacotherapeut201433158162
    [Google Scholar]
  67. YousufS. Marifatul HaqS. RasoolA. Evaluation of antidepressant activity of methanolic and hydroalcoholic extracts of Acorus calamus L. rhizome through tail suspension test and forced swimming test of mice.J. Tradit. Chin. Med. Sci.20207330130710.1016/j.jtcms.2020.07.002
    [Google Scholar]
  68. BaekS.C. ChoiB. NamS.J. KimH. Inhibition of monoamine oxidase A and B by demethoxycurcumin and bisdemethoxycurcumin.J. Appl. Biol. Chem.201861218719010.3839/jabc.2018.027
    [Google Scholar]
  69. JagerA.K. GauguinB. AndersenJ. AdsersenA. GudiksenL. Screening of plants used in Danish folk medicine to treat depression and anxiety for affinity to the serotonin transporter and inhibition of MAO-A.J. Ethnopharmacol.2013145382282510.1016/j.jep.2012.12.02123266274
    [Google Scholar]
  70. LópezV. NielsenB. SolasM. RamírezM.J. JägerA.K. Exploring pharmacological mechanisms of lavender (Lavandula angustifolia) essential oil on central nervous system targets.Front. Pharmacol.20178MAY28010.3389/fphar.2017.0028028579958
    [Google Scholar]
  71. NajmiM.F. RofieeM.S. KekT.L. YusofF.Z.M. SallehM.Z. The Mechanism of anxiolytic effects of moringa oleifera leaf extracts associated with significant differential expression of Crhb, Faah2a, Mao, and Pah Genes in Danio rerio.Borneo J Resource Sci Technol2023132799110.33736/bjrst.5669.2023
    [Google Scholar]
  72. HerraizT. GonzálezD. Ancín-AzpilicuetaC. AránV.J. GuillénH. β-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO).Food Chem. Toxicol.201048383984510.1016/j.fct.2009.12.01920036304
    [Google Scholar]
  73. WangY. WangH. ZhangL. Potential mechanisms of tremor tolerance induced in rats by the repeated administration of total alkaloid extracts from the seeds of Peganum harmala Linn.J. Ethnopharmacol.202026211318310.1016/j.jep.2020.11318332730891
    [Google Scholar]
  74. HerraizT. GuillénH. Monoamine oxidase-a inhibition and associated antioxidant activity in plant extracts with potential antidepressant actions.BioMed Res. Int.20182018481039410.1155/2018/4810394
    [Google Scholar]
  75. LeeS.A. HongS.S. HanX.H. Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity.Chem. Pharm. Bull. (Tokyo)200553783283510.1248/cpb.53.83215997146
    [Google Scholar]
  76. LeeS.A. HwangJ.S. HanX.H. Methylpiperate derivatives from Piper longum and their inhibition of monoamine oxidase.Arch. Pharm. Res.200831667968310.1007/s12272‑001‑1212‑718563347
    [Google Scholar]
  77. OgunsuyiO.B. AdemiluyiA.O. ObohG. OyeleyeS.I. DadaA.F. Green leafy vegetables from two Solanum spp. (Solanum nigrum L and Solanum macrocarpon L) ameliorate scopolamine‐induced cognitive and neurochemical impairments in rats.Food Sci. Nutr.20186486087010.1002/fsn3.62829983948
    [Google Scholar]
  78. OgunsuyiO.B. AdemiluyiA.O. ObohG. Solanum leaves extracts exhibit antioxidant properties and inhibit monoamine oxidase and acetylcholinesterase activities (in vitro) in Drosophila melanogaster.J. Basic Clin. Physiol. Pharmacol.20203132019025610.1515/jbcpp‑2019‑025632267245
    [Google Scholar]
  79. DevinskyO. VezzaniA. O’BrienT.J. Epilepsy.Nat. Rev. Dis. Primers2018411802410.1038/nrdp.2018.2429722352
    [Google Scholar]
  80. YuenA.W.C. KeezerM.R. SanderJ.W. Epilepsy is a neurological and a systemic disorder.Epilepsy Behav.201878576110.1016/j.yebeh.2017.10.01029175221
    [Google Scholar]
  81. FaheemM. AmeerS. KhanA.W. A comprehensive review on antiepileptic properties of medicinal plants.Arab. J. Chem.202215110347810.1016/j.arabjc.2021.103478
    [Google Scholar]
  82. SunZ. SongC. WangC. HuY. WuJ. Hydrogel-based controlled drug delivery for cancer treatment: A review.Mol. Pharm.2020172102010.1021/acs.molpharmaceut.9b0102031877054
    [Google Scholar]
  83. LöscherW. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs.Seizure201120535936810.1016/j.seizure.2011.01.00321292505
    [Google Scholar]
  84. AmakhinD.V. SmolenskyI.V. SobolevaE.B. ZaitsevA.V. Paradoxical anticonvulsant effect of cefepime in the Pentylenetetrazole model of seizures in rats.Pharmaceuticals20201358010.3390/ph1305008032357511
    [Google Scholar]
  85. HuangR-Q. Bell-HornerC.L. DibasM.I. CoveyD.F. DreweJ.A. DillonG.H. Pentylenetetrazole-induced inhibition of recombinant γ-aminobutyric acid type A (GABA(A)) receptors: Mechanism and site of action.J. Pharmacol. Exp. Ther.2001298398699511504794
    [Google Scholar]
  86. AkyuzE. PolatK. AtesS. Investigating cardiac morphological alterations in a pentylenetetrazol-kindling model of epilepsy.Diagnostics 202010638810.3390/diagnostics1006038832526953
    [Google Scholar]
  87. SperkG. FurtingerS. SchwarzerC. PirkerS. GABA and its receptors in epilepsy Recent advances in epilepsy research.Berlin, GermanySpringer20049210310.1007/978‑1‑4757‑6376‑8_7
    [Google Scholar]
  88. Castel-BrancoM.M. AlvesG.L. FigueiredoI.V. FalcãoA.C. CaramonaM.M. The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs.Methods Find. Exp. Clin. Pharmacol.200931210110610.1358/mf.2009.31.2.133841419455265
    [Google Scholar]
  89. SibbeM. KulikA. GABAergic regulation of adult hippocampal neurogenesis.Mol. Neurobiol.20175475497551010.1007/s12035‑016‑0072‑327599499
    [Google Scholar]
  90. GuptaG. PathakS. DahiyaR. Aqueous extract of wood ear mushroom, Auricularia polytricha (Agaricomycetes), demonstrated antiepileptic activity against seizure induced by maximal electroshock and isoniazid in experimental animals.Int. J. Med. Mushrooms2019211293510.1615/IntJMedMushrooms.201802911330806253
    [Google Scholar]
  91. MaoX.Y. ZhouH.H. JinW.L. Ferroptosis induction in pentylenetetrazole kindling and pilocarpine-induced epileptic seizures in mice.Front. Neurosci.20191372110.3389/fnins.2019.0072131379480
    [Google Scholar]
  92. LinC.H. HsiehC.L. Chinese herbal medicine for treating epilepsy.Front. Neurosci.20211568282110.3389/fnins.2021.68282134276290
    [Google Scholar]
  93. SucherNJ CarlesMC A pharmacological basis of herbal medicines for epilepsy.Epilepsy Behav201552Pt B3081810.1016/j.yebeh.2015.05.01226074183
    [Google Scholar]
  94. WuJ.B. ShihJ.C. Valproic acid induces monoamine oxidase A via Akt/forkhead box O1 activation.Mol. Pharmacol.201180471472310.1124/mol.111.07274421775495
    [Google Scholar]
  95. StefuljJ. Bordukalo-NiksicT. HecimovicH. DemarinV. JernejB. Epilepsy and serotonin (5HT): Variations of 5HT-related genes in temporal lobe epilepsy.Neurosci. Lett.20104781293110.1016/j.neulet.2010.04.06020435093
    [Google Scholar]
  96. TeskeyG.C. RadfordK.S. SeifI. DyckR.H. MAOA knockout mice are more susceptible to seizures but show reduced epileptogenesis.Epilepsy Res.2004591253410.1016/j.eplepsyres.2004.03.00115135164
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838282344240408104800
Loading
/content/journals/ctm/10.2174/0122150838282344240408104800
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test