Skip to content
2000
Volume 11, Issue 5
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

is one of the largest genera in the Leguminosae (Fabaceae) family, with a wide range of distribution in temperate and tropical climates. This review examines the literature from 2000 to 2021 and focuses on medicinal uses, pharmacological research, and flavonoids extracted from species. The review also highlights existing knowledge gaps in species research, which could help speed up future studies aiming at discovering lead chemicals from these species. species are used as pesticides, animal feed additions, and to improve soil fertility through nitrogen fixation. Furthermore, species are frequently used in traditional medicine to treat ailments such as gastro-duodenal disorders, chest pains, chronic diarrhoea, inflammatory disorders, skin disorders, wounds, dysmenorrhea, asthma, elephantiasis, haemorrhoids, and bronchitis. Several recent pharmacological studies have established their efficacy as anti-plasmodium, anti-cancer, anti-protozoal, antibacterial, antifungal, and anti-insecticidal drugs. Furthermore, flavonoids isolated from these species have been proven to exhibit anti-plasmodia, anticancer, and anti-insecticidal properties, supporting the majority of species' traditional applications. Over 140 flavonoids have been identified and isolated from approximately 25 species to date. The majority of the isolated flavonoids have -substituted, C-methylated, or prenylated patterns and are flavonol, chalcone, flavone, or flavanone. Notably, some of the flavonoids with unique skeletal structures were discovered for the first time in the species. Most of the reported biological activity, however, requires further testing against a wide range of diseases, though they can be recommended as possible promising compounds.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838279617231213042843
2024-01-12
2026-01-03
Loading full text...

Full text loading...

/deliver/fulltext/ctm/11/5/CTM-11-5-01.html?itemId=/content/journals/ctm/10.2174/0122150838279617231213042843&mimeType=html&fmt=ahah

References

  1. CraggG.M. NewmanD.J. SnaderK.M. Natural products in drug discovery and development.J. Nat. Prod.1997601526010.1021/np96048939014353
    [Google Scholar]
  2. GraupnerP. The role of natural product chemistry in agriculture.Planta Med.201379102141215310.1055/s‑0033‑1348516
    [Google Scholar]
  3. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the last 25 years.J. Nat. Prod.200770346147710.1021/np068054v17309302
    [Google Scholar]
  4. NewmanD.J. CraggG.M. SnaderK.M. Natural products as sources of new drugs over the period 1981-2002.J. Nat. Prod.20036671022103710.1021/np030096l12880330
    [Google Scholar]
  5. ChinY.W. BalunasM.J. ChaiH.B. KinghornA.D. Drug discovery from natural sources.AAPS J.200682E239E25310.1007/BF0285489416796374
    [Google Scholar]
  6. StevensonP.C. KiteG.C. LewisG.P. ForestF. NyirendaS.P. BelmainS.R. SileshiG.W. VeitchN.C. Distinct chemotypes of Tephrosia vogelii and implications for their use in pest control and soil enrichment.Phytochemistry20127813514610.1016/j.phytochem.2012.02.02522483325
    [Google Scholar]
  7. ChenY. YanT. GaoC. CaoW. HuangR. Natural products from the genus tephrosia. Molecules20141921432145810.3390/molecules1902143224473207
    [Google Scholar]
  8. TouqeerS. SaeedM.A. AjaibM. A review on the phytochemistry and pharmacology of genus Tephrosia. Phytopharmacology.20134598637
    [Google Scholar]
  9. WillisJ.C. The dictionary of flowering plants and ferns.8th ed.Cambridge, UKCambridge University Press19731135
    [Google Scholar]
  10. TarusP.K. MachochoA.K. Lang’at-ThoruwaC.C. ChhabraS.C. Flavonoids from Tephrosia aequilata. Phytochemistry200260437537910.1016/S0031‑9422(02)00078‑X12031428
    [Google Scholar]
  11. BeentjeH. Kenya trees, shrubs and lianas.Nairobi, KenyaNational Museums of Kenya1994269320
    [Google Scholar]
  12. MohottiC.R.W.C. EpaU.P.K. Toxicity of aqueous extract of white hoary pea, Tephrosia candida (Papilionoideae) on Nile tilapia, Oreochromis niloticus (Cichlidae) fingerlings.Sri Lanka J Aquatic Sci201621210511210.4038/sljas.v21i2.7506
    [Google Scholar]
  13. SharmaR. MehanS. KalraS. KhannaD. Tephrosia purpurea. A magical herb with a blessing in the human biological system.Int J. Recent Advan. Pharmacol. Res.2013331222
    [Google Scholar]
  14. EpaUPK MohottiCRWC Impact of fishing with Tephrosia candida (Fabaceae) on diversity and abundance of fish in the streams at the boundary of Sinharaja man and biosphere forest reserve, Sri Lanka.Rev Biol Trop.2016643112910.15517/rbt.v64i3.19099
    [Google Scholar]
  15. BabayemiO.J. BamikoleM.A. Effect of T. candida DC Leaf and Its mixture with Guinea grass on vitro fermentation changes as feed for ruminant in Nigeria.Pak. J. Nutr.200551141810.3923/pjn.2006.14.18
    [Google Scholar]
  16. LiW. HuangC. WangK. FuJ. ChengD. ZhangZ. Laboratory evaluation of aqueous leaf extract of Tephrosia vogelii against larvae of Aedes albopictus (Diptera: Culicidae) and non-target aquatic organisms.Acta Trop.2015146364110.1016/j.actatropica.2015.02.00425771114
    [Google Scholar]
  17. SileshiG. MafongoyaP.L. KwesigaF. NkunikaP. Termite damage to maize grown in agroforestry systems, traditional fallows and monoculture on nitrogen‐limited soils in eastern Zambia.Agric. For. Entomol.200571616910.1111/j.1461‑9555.2005.00242.x
    [Google Scholar]
  18. ShennanC and D. Sirrine. 2013 Maize legume relay intercrops in Malawi: Meeting short- and long-term sustainability goals. In: Microbial Ecology in Sustainable Agroecosystems. Eds. T.E Cheeke, D.C. Coleman and D.H. Wall. CRC Press, 308pp
    [Google Scholar]
  19. WagnerW.L. HerbstD.R. SohmerS.H. Manual of the flowering plants of Hawai'i. Bishop Museum, Honolulu: University of Hawaii Press 1990. Bishop Museum, Honolulu. pp.35.
    [Google Scholar]
  20. GuptaR.C. Pharmacobotanical studies on ‘shvet sharpunkha’ a comparative diagnostic account of Tephrosia villosa pers. and T. purpurea (linn.) pers. Form Albiflora S. R. Paul et. R. C. Gupta.Anc. Sci. Life198873-420721822557616
    [Google Scholar]
  21. HegazyM.E.F. MohamedA.E-H.H. El-HalawanyA.M. DjemgouP.C. ShahatA.A. ParéP.W. PareP.W. Estrogenic activity of chemical constituents from Tephrosia candida. J. Nat. Prod.201174593794210.1021/np100378d21510635
    [Google Scholar]
  22. MatsumuraF. Toxicology of insecticides; Plenum Press.New York, NY, USASpringer197510525110.1007/978‑1‑4613‑4410‑0_4
    [Google Scholar]
  23. SahayarajK. KombiahP. DikshitA. RathiM. Chemical constituents of essential oils of Tephrosia purpurea and Ipomoea carnea and their repellent activity against Odoiporus longicollis.J. Serb. Chem. Soc.201580446547310.2298/JSC140425082S
    [Google Scholar]
  24. MuivaL.M. YenesewA. DereseS. HeydenreichM. PeterM.G. AkalaH.M. EyaseF. WatersN.C. MutaiC. KerikoJ.M. WalshD. Antiplasmodial β-hydroxydihydrochalcone from seedpods of Tephrosia elata. Phytochem. Lett.2009239910210.1016/j.phytol.2009.01.002
    [Google Scholar]
  25. MutisyaL.M. Antiplasmodial and larvicidal flavonoids from the seedpods of Tephrosia elata and Tephrosia aequilata.Juja, KenyaJomo Kenyatta University of Agriculture and Technology2009
    [Google Scholar]
  26. AlaoF.O. AdebayoT.A. Comparative efficacy of Tephrosia vogelii and Moringa oleifera against insect pests of watermelon (Citrullus lanatus Thumb).Int Lett Nat Sci201535717810.18052/www.scipress.com/ILNS.35.71
    [Google Scholar]
  27. TungmunnithumD. ThongboonyouA. PholboonA. YangsabaiA. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview.Medicines2018539310.3390/medicines503009330149600
    [Google Scholar]
  28. RaoA.S. YadavS.S. SinghP. NandalA. SinghN. GanaieS.A. YadavN. KumarR. BhandoriaM.S. BansalP. A comprehensive review on ethnomedicine, phytochemistry, pharmacology, and toxicity of Tephrosia purpurea (L.) Pers.Phytother. Res.20203481902192510.1002/ptr.665732147928
    [Google Scholar]
  29. BabuK BhuvaneswariK VivekanandanN A review on phytochemical and pharmacological profile of Tephrosia maxima. Indian J. Pharm. Sci.201426320324
    [Google Scholar]
  30. SamuelV.J. MaheshA.R. MuruganV. Phytochemical and pharmacological aspects of Tephrosia genus: A brief review.J. Appl. Pharm. Sci.20199311712510.7324/JAPS.2019.90317
    [Google Scholar]
  31. ZhangP. QinD. ChenJ. ZhangZ. Plants in the genus Tephrosia: Valuable resources for botanical insecticides.Insects2020111072110.3390/insects1110072133096762
    [Google Scholar]
  32. PolhillR.M. RavenP.H. StirtoC.H. Evolution and systematics of the leguminosae. In: Polhill, R.M. and Raven, P.H., Eds., Advances in Legume Systematics, Part I, Royal Botanic Garden, Kew, 1- 26.
    [Google Scholar]
  33. AgnewA.D.Q. ShirleyA. Upland Kenya Wild Flowers.2nd ed.East Africa National History Society1994118121
    [Google Scholar]
  34. KokwaroJ.O. Medicinal plants of East Africa.NairobiEast Africa Literature Bureau1993250255
    [Google Scholar]
  35. LwandeW. GreeneC.S. BentleyM.D. Flavonoids from the roots of Tephrosia elata. J. Nat. Prod.19854861004100510.1021/np50042a032
    [Google Scholar]
  36. Van AndelT. The diverse uses of fish-poison plants in Northwest Guyana.Econ. Bot.200054450051210.1007/BF02866548
    [Google Scholar]
  37. SinghA.K. RaghubanshiA.S. SinghJ.S. Medical ethnobotany of the tribals of Sonaghati of Sonbhadra district, Uttar Pradesh, India.J. Ethnopharmacol.2002811314110.1016/S0378‑8741(02)00028‑412020925
    [Google Scholar]
  38. UpadhyayB Parveen DhakerAK KumarA Ethnomedicinal and ethnopharmaco-statistical studies of Eastern Rajasthan, India.J Ethnopharmacol20101291648610.1016/j.jep.2010.02.026
    [Google Scholar]
  39. StevensonP.C. ArnoldS.E.J. BelmainS.R. Pesticidal plants for stored product pests on small-holder farms in Africa.Advances in plant biopesticides.Berlin/Heidelberg, GermanySpringer201414917210.1007/978‑81‑322‑2006‑0_9
    [Google Scholar]
  40. BoekeS.J. Van LoonJ.J.A. van HuisA. KossouD.K. DickeM. The use of plant material to protect stored seeds against seed beetles: A review; laboratory of entomology.Wageningen, The NetherlandsWageningen University2001
    [Google Scholar]
  41. KumarK.D.V. JayaveeraK.N. KumarG.S. Anti-inflammatory and anti-nociceptive properties of Tephrosia falciformis root extract.Pharmacologyonline20072371384
    [Google Scholar]
  42. BentleyM.D. HassanaliA. LwandeW. NjorogeP.E.W. SitayoE.N.O. YatagaiM. Insect antifeedants from Tephrosia elata Deflers.Int. J. Trop. Insect Sci.198781858810.1017/S1742758400007025
    [Google Scholar]
  43. SantiagoG.M. LimaJ.Q. MafezoliJ. Lemos TL, Silva FR, Lima MA, Pimenta AT, Braz-Filho R, Arriaga AM, Cesarin-Sobrinho (2012) Rotenoids from Tephrosia toxicaria with larvicidal activity against Aedes aegypti, the main vector of dengue fever.Quim Nova. 3561097110010.1590/S0100‑40422012000600005
    [Google Scholar]
  44. KidukuliA. MaregesiS. SariaJ. OtienoN. LawiY. NondoR. InnocentE. MlimbilaJ. MihaleM. MoshiM. Larvicidal efficacy of some Tephrosia species extracts against Anopheles Gambiae Ss and Culex Quinque fasciatus Say.Spatula DD201551212510.5455/spatula.20150625013601
    [Google Scholar]
  45. HassanL.E.A. DahhamS.S. FadulS.M. UmarM.I. MajidA.S.A. KhawK.Y. MajidA.M.S.A. Evaluation of in vitro and in vivo anti-inflammatory effects of (−)-pseudosemiglabrin, a major phytoconstituent isolated from Tephrosia apollinea (Delile) DC.J. Ethnopharmacol.201619331232010.1016/j.jep.2016.08.02327553975
    [Google Scholar]
  46. AdinarayanK. JayaveeraK.N. RaoP.M. ChettyC.M. SandeepD.K. SwethaC. SaleemT.S.M. Acute toxicity and hepatoprotective effect of methanolic extract of Tephrosia calophylla. Res. J. Med. Plant20115326627310.3923/rjmp.2011.266.273
    [Google Scholar]
  47. CR. AP.R. In vivo and in vitro evaluation of Tephrosia calophylla for anti-diabetic properties.Int. J. Pharm. Pharm. Sci.201810613814410.22159/ijpps.2018v10i6.25551
    [Google Scholar]
  48. DivyaS. HarithaV. PrasadK.V.S. Evaluation of Tephrosia calophylla for anti-ulcer activity in experimental rats.Pharmacologyonline20113573585
    [Google Scholar]
  49. KayangeC.D.M. NjeraD. NyirendaS.P. MwamlimaL. Effectiveness of Tephrosia vogelii and Tephrosia candida extracts against common bean aphid (Aphis fabae) in Malawi.Adv. Agric.201920191610.1155/2019/6704834
    [Google Scholar]
  50. AndreiC.C. VieiraP.C. FernandesJ.B. Da SilvaM.F.G.F. Dimethylchromene rotenoids from Tephrosia candida. Phytochemistry19974661081108510.1016/S0031‑9422(97)00405‑6
    [Google Scholar]
  51. ParmarV.S. JainR. GuptaS.R. BollP.M. MikkelsenJ.M. Phytochemical investigation of Tephrosia candida: HPLC separation of tephrosin and 12a-hydroxyrotenone.J. Nat. Prod.198851118510.1021/np50055a035
    [Google Scholar]
  52. ArriagaA.M.C. LimaJ.Q. VasconcelosJ.N. de OliveiraM.C.F. Andrade-NetoM. SantiagoG.M.P. UchoaD.E.A. MalcherG.T. MafezoliJ. Braz-FilhoR. Unequivocal assignments of flavonoids from Tephrosia sp. (Fabaceae).Magn. Reson. Chem.200947653754010.1002/mrc.242219306481
    [Google Scholar]
  53. ArriagaA.M.C. MalcherG.T. LimaJ.Q. MagalhãesF.E.A. GomesT.M.B.M. Da ConceiçãoM. OliveiraF. Andrade-NetoM. MafezolliJ. SantiagoG.M.P. Composition and larvicidal activity of the essential oil from Tephrosia cinerea Pers.J. Essent. Oil Res.200820545045110.1080/10412905.2008.9700056
    [Google Scholar]
  54. ChakradharV. Babu HariY. GanapatyS. Rajendra PrasadY. Koteswara RaoN. Anti-inflammatory activity of a flavonol glycoside from Tephrosia spinosa. Nat. Prod. Sci.20051126366
    [Google Scholar]
  55. ParmarV.S. RathoreJ.S. JainR. HendersonD.A. MaloneJ.F. Occurrence of pongamol as the enol structure in Tephrosia purpurea. Phytochemistry198928259159310.1016/0031‑9422(89)80057‑3
    [Google Scholar]
  56. Mba NguekeuY.M. AwouafackM.D. TaneP. Nguedia LandoM.R. KodamaT. MoritaH. A kaempferol triglycoside from Tephrosia preussii Taub. (Fabaceae).Nat. Prod. Res.201731212520252610.1080/14786419.2017.131572028403640
    [Google Scholar]
  57. DalwadiP.P. PatelJ.L. PataniP.V. A Review on phytochemistry and pharmacological studies.Indian J. Pharmaceut. Biol. Res.20142110812110.30750/ijpbr.2.1.18
    [Google Scholar]
  58. AtilawY Muiva-MutisyaL BogaertsJ DuffyS ValkonenA HeydenreichM AveryVM RissanenK ErdélyiM YenesewA Prenylated flavonoids from the roots of Tephrosia rhodesica.J Nat Prod20208382390810.1021/acs.jnatprod.0c00245
    [Google Scholar]
  59. GanapatyS SrilakshmiGVK PannakalST LaatschH A pyranochalcone and prenylflavanones from Tephrosia pulcherrima (Baker) Drumm.Nat. Prod. Commun.200811410.1177/1934578X0800300111
    [Google Scholar]
  60. MartinezR.M. ZarpelonA.C. DomicianoT.P. GeorgettiS.R. BaracatM.M. MoreiraI.C. AndreiC.C. VerriW.A.Jr CasagrandeR. Anti-nociceptive effect of Tephrosia sinapou extract in the acetic acid, phenyl-p-benzoquinone, formalin, and complete Freund’s adjuvant models of overt pain-like behavior in mice.Scientifica201620161810.1155/2016/865639727293981
    [Google Scholar]
  61. LwandeW. HassanaliA. NjorogeP.W. BentleyM.D. MonacheF.D. JondikoJ.I. BentleyM.D. MonacheF.D. JondikoJ.I. A new 6a-hydroxypterocarpan with insect antifeedant and antifungal properties from the roots of Tephrosia hildebrandtii vatke.Int. J. Trop. Insect Sci.19856453754110.1017/S1742758400004379
    [Google Scholar]
  62. RajaramK. AiswaryaD.C. SureshkumarP. Green synthesis of silver nanoparticle using Tephrosia tinctoria and its antidiabetic activity.Mater. Lett.201513825125410.1016/j.matlet.2014.10.017
    [Google Scholar]
  63. RajaramK. MoushmiM. Velayutham Dass PrakashM. KumpatiP. GanasaraswathiM. SureshkumarP. Comparative bioactive studies between wild plant and callus culture of Tephrosia tinctoria pers.Appl. Biochem. Biotechnol.201317182105212010.1007/s12010‑013‑0444‑324026411
    [Google Scholar]
  64. RajaramK. SureshK.P. In-vitro antioxidant and anti-diabetic activity of Tephrosia tinctoria PERS.: An endemic medicinal plant of South India.J. Pharm. Res.201143891893
    [Google Scholar]
  65. AtilawY. Muiva-MutisyaL. NdakalaA. AkalaH. YedaR. WuY. CoghiP. WongV. ErdélyiM. YenesewA. Four prenylflavone derivatives with antiplasmodial activities from the stem of Tephrosia purpurea. Molecules2017229151410.3390/molecules2209151428891957
    [Google Scholar]
  66. SieversA.F. LowmanM.S. RussellG.A. SullivanW.N. Changes in the insecticidal value of the roots of cultivated devil’s shoestring, Tephrosia virginiana, at four seasonal growth periods.Am. J. Bot.194027528428910.1002/j.1537‑2197.1940.tb14684.x
    [Google Scholar]
  67. StevensonP.C. IsmanM.B. BelmainS.R. Pesticidal plants in Africa: A global vision of new biological control products from local uses.Ind. Crops Prod.20171102910.1016/j.indcrop.2017.08.034
    [Google Scholar]
  68. DzendaT. AyoJ.A. AdelaiyeA.B. AdaudiA.O. Ethno-medical and veterinary uses of Tephrosia vogelii Hook. F.: A review.Niger. Vet. J.2007282430
    [Google Scholar]
  69. WilliamsC.A. GrayerR.J. Anthocyanins and other flavonoids.Nat. Prod. Rep.200421453957310.1039/b311404j15282635
    [Google Scholar]
  70. Rodríguez De LunaS.L. Ramírez-GarzaR.E. Serna SaldívarS.O. Environmentally friendly methods for flavonoid extraction from plant material: Impact of their operating conditions on yield and antioxidant properties.ScientificWorldJournal2020202013810.1155/2020/6792069
    [Google Scholar]
  71. FerdinandoM.D. BrunettiC. FiniA. TattiniM. Flavonoids as antioxidants in plants under abiotic stresses.In: Abiotic stress responses in plants: Metabolism, productivity, and sustainability.Berlin/Heidelberg, GermanySpringer(pp.159-179).201210.1007/978‑1‑4614‑0634‑1_9
    [Google Scholar]
  72. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.4128620474
    [Google Scholar]
  73. NabaviS.M. ŠamecD. TomczykM. MilellaL. RussoD. HabtemariamS. SuntarI. RastrelliL. DagliaM. XiaoJ. GiampieriF. BattinoM. Sobarzo-SanchezE. NabaviS.F. YousefiB. JeandetP. XuS. ShirooieS. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering.Biotechnol. Adv.20203810731610.1016/j.biotechadv.2018.11.00530458225
    [Google Scholar]
  74. SaitoK. Yonekura-SakakibaraK. NakabayashiR. HigashiY. YamazakiM. TohgeT. FernieA.R. The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity.Plant Physiol. Biochem.201372213410.1016/j.plaphy.2013.02.00123473981
    [Google Scholar]
  75. SainiN. GahlawatS.K. LatherV. Flavonoids: A nutraceutical and its role as anti-inflammatory and anti-cancer agent.Plant biotechnology: Recent advancements and developments.SingaporeSpringer2017
    [Google Scholar]
  76. PetrussaE. BraidotE. ZancaniM. PeressonC. BertoliniA. PatuiS. VianelloA. Plant flavonoids--biosynthesis, transport and involvement in stress responses.Int. J. Mol. Sci.2013147149501497310.3390/ijms14071495023867610
    [Google Scholar]
  77. MagozwiD.K. DinalaM. MokwanaN. Siwe-NoundouX. KrauseR.W.M. SonopoM. McGawL.J. AugustynW.A. TembuV.J. Flavonoids from the genus Euphorbia: Isolation, structure, pharmacological activities and structure-activity relationships.Pharmaceuticals202114542810.3390/ph1405042834063311
    [Google Scholar]
  78. DiasM.C. PintoD.C.G.A. SilvaA.M.S. Plant flavonoids : Chemical characteristics and biological activity.Molecules20212617537710.3390/molecules2617537734500810
    [Google Scholar]
  79. KumarS. PandeyA.K. Chemistry and biological activities of flavonoids: An overview.ScientificWorldJournal2013201311610.1155/2013/16275024470791
    [Google Scholar]
  80. Abdel-KaderM. AlqarniM. FoudahA. New flavonoids from saudi collection of tephrosia purpurea L. (Pers.).Rec. Nat. Prod.202115429330010.25135/rnp.216.20.10.1828
    [Google Scholar]
  81. AndreiC.C. FariaT.J. TomalA.A.B. AnizelliP.R. Braz-FilhoR. Biflavonoid toxicarine, rotenoids and a flavanone from the roots of Tephrosia toxicaria.Semin. Ciênc. Exatas Tecnol.2020411717810.5433/1679‑0375.2020v41n1p71
    [Google Scholar]
  82. SahayarajK. KombiahP. AntonyJ. RathiM.A. chalcone (Pongamol) and phytoconstituents of Tephrosia purpurea. Nat. Prod. Res.2020251410.1080/14786419.2020.180864032840388
    [Google Scholar]
  83. SallamA. MiraA. SabryM.A. Abdel-HalimO.B. GedaraS.R. GalalaA.A. New prenylated flavonoid and neuroprotective compounds from Tephrosia purpurea subsp. dunensis.Nat. Prod. Res.202135245612562010.1080/14786419.2020.181573932878453
    [Google Scholar]
  84. OworR.O. BedaneK.G. ZühlkeS. DereseS. Ong’amoG.O. NdakalaA. SpitellerM. Anti-inflammatory flavanones, and flavones from Tephrosia linearis. J. Nat. Prod.2020834996100410.1021/acs.jnatprod.9b0092232155073
    [Google Scholar]
  85. TeixeiraM.V.S. LimaJ.Q. PimentaA.T.A. SilvaF.R.L. OliveiraM.C.F. PereiraI.G. Costa-JuniorD.C. RibeiroP.R.V. SantiagoG.M.P. LimaM.A.S. Braz-FilhoR. BezerraM.M. MontenegroR.C. RochaD.D. MoraesM.E.A. MedeirosA.C. ArriagaA.M.C. New flavone and other compounds from Tephrosia egregia: assessing the cytotoxic effect on human tumor cell lines.Rev. Bras. Farmacogn.201828333333810.1016/j.bjp.2018.03.008
    [Google Scholar]
  86. AtilawY DuffyS HeydenreichM Muiva-MutisyaL AveryVM ErdélyiM YenesewA Three chalconoids and a pterocarpene from the roots of Tephrosia aequilata.Molecules201722231810.3390/molecules22020318
    [Google Scholar]
  87. AmmarM.I. NenaahG.E. MohamedA.H.H. MohamedH. Antifungal activity of prenylated flavonoids isolated from Tephrosia apollinea L. against four phytopathogenic fungi.Crop Prot.201349212510.1016/j.cropro.2013.02.012
    [Google Scholar]
  88. HishamA. JohnS. Al-ShuailyW. AsaiT. FujimotoY. ( + )-Apollineanin: A new flavanone from Tephrosia apollinea .Nat. Prod. Res.200620121046105210.1080/1478641050039971417127656
    [Google Scholar]
  89. GanapatyS. NairV. DeviD.R. PannakalS.T. LaatschH. DittrichB. Rare prenylated isoflavones from Tephrosia calophylla. Nat. Prod. Commun.2014971934578X140090010.1177/1934578X140090071325230497
    [Google Scholar]
  90. ReddyR.V.N. KhalivullaS.I. ReddyB.A.K. ReddyM.V.B. GunasekarD. DevilleA. BodoB. Flavonoids from Tephrosia calophylla. Nat. Prod. Commun.2009411934578X090040010.1177/1934578X090040011419370876
    [Google Scholar]
  91. MadhusudhanaJ. ReddyR.V.N. ReddyB.A.K. ReddyM.V.B. GunasekarD. DevilleA. BodoB. Two new geranyl flavanones from tephrosia villosa.Nat. Prod. Res.201024874374910.1080/1478641090302056020432156
    [Google Scholar]
  92. Muiva-MutisyaL. MachariaB. HeydenreichM. KochA. AkalaH.M. DereseS. OmosaL.K. YusufA.O. KamauE. YenesewA. 6α-Hydroxy-α-toxicarol and (+)-tephrodin with antiplasmodial activities from Tephrosia species.Phytochem. Lett.20141017918310.1016/j.phytol.2014.09.002
    [Google Scholar]
  93. Go´mez-GaribayF. QuijanoL. RiosT. Flavanones fromTephrosia leiocarpa. Phytochemistry199130113832383410.1016/0031‑9422(91)80129‑O
    [Google Scholar]
  94. Gómez-GaribayF. Téllez-ValdezO. Moreno-TorresG. CalderónJ.S. Flavonoids from Tephrosia major. A new prenyl-beta-hydroxychalcone.Z. Naturforsch. C J. Biosci.2002577-857958310.1515/znc‑2002‑7‑80512240979
    [Google Scholar]
  95. GanapatyS. PannakalS.T. SrilakshmiG.V.K. LakshmiP. WatermanP.G. BrunR. Pumilanol, an antiprotozoal isoflavanol from Tephrosia pumila. Phytochem. Lett.20081417517810.1016/j.phytol.2008.09.006
    [Google Scholar]
  96. JangD.S. ParkE.J. KangY.H. HawthorneM.E. VigoJ.S. GrahamJ.G. CabiesesF. FongH.H.S. MehtaR.G. PezzutoJ.M. KinghornA.D. Potential cncer chemopreventive flavonoids from the stems of Tephrosia toxicaria.J. Nat. Prod.20036691166117010.1021/np030210014510590
    [Google Scholar]
  97. Gómez-GaribayF. ArciniegaM.D.L.O. CéspedesC.L. TaboadaJ. CalderónJ.S. Chromene chalcones from Tephrosia carrollii and the revised structure of Oaracacin.Z. Naturforsch. C J. Biosci.20015611-1296997210.1515/znc‑2001‑11‑121011837685
    [Google Scholar]
  98. JumaW.P. AkalaH.M. EyaseF.L. MuivaL.M. HeydenreichM. OkaleboF.A. GituP.M. PeterM.G. WalshD.S. ImbugaM. YenesewA. Terpurinflavone: An antiplasmodial flavone from the stem of Tephrosia Purpurea. Phytochem. Lett.20114217617810.1016/j.phytol.2011.02.010
    [Google Scholar]
  99. VermaN. Neeraj SinghJ. Evaluation of hepatoprotective activity of Tephrosia purpurea Linn stem.IEJSRJ20172716
    [Google Scholar]
  100. KhatoonS IrshadS PandeyMM RastogiS RawatAKS A validated HPTLC densitometric method for determination of lupeol, β-sitosterol, and rotenone in Tephrosia purpurea: A seasonal study.J. Chromatogr. Sci.20195786889610.1093/chromsci/bmz041
    [Google Scholar]
  101. OgendoJO BelmainSR DengAL WalkerDJ Comparison of toxic and repellent effects of Lantana Camara L. with Tephrosia vogelii hook and a synthetic pesticide against Sitophilus zeamais motschulsky (Coleoptera: Curculionidae) in stored maize grain.Insects Sci. Appl.200323212713510.1017/S1742758400020348
    [Google Scholar]
  102. Ahmed HassanL.E. Khadeer AhamedM.B. Abdul MajidA.S. IqbalM.A. Al SuedeF.S.R. HaqueR.A. IsmailZ. EinO.C. MajidA.M.S.A. Crystal structure elucidation and anticancer studies of (-)-pseudosemiglabrin : A flavanone isolated from the aerial parts of Tephrosia apollinea. PLoS One201493e9080610.1371/journal.pone.0090806
    [Google Scholar]
  103. KumarD. DhamodaranP. NilaniP. BalakrishnanN. Larvicidal activity of Tephrosia purpurea, (L) against the Larvae of Culex quinquefasiciatus. J. Appl. Pharm. Sci.2012221922110.7324/JAPS.2012.2735
    [Google Scholar]
  104. VijayanS. SinghN.K. ShuklaP. KirtiP.B. Defensin (TvD1) from Tephrosia villosa exhibited strong anti-insect and anti-fungal activities in transgenic tobacco plants.J. Pest Sci.201386233734410.1007/s10340‑012‑0467‑5
    [Google Scholar]
  105. VenkadachalamR. SubramaniyanV. PalaniM. SubramaniyanM. SrinivasanP. RajiM. Mosquito larvicidal and fungicidal activity of Tephrosia purpurea Linn. (Family: Fabaceae) and Bacillus sphaericus against, dengue vector, Aedes aegypti.Pharmacogn. J.20179673774210.5530/pj.2017.6.116
    [Google Scholar]
  106. GoraR. BaxlaS. KerkettaP. PatnaikS. RoyB. Hepatoprotective activity of Tephrosia purpurea against arsenic induced toxicity in rats.Indian J. Pharmacol.201446219720010.4103/0253‑7613.12931724741193
    [Google Scholar]
  107. ShahR. ParmarS. BhattP. ChandaS. Evaluation of hepatoprotective activity of ethyl acetate fraction of Tephrosia purpurea. Pharmacologyonline20113188194
    [Google Scholar]
  108. MkendaP. MwanautaR. StevensonP.C. NdakidemiP. MteiK. BelmainS.R. Extracts from field margin weeds provide economically viable and environmentally benign pest control compared to synthetic pesticides.PLoS One20151011e014353010.1371/journal.pone.014353026599609
    [Google Scholar]
  109. TemboY. MkindiA.G. MkendaP.A. MpumiN. MwanautaR. StevensonP.C. NdakidemiP.A. BelmainS.R. Pesticidal plant extracts improve yield and reduce insect pests on legume crops without harming beneficial arthropods.Front. Plant Sci.201899142510.3389/fpls.2018.0142530323823
    [Google Scholar]
  110. HegazyM.E.F. Abd El-RazekM.H. NagashimaF. AsakawaY. ParéP.W. Rare prenylated flavonoids from Tephrosia purpurea. Phytochemistry20097011-121474147710.1016/j.phytochem.2009.08.00119733371
    [Google Scholar]
  111. NenaahG.E. Toxic and antifeedant activities of prenylated flavonoids isolated from Tephrosia apollinea L. against three major coleopteran pests of stored grains with reference to their structure–activity relationship.Nat. Prod. Res.201428242245225210.1080/14786419.2014.93278824980754
    [Google Scholar]
  112. KassemM.E.S. SharafM. ShabanaM.H. SalehN.A.M. Bioactive flavonoids from tephrosia purpurea.Nat. Prod. Commun.20061111934578X060010110.1177/1934578X0600101107
    [Google Scholar]
  113. KhalivullaS.I. ReddyB.A.K. GunasekarD. BlondA. BodoB. MurthyM.M. RaoT.P. A new di- O -prenylated isoflavone from Tephrosia tinctoria.J. Asian Nat. Prod. Res.2008101095395510.1080/1028602080221763019003614
    [Google Scholar]
  114. Gómez-GaribayF́. QuijanoL. CalderónJ.S. MoralesS. RiosT. Prenylflavanols from Tephrosia quercetorum. Phytochemistry19882792971297310.1016/0031‑9422(88)80699‑X
    [Google Scholar]
  115. ChangLC ChávezD SongLL FarnsworthNR PezzutoJM KinghornAD Absolute configuration of novel bioactive flavonoids from Tephrosia purpurea.Org Lett.200024515810.1021/ol990407c
    [Google Scholar]
  116. Muiva-MutisyaL.M. AtilawY. HeydenreichM. KochA. AkalaH.M. CheruiyotA.C. BrownM.L. IrunguB. OkaleboF.A. DereseS. MutaiC. YenesewA. Antiplasmodial prenylated flavanonols from Tephrosia subtriflora.Nat. Prod. Res.201832121407141410.1080/14786419.2017.135351028714338
    [Google Scholar]
  117. AndreiC.C. FerreiraD.T. FaccioneM. de MoraesL.A.B. de CarvalhoM.G. Braz-FilhoR. C-prenylflavonoids from roots of Tephrosia tunicata. Phytochemistry200055779980410.1016/S0031‑9422(00)00371‑X11190399
    [Google Scholar]
  118. WatermanP.G. KhalidS.A. The major flavonoids of the seed of tephrosia apollinea.Phytochemistry198019590991510.1016/0031‑9422(80)85137‑5
    [Google Scholar]
  119. RamaSM RaoV Anew O-prenylated isoflavone from Tephrosia maxima. J. Nat. Prod.198548696796810.1021/np50042a015
    [Google Scholar]
  120. KhalafallahA.K. SuleimanS.A. YousefA.H. El-kanziN.A.A. MohamedA.E.H.H. Prenylated flavonoids from Tephrosia apollinea. Chin. Chem. Lett.200920121465146810.1016/j.cclet.2009.05.025
    [Google Scholar]
  121. JayaramanI. GhanimA. KhanH.A. A new prenylated flavanone from Tephrosia villosa. Phytochemistry19801961267126810.1016/0031‑9422(80)83111‑6
    [Google Scholar]
  122. CameleG. Delle MonacheF. Delle MonacheG. Marini BettoloG.B. Three new flavonoids from Tephrosia praecans. Phytochemistry198019470770910.1016/0031‑9422(80)87050‑6
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838279617231213042843
Loading
/content/journals/ctm/10.2174/0122150838279617231213042843
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test