Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Phthalates are common synthetic chemicals in various industrial and consumer products, including plastics, personal care products, and medical equipment. They are dangerous even at extremely low concentrations during the crucial stages of life, such as pregnancy, infancy, early childhood, and adolescence. In recent years, there has been increased interest in looking into natural plant components as potential phthalate toxicity mitigators. Phthalates have been related to a number of health problems, including endocrine disruption, reproductive and developmental disorders, and carcinogenicity. As a result, effective ways to decrease phthalate exposure and attenuate its negative effects are required. Natural plant products have shown the potential to reduce phthalate toxicity various methods. These methods include antioxidant and anti-inflammatory properties, detoxifying enzyme regulation, and competition for phthalate binding sites. Certain plant-derived chemicals, such as polyphenols, flavonoids, terpenes, and alkaloids, have been shown to interact with phthalates and potentially limit their absorption, distribution, and metabolism inside the body. This review highlights the effects of several naturally occurring plant products, such as apigenin, taxifolin, vitamin C, and many more, on the toxicity of phthalates. Natural products use nowadays is increasing due to their non-toxic nature, so in the future, more focus should be in favor of increasing the use of these natural products that we obtained from plants.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838268882231006094411
2023-11-03
2025-09-02
Loading full text...

Full text loading...

References

  1. PechtMG AliI CarlsonA Phthalates in electronics: The risks and the alternatives. IEEE Access201799113
    [Google Scholar]
  2. DepledgeM.H. GalganiF. PantiC. CalianiI. CasiniS. FossiM.C. Plastic litter in the sea.Mar. Environ. Res.20139227928110.1016/j.marenvres.2013.10.002 24157269
    [Google Scholar]
  3. López-RubioA. AlmenarE. Hernandez-MuñozP. LagarónJ.M. CataláR. GavaraR. Overview of active polymer-based packaging technologies for food applications.Food Rev. Int.200420435738710.1081/FRI‑200033462
    [Google Scholar]
  4. CalafatA.M. NeedhamL.L. SilvaM.J. LambertG. Exposure to di-(2-ethylhexyl) phthalate among premature neonates in a neonatal intensive care unit.Pediatrics20041135e429e43410.1542/peds.113.5.e429 15121985
    [Google Scholar]
  5. MorrisonG.C. WeschlerC.J. BeköG. Role of clothing in both accelerating and impeding dermal absorption of airborne SVOCs.J. Expo. Sci. Environ. Epidemiol.201626111311810.1038/jes.2015.42 26058800
    [Google Scholar]
  6. SerranoS.E. BraunJ. TrasandeL. DillsR. SathyanarayanaS. Phthalates and diet: a review of the food monitoring and epidemiology data.Environ. Health20141314310.1186/1476‑069X‑13‑43 24894065
    [Google Scholar]
  7. XieH. HanW. XieQ. XuT. ZhuM. ChenJ. Face mask—A potential source of phthalate exposure for human.J. Hazard. Mater.202242212684810.1016/j.jhazmat.2021.126848 34403943
    [Google Scholar]
  8. KochH.M. BoltH.M. PreussR. AngererJ. New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP.Arch. Toxicol.200579736737610.1007/s00204‑004‑0642‑4 15700144
    [Google Scholar]
  9. JensenM.S. Anand-IvellR. Nørgaard-PedersenB. Amniotic fluid phthalate levels and male fetal gonad function.Epidemiology2015261919910.1097/EDE.0000000000000198 25384265
    [Google Scholar]
  10. KimS. LeeJ. ParkJ. KimH.J. Concentrations of phthalate metabolites in breast milk.Sci. Total Environ.2015508131910.1016/j.scitotenv.2014.11.019 25437948
    [Google Scholar]
  11. HuangP.C. TsaiC.H. LiangW.Y. LiS.S. PanW.H. ChiangH.C. Age and gender differences in urinary levels of eleven phthalate metabolites in general Taiwanese population after a DEHP episode.PLoS One2015107e013378210.1371/journal.pone.0133782 26207744
    [Google Scholar]
  12. LatiniG. Del VecchioA. MassaroM. VerrottiA.D.E. FeliceC. In utero exposure to phthalates and fetal development.Curr. Med. Chem.200613212527253410.2174/092986706778201666 17017909
    [Google Scholar]
  13. Lovekamp-SwanT. DavisB.J. Mechanisms of phthalate ester toxicity in the female reproductive system.Environ. Health Perspect.2003111213914510.1289/ehp.5658 12573895
    [Google Scholar]
  14. VentriceP. VentriceD. RussoE. De SarroG. Phthalates: European regulation, chemistry, pharmacokinetic and related toxicity.Environ. Toxicol. Pharmacol.2013361889610.1016/j.etap.2013.03.014 23603460
    [Google Scholar]
  15. HauserR. WilliamsP. AltshulL. CalafatA.M. Evidence of interaction between polychlorinated biphenyls and phthalates in relation to human sperm motility.Environ. Health Perspect.2005113442543010.1289/ehp.7305 15811833
    [Google Scholar]
  16. BakerD.D. ChuM. OzaU. RajgarhiaV. The value of natural products to future pharmaceutical discovery.Nat. Prod. Rep.20072461225124410.1039/b602241n 18033577
    [Google Scholar]
  17. KoehnF.E. CarterG.T. The evolving role of natural products in drug discovery.Nat. Rev. Drug Discov.20054320622010.1038/nrd1657 15729362
    [Google Scholar]
  18. OroianM. EscricheI. Antioxidants: Characterization, natural sources, extraction and analysis.Food Res. Int.201574103610.1016/j.foodres.2015.04.018 28411973
    [Google Scholar]
  19. DormanH.J.D. PeltoketoA. HiltunenR. TikkanenM.J. Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs.Food Chem.200383225526210.1016/S0308‑8146(03)00088‑8
    [Google Scholar]
  20. Al-YahyaA.A. Al-MajedA.A. GadoA.M. Acacia Senegal gum exudate offers protection against cyclophosphamide-induced urinary bladder cytotoxicity.Oxid. Med. Cell. Longev.20092420721310.4161/oxim.2.4.8878 20716906
    [Google Scholar]
  21. AlmahyH.A. NasirO.D. Phytochemical and mineral content of the leaves of four Sudanese Acacia species.J. Stored Prod. Postharvest Res.20112221226
    [Google Scholar]
  22. SeifM. Ahmed-FaridO. AboulthanaW. Evaluation of the protective effect of acacia senegal extract against di-(2-ethylhexyl phthalate) induced hepato- and neurotoxicity in rats.Annu. Res. Rev. Biol.201719211710.9734/ARRB/2017/35608
    [Google Scholar]
  23. LeoneA. LongoC. TroskoJ.E. The chemopreventive role of dietary phytochemicals through gap junctional intercellular communication.Phytochem. Rev.2012112-328530710.1007/s11101‑012‑9235‑7
    [Google Scholar]
  24. El-ShinnawyN.A. The therapeutic applications of celery oil seed extract on the plasticizer di(2-ethylhexyl) phthalate toxicity.Toxicol. Ind. Health201531435536610.1177/0748233713475515 23377116
    [Google Scholar]
  25. CuiY. ZhangX. YinK. Dibutyl phthalate-induced oxidative stress, inflammation and apoptosis in grass carp hepatocytes and the therapeutic use of taxifolin.Sci. Total Environ.202176414288010.1016/j.scitotenv.2020.142880 33131843
    [Google Scholar]
  26. Abd-ElhakimY.M. MohamedW.A.M. El BohiK.M. AliH.A. MahmoudF.A. SaberT.M. Prevention of melamine-induced hepatorenal impairment by an ethanolic extract of Moringa oleifera: Changes in KIM-1, TIMP-1, oxidative stress, apoptosis, and inflammation-related genes.Gene202176414508310.1016/j.gene.2020.145083 32860902
    [Google Scholar]
  27. CaiJ. ShiG. ZhangY. Taxifolin ameliorates DEHP-induced cardiomyocyte hypertrophy via attenuating mitochondrial dysfunction and glycometabolism disorder in chicken.Environ. Pollut.2019255Pt 111315510.1016/j.envpol.2019.113155 31539850
    [Google Scholar]
  28. GoudarziM. Haghi KaramallahM. MalayeriA. KalantarM. MansouriE. KalantarH. Protective effect of alpha-lipoic acid on di-(2-ethylhexyl) phthalate-induced testicular toxicity in mice.Environ. Sci. Pollut. Res. Int.20202712136701367810.1007/s11356‑020‑07817‑1 32030592
    [Google Scholar]
  29. DirvenH.A.A.M. van den BroekP.H.H. JongeneelenF.J. Effect of di(2-ethylhexyl)phthalate on enzyme activity levels in liver and serum of rats.Toxicology1990651-219920710.1016/0300‑483X(90)90089‑Y 2274965
    [Google Scholar]
  30. YavaşoğluN.Ü.K. KöksalÇ. DağdevirenM. AktuğH. YavaşoğluA. Induction of oxidative stress and histological changes in liver by subacute doses of butyl cyclohexyl phthalate.Environ. Toxicol.201429334535310.1002/tox.21813 22936646
    [Google Scholar]
  31. Sánchez-ValleV. Chávez-TapiaN.C. UribeM. Méndez-SánchezN. Role of oxidative stress and molecular changes in liver fibrosis: a review.Curr. Med. Chem.201219284850486010.2174/092986712803341520 22709007
    [Google Scholar]
  32. XuM. LiY. WangX. Role of hepatocyte and macrophages- Specific Pparγ in Hepatotoxicity induced by Diethylhexyl phthalate in Mice.Environ. Health Perspect.2022130101700510.1289/EHP9373 35019730
    [Google Scholar]
  33. ZhaoY. FanJ.H. LuoY. Di-(2-ethylhexyl) phthalate (DEHP)-induced hepatotoxicity in quail (Coturnix japonica) via suppression of the heat shock response.Chemosphere201922868569310.1016/j.chemosphere.2019.04.172 31063915
    [Google Scholar]
  34. GhoshJ. DasJ. MannaP. SilP.C. Hepatotoxicity of di-(2-ethylhexyl)phthalate is attributed to calcium aggravation, ROS-mediated mitochondrial depolarization, and ERK/NF-κB pathway activation.Free Radic. Biol. Med.201049111779179110.1016/j.freeradbiomed.2010.09.011 20854900
    [Google Scholar]
  35. TsengI.L. YangY.F. YuC.W. LiW.H. LiaoV.H.C. Phthalates induce neurotoxicity affecting locoicbehaviors and AFD neurons through Oxidative stress in Caenorhabditis elegans.PLoS One2013812e8265710.1371/journal.pone.0082657
    [Google Scholar]
  36. LiA.N. LiS. ZhangY.J. XuX.R. ChenY.M. LiH.B. Resources and biological activities of natural polyphenols.Nutrients20146126020604710.3390/nu6126020 25533011
    [Google Scholar]
  37. XuH. ShaoX. ZhangZ. Effects of di-n-butyl phthalate and diethyl phthalate on acetylcholinesterase activity and neurotoxicity related gene expression in embryonic zebrafish.Bull. Environ. Contam. Toxicol.201391663563910.1007/s00128‑013‑1101‑9 24042840
    [Google Scholar]
  38. WójtowiczA.K. Sitarz-GłowniaA.M. SzczęsnaM. SzychowskiK.A. The action of di-(2-ethylhexyl) phthalate (DEHP) in mouse cerebral cells involves an impairment in aryl hydrocarbon receptor (AhR) signaling.Neurotox. Res.201935118319510.1007/s12640‑018‑9946‑7 30120713
    [Google Scholar]
  39. ZhaoY.X. TangY.X. SunX.H. Gap junction protein connexin 43 as a target is internalized in astrocyte neurotoxicity caused by di-(2-ethylhexyl) phthalate.J. Agric. Food Chem.202270195921593110.1021/acs.jafc.2c01635 35446567
    [Google Scholar]
  40. MathurP.P. D’CruzS.C. The effect of environmental contaminants on testicular function.Asian J. Androl.201113458559110.1038/aja.2011.40 21706039
    [Google Scholar]
  41. FosterP.M.D. ThomasL.V. CookM.W. GangolliS.D. Study of the testicular effects and changes in zinc excretion produced by some n-alkyl phthalates in the rat.Toxicol. Appl. Pharmacol.198054339239810.1016/0041‑008X(80)90165‑9 7394794
    [Google Scholar]
  42. GrayL.E.Jr OstbyJ. FurrJ. PriceM. VeeramachaneniD.N. ParksL. Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat.Toxicol. Sci.200058235036510.1093/toxsci/58.2.350 11099647
    [Google Scholar]
  43. DingY. GaoY. ShiR. ZhouY.J. TianY. Effects of in utero exposure to di(2-ethylhexyl) phthalates in female offspring.Chin. J. Prev. Med201044150153 20388337
    [Google Scholar]
  44. ParkhieM.R. WebbM. NorcrossM.A. Dimethoxyethyl phthalate: embryopathy, teratogenicity, fetal metabolism and the role of zinc in the rat.Environ. Health Perspect.198245899710.1289/ehp.824589 7140701
    [Google Scholar]
  45. ShiotaK. ChouM.J. NishimuraH. Embryotoxic effects of di-2-Ethylhexyl phthalate (DEHP) in mice.Environ. Res.19802224525310.1016/0013‑9351(80)90136‑X 7418682
    [Google Scholar]
  46. WilsonV.S. LambrightC. FurrJ. Phthalate ester-induced gubernacular lesions are associated with reduced insl3 gene expression in the fetal rat testis.Toxicol. Lett.2004146320721510.1016/j.toxlet.2003.09.012 14687758
    [Google Scholar]
  47. KuhlA.J. RossS.M. GaidoK.W. CCAAT/enhancer-binding protein {beta}, but not SF-1, modulates the phthalate-induced dysregulation of rat fetal testicular steroidogenesis.Endocrinology20071485851586410.1210/en.2007‑0930 17884934
    [Google Scholar]
  48. JamaliM. RogersonP.J. WiltonS. SkerjancI.S. Nkx2-5 activity is essential for cardiomyogenesis.J. Biol. Chem.200127645422524225810.1074/jbc.M107814200 11526122
    [Google Scholar]
  49. MoskowitzI.P.G. PizardA. PatelV.V. The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system.Development2004131164107411610.1242/dev.01265 15289437
    [Google Scholar]
  50. SunG. LiuK. Developmental toxicity and cardiac effects of butyl benzyl phthalate in zebrafish embryos.Aquat. Toxicol.201719216517010.1016/j.aquatox.2017.09.020 28961509
    [Google Scholar]
  51. AhmadA. HusainA. MujeebM. A review on therapeutic potential of Nigella sativa: A miracle herb.Asian Pac. J. Trop. Biomed.20133533735210.1016/S2221‑1691(13)60075‑1 23646296
    [Google Scholar]
  52. LatifM. FaheemM. Asmatullah, Hoseinifar SH, Doan HV. Protective efficacy of Nigella sativa seeds against diethyl phthalate induced growth retardation, oxidative stress and Histo-biochemical damages in Labeo rohita.Aquaculture202053373606510.1016/j.aquaculture.2020.73606
    [Google Scholar]
  53. BentayebY. MoumenY. BoulahbalS. ChentouhS. The protective role of the date palm pollen (phoenix dactilyfera) on liver and haematological changes induced by the diethyl phthalate.World J Environ Biosci201879094
    [Google Scholar]
  54. Abd-EllahM.F. AlyH.A.A. MokhlisH.A.M. Abdel-AzizA.H. Quercetin attenuates di-(2-ethylhexyl) phthalate-induced testicular toxicity in adult rats.Hum. Exp. Toxicol.201635323224310.1177/0960327115580602 25882133
    [Google Scholar]
  55. BagchiD. BagchiM. StohsS.J. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention.Toxicology20001482-318719710.1016/S0300‑483X(00)00210‑9 10962138
    [Google Scholar]
  56. RapportL. LockwoodB. Proanthocyanidins and grape seed extract.Pharmaceu J2001266581584
    [Google Scholar]
  57. Abdel-KawiS.H. HashemK.S. Abd-AllahS. Mechanism of diethylhexylphthalate (DEHP) induced testicular damage and of grape seed extract-induced protection in the rat.Food Chem. Toxicol.201690647510.1016/j.fct.2016.02.003 26854921
    [Google Scholar]
  58. GuptaM.B. BhallaT.N. GuptaG.P. MitraC.R. BhargavaK.P. Anti-inflammatory activity of taxifolin.Jpn. J. Pharmacol.197121337738210.1016/S0021‑5198(19)36228‑6 4254191
    [Google Scholar]
  59. KuangH. TangZ. ZhangC. Taxifolin activates the Nrf2 anti-oxidative stress pathway in mouse skin epidermal JB6 Pþ cells through epigenetic modifications.Int. J. Mol. Sci.20171871546155610.3390/ijms18071546 28714938
    [Google Scholar]
  60. ManigandanK. JayarajR.L. JagatheeshK. ElangovanN. Taxifolin mitigates oxidative DNA damage in vitro and protects zebrafish (Danio rerio) embryos against cadmium toxicity.Environ. Toxicol. Pharmacol.20153931252126110.1016/j.etap.2015.04.021 26002187
    [Google Scholar]
  61. BistR. BhattD.K. The evaluation of effect of alpha-lipoic acid and vitamin E on the lipid peroxidation, gamma-amino butyric acid and serotonin level in the brain of mice (Mus musculus) acutely intoxicated with lindane.J. Neurol. Sci.20092761-29910210.1016/j.jns.2008.09.008 18950802
    [Google Scholar]
  62. MoiniH. PackerL. SarisN.E.L. Antioxidant and prooxidant activities of α-lipoic acid and dihydrolipoic acid.Toxicol. Appl. Pharmacol.20021821849010.1006/taap.2002.9437 12127266
    [Google Scholar]
  63. PackerL. WittE.H. TritschlerH.J. Alpha-lipoic acid as a biological antioxidant.Free Radic. Biol. Med.199519222725010.1016/0891‑5849(95)00017‑R 7649494
    [Google Scholar]
  64. NunesS. MadureiraA.R. CamposD. Therapeutic and nutraceutical potential of rosmarinic acid-Cytoprotective properties and pharmacokinetic profile.Crit. Rev. Food Sci. Nutr.201757917991806 26114303
    [Google Scholar]
  65. WuH. MaK. NaX. Rosmarinic acid alleviates di-2-ethylhexyl phthalate (DEHP) -induced thyroid dysfunction via multiple inflammasomes activation.J. Toxicol. Sci.202045737339010.2131/jts.45.373 32612006
    [Google Scholar]
  66. BarseA.V. ChakrabartiT. GhoshT.K. PalA.K. JadhaoS.B. Endocrine disruption and metabolic changes following exposure of Cyprinus carpio to diethyl phthalate.Pestic. Biochem. Physiol.2007881364210.1016/j.pestbp.2006.08.009
    [Google Scholar]
  67. XiaL.Z. JiangM.Z. LiuL.L. Protective effect of quercetin against phthalates induced hepatotoxicity in rats.Toxicol. Res. (Camb.)202211586387110.1093/toxres/tfac060 36337248
    [Google Scholar]
  68. LiuR.J. HeY.J. LiuH. Protective effect of Lyciumbarbarum polysaccharide on di-(2-Ethylhexyl) phthalate-induced toxicity in rat liver.Environ. Sci. Pollut. Res. Int.20212818235012350910.1007/s11356‑020‑11990‑8
    [Google Scholar]
  69. LiuK. LehmannK.P. SarM. YoungS.S. GaidoK.W. Gene expression profiling following in utero exposure to phthalate esters reveals new gene targets in the etiology of testicular dysgenesis.Biol. Reprod.200573118019210.1095/biolreprod.104.039404 15728792
    [Google Scholar]
  70. YousefI.M. KhaledF.A. AzizF. HassanH.A. KamelK.I. Ginger Suppress Di-(2-ethylhexyl) phthalate testicular toxicity through alleviating hormonal disturbances in male rabbits.Global Scientific J Biochem20181610
    [Google Scholar]
  71. ZhaoY. LiM.Z. ShenY. Lycopene prevents DEHP-induced Leydig cell damage with the Nrf2 antioxidant signalling pathway in mice.J. Agric. Food Chem.20206872031204010.1021/acs.jafc.9b06882 31814398
    [Google Scholar]
  72. ZhaoY. MaD.X. WangH.G. Lycopene prevents DEHP- induced liver lipid metabolism disorder by inhibiting the HIF-!alpha-induced PARalpha/PARgama/FXR/LXR system.J. Agric. Food Chem.20206841114681147910.1021/acs.jafc.0c05077 32962341
    [Google Scholar]
  73. WangJ. LiaoY. FanJ. YeT. SunX. DongS. Apigenin inhibits the expression of IL-6, IL-8, and ICAM-1 in DEHP-stimulated human umbilical vein endothelial cells and in vivo.Inflammation20123541466147610.1007/s10753‑012‑9460‑7 22527144
    [Google Scholar]
  74. FarombiE.O. AbarikwuS.O. AdedaraI.A. OyeyemiM.O. Curcumin and kolaviron ameliorate di-n-butylphthalate-induced testicular damage in rats.Basic Clin. Pharmacol. Toxicol.20071001434810.1111/j.1742‑7843.2007.00005.x
    [Google Scholar]
  75. HosseinzadehA. MehrzadiS. SiahpooshA. BasirZ. BahramiN. GoudarziM. Gallic acid ameliorates di-(2-ethylhexyl) phthalate-induced testicular injury in adult mice.Hum. Exp. Toxicol.20224110.1177/09603271221078867 35196152
    [Google Scholar]
  76. DaiX.Y. LiX.W. ZhuS.Y. Lycopene ameliorates di(2-ethylhexyl) phthalate-induced pyroptosis in spleen via suppression of classic caspase-1/NLRP3 pathway.J. Agric. Food Chem.20216941291129910.1021/acs.jafc.0c06534 33475360
    [Google Scholar]
  77. DaiX.Y. ZhuS.Y. LiM.Z. TalukderM. ZhaoY. LiJ.L. Potential role of lycopene in the inhibition of di(2-ethylhexyl) phthalate-induced ferroptosis in spleen via modulation of iron ion homeostasis.ACS Pharmacol. Transl. Sci.20214138639510.1021/acsptsci.1c00001 33615188
    [Google Scholar]
  78. DaiX.Y. ZhaoY. GeJ. Lycopene attenuates di(2-ethylhexyl) phthalate-induced mitophagy in spleen by regulating the sirtuin3-mediated pathway.Food Funct.202112104582459010.1039/D0FO03277H 33908429
    [Google Scholar]
  79. AshariS. KaramiM. ShokrzadehM. Quercetin ameliorates Di (2-ethylhexyl) phthalate-induced nephrotoxicity by inhibiting NF-κB signaling pathway.Toxicol. Res. (Camb.)202211227228510.1093/toxres/tfac006 35510228
    [Google Scholar]
  80. AbarikwuS.O. SimpleG. OnuohaS.C. MokwenyeI. AyoguJ.F. Evaluation of the protective effects of quercetin and gallic acid against oxidative toxicity in rat’s kidney and HEK-293 cells.Toxicol. Rep.2020795596210.1016/j.toxrep.2020.07.015 32874919
    [Google Scholar]
  81. IshiharaM. ItohM. MiyamotoK. Spermatogenic disturbance induced by di-(2-ethylhexyl) phthalate is significantly prevented by treatment with antioxidant vitamins in the rat.Int. J. Androl.2000232859410.1046/j.1365‑2605.2000.00212.x 10762434
    [Google Scholar]
  82. JainG.C. PareekH. KhajjaB.S. JainK. SharmaS. Modulation of Di-(ethylhexyl) phthalates induced hepatic toxicity by Apiumgraveolens L. seeds extract in rats.Afr. J. Biochem. Res.20093222225
    [Google Scholar]
  83. MadkourN.K. Beneficial role of celery oil in lowering the di(2-ethylhexyl) phthalate-induced testicular damage.Toxicol. Ind. Health201430986187210.1177/0748233712464808
    [Google Scholar]
  84. HabbakLZ KhidrAA Protective role of some natural products on phthalates-induced testicular toxicity in offspring mice.Scientific J Daimetta faculty of Sci201326379
    [Google Scholar]
  85. ZhangL.D. LiH.C. ChongT. Prepubertal exposure to genistein alleviates di-(2-ethylhexyl) phthalate induced testicular oxidative stress in adult rats.BioMed Res. Int.201420141910.1155/2014/598630 25530965
    [Google Scholar]
  86. HelalM.A.M. Celery oil modulates DEHP-induced reproductive toxicity in male rats.Reprod. Biol.201414318218910.1016/j.repbio.2014.04.002 25152515
    [Google Scholar]
  87. GeJ. HanB. HuH. LiuJ. LiuY. Epigallocatechin-3-O-Gallate protects against hepatic damage and testicular toxicity in male mice exposed to Di-(2-ethylhexyl) phthalates.J. Med. Food201518775376110.1089/jmf.2014.3247
    [Google Scholar]
  88. OdaS.S. WaheebR.S. Ginger attenuated di (n-butyl) phthalate-induced reproductive toxicity in pubertal male rabbits.World Rabbit Sci.201725438739810.4995/wrs.2017.7466
    [Google Scholar]
  89. KhaledF.A. YousefM.I. Abdel-AzizF. HassanH.A. KamelK.I. Investigation of the effect of ginger on the lipid levels against The Toxic Effect of phthalate in male rabbits.Int J Appl Sci2019111122
    [Google Scholar]
  90. ZhangY. ShiG. CaiJ. Taxifolin alleviates apoptotic injury induced by DEHP exposure through cytochrome P450 homeostasis in chicken cardiomyocytes.Ecotoxicol. Environ. Saf.201918310958210.1016/j.ecoenv.2019.109582 31442803
    [Google Scholar]
  91. WangX XuYan YuyanY Dibutyl phthalate-mediated oxidative stress induces splenic injury in mice and the attenuating effects of vitamin E and Curcumin. Food Chem Toxicol20201360278691510.1016/j.fct.2019.110955
    [Google Scholar]
  92. ZhaoY. LinJ. TalukderM. Aryl Hydrocarbon Receptor as a target for lycopene preventing DEHP-induced spermatogenic disorders.J. Agric. Food Chem.202068154355436610.1021/acs.jafc.9b07795 31971381
    [Google Scholar]
  93. ZhaoY. MaD.X. WangH.G. Lycopene prevents DEHP- induced liver lipid metabolism diorder by inhibiting the HIF-!alpha-induced PARalpha/PARgama/FXR/LXR system.J. Agric. Food Chem.20206841114681147910.1021/acs.jafc.0c05077 32962341
    [Google Scholar]
  94. HosseinzadehA. MehrzadiS. SiahpooshA. BasirZ. BahramiN. GoudarziM. The ameliorative effect of ellagic acid on di-(2-ethylhexyl) phthalate-induced testicular structural alterations, oxidative stress, inflammation and sperm damages in adult mice.Reprod. Biol. Endocrinol.202119114610.1186/s12958‑021‑00830‑0 34537068
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838268882231006094411
Loading
/content/journals/ctm/10.2174/0122150838268882231006094411
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): adolescence; apigenin; infancy; Phthalates; taxifolin; vitamin C
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test